Zastosowanie działań na hipersześcianach binarnych w diagnostyce sieci komputerowych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zastosowanie działań na hipersześcianach binarnych w diagnostyce sieci komputerowych"

Transkrypt

1 toowe dłń hpereścch brych w dgotyce ec komputerowych Formle, -wymrowym hpereścem brym ywmy grf wykły o węłch których kżdy opy jet ym wektorem brym (,..., ),( {, }, ) or o krwędch, łącących te węły, których opy mją odległość Hmmg rówą jede. Iteje wele (omorfcych) poobów predtw (ryow) - wymrowego hpereścu brego, które mją określoe cechy, prydte pry rowąywu określoych dń kreu ytemów, kodów utokorekcyjychec telekomukcyjychec multproceorowych or kreu dgotyk ec logcych ec komputerowych. Prykłd 4-wymrowego hpereścu brego bór wektorów brych (,..., ), ( {, }, ) moż trktowć jko bór werchołków - wymrowego hpereścu brego, ocoych gode pryjętą oretcją tego hpereścu.

2 Ocmy: (,... ) { : ) ( )) ) ( {, }))}, {,, }. Tk węc, wektor (,...), ( {,, },, ) moż trktowć jko r-wymrowy, ( r Crd{ {,...}: }, r ) eśc bry, który jet określoym podeścem -wymrowego hpereścu brego. Dl prykłdu, ry. predtwoo 4-wymrowy hpereśc bry, którego werchołk opują wektory bre (,..., ), ( {, }, ), ry.- coo ektóre jego podeścy: -wymrowy ( ), - wymrowy ( ), -wymrowy ( ) or podeśc -wymrowy (). Nech S r oc bór eśców r -wymrowych, które ą podeścm -wymrowego hpereścu brego. uwżmy, że: bowem r Crd S r r r r, (, ), poobów moż wybrć r kłdowych wektor, które mją wrtość, (dl kżdego tkego wyboru) pootłe r kłdowych może towć dowolą kombcję wrtośc brych. Nech S oc bór wytkch możlwych podeśców - wymrowego hpereścu brego, ()-bór podeśców - wymrowych (bór wektorów (,..., ),( {,}, )) podeścu,( ). Ocywśce: r( ) Crd (), gde r ()oc wymr podeścu. Tk węc, jeżel ( S ) ( " S ) " mją e dłń borch () boru. Dl prykłdu, (ry.): to dł podeścch ("), które ą określoym podborm

3 )), )) \ )) )); )) )) )); )) )) ; )) )) {(),()}; ))

4 4 Ry. Hpereśc bry 4-wymrowy ( ) 4 ( ) ( ) ( ) ( ) Ry. Podeścy ( ),( ),( ),( ) hpereścu brego ( )

5 REKONFIGURACJA STRUKTURY PIERŚCIENIOWEJ SIECI KOMPUTEROWEJ W SYTUACJI USKODENIA SIĘ NIEKTÓRYCH NADMIAROWYCH LINII TRANSMISJI DANYCH Formle, -wymrowym hpereścem brym ywmy grf wykły G, (G < E, U >, E, U - ) o węłch, których kżdy opy jet ym wektorem brym, ( (,..., ), {, },, ) or o krwędch, łącących te węły, których opy mją odległość Hmmg rówą jede. Mówmy, że eć komputerow, werjąc komputerów U, ( U - ) l trmj dych, m rchtekturę typu hpereścu - wymrowego (rchtekturę geżdżoą w -wymrowym hpereśce brym), jeżel grf G, (G <E, U>, U U ) opujący tę rchtekturę, jet grfem Hmlto (grfem, w którym teje cykl Hmlto - cykl prechodący pre kżdy węeł grfu jede tylko jede r). uwżmy, że kżd rchtektur perśceow [pętlow], (g. rg etwork, loop etwork) o komputerch jet bedmrową (w ee lcby możlwych wdlwych l trmj dych) rchtekturą typu hpereścu or, że rchtektur typu hpereścu jet cególym rodjem rchtektury ockowej (g. meh etwork). Jedym powodów toow rchtektury typu hpereścu jet możlwość pewe efektywego fukcjoow komputerów w perśceu pommo, ż ektóre le trmj dych utrcły cłkowce ( kutek ce) lub cęścowo ( kutek kłóceń) dolość do fukcjoow wymgą poprwoścą. Dl prykłdu, ryuku predtwoo eć komputerową o rchtekture hpereścu 4-wymrowego, któr m 7 l trmj dych or coo jede 5 możlwych, dl tej ec, perśce. Seć komputerow typu hpereścu 4-wymrowego coym perśceem

6 uwżmy, że włoścą cągu bro-cyklcego jet to, że: ( ( ) ( ( (,...,,,...,,, ) (,) (,..,,,,..., ) (,,..., ) (,...,,...,,, ),( );,,),( );,...,,,,..., );,,..., ),( ). () Tk węc powyżych włośc wyk lgorytm bepośredego wyc boru S(), ( ) bowem: ( (, 4) ( ( ( ) (, ) ) ( ) ( ) ( ) ( )); ) ) ( ) ) (, )); + ) ( )). + k, k )); () Dl prykłdu, leżośc (), otrymujemy: S(5) {( S() {( S(4) {(,... + {(, 4, )}, )},,,)},(, )},,)} + {(, {,}).,)};,,)},,)},,,)} + {(,,,,)},,)};,,,,)} + leżośc () wyk, że bór S(), ( ) moż jedoce określć pre mcer M ( ),( M ( ) [ mj] ( ), mj {,,, }) tką, że m, +, bór S(S(), f) - pre mcer M(M(), f), któr jet wykem permutcj f kolum mcery M(). Tk węc: M() M(4) M(5) M(M(5), (4)(5)())

7 Ocmy: γ ( ) { {,..., }: }, ( S ) S () {" : γ(") γ()}, S () {" S():" S()}. uwżmy, że: " [ S ( )] [ " ):( ) ( " m )],( S( )) () gde m j oc bór eśców -wymrowych, określoy pre j-ty wer mcery M(). Tk węc: FS ( *)! F ( ), (4) S* gde: F ( ) { f F : (, f) S ( )}. (5) Wycee boru F(S*) tow dl cłkowte, dl 4-cęścowe rowąe formułowego problemu. Dl prypdku gdy 4, propoowy lgorytm poleg rołożeu hpereścu -wymrowego wględem meej, ( {,...,}) dw rołące podhpereścy (-)-wymrowe: H, ( H (,...,,... )) H, ( H (,...,,... )) or wybru dwóch podeśców e boru S ( ), + * * ( S ( ) { \ S : }). Wyber ę tke, że: { : } m. or H, ( {, }) Ocmy: H. Nech S /, ) oc bór tkch łńcuchów Hmlto ( S, ), ( S(, ) / (, ), (, ) S, S(, ) ) ( w podhpereśce H, że: S łącących S ( /, ) S(, ) :{ S(, ) { *: H }}. S S(, ) + S(, ) + +, Tk węc, kżdy bór S tk, że " jet tkm perśceem Hmlto, w -wymrowym hpereśce, że S S*. Nech S / oc umę perśce wycoych (w powyży poób) dl wytkch możlwych boru S ( ), S/ (G) -bór perśce w grfe G, opującym trukturę ec komputerowej. Jeżel S ( ) < 4, to S S(G) / /. / - w precwym re S S(G / )

Dowolną niezerową macierz A o wymiarach m na n za pomocą ciągu przekształceń elementarnych można sprowadzić do postaci C 01

Dowolną niezerową macierz A o wymiarach m na n za pomocą ciągu przekształceń elementarnych można sprowadzić do postaci C 01 WYKŁD / RZĄD MCIERZY POSTĆ BZOW MCIERZY Dowolą ieerową mcier o wymirch m pomocą ciągu prekłceń elemerych moż prowdić do poci I r C m wej bową (koicą) W cególości mcier bow może mieć poć: r I dl r m I r

Bardziej szczegółowo

Ź Ź ź Ś Ą Ź ć Ś

Ź Ź ź Ś Ą Ź ć Ś ć ź ć ć ć ć Ć ć Ę ć ć ć Ś ć Ć ć ć ć Ź Ź ź Ś Ą Ź ć Ś ć Ź Ę Ź ć ć Ą Ą Ą ć Ć Ą ć Ź Ś ź ć Ź ć Ź Ś Ź Ź Ą ć Ą Ź ć Ć Ź Ę Ą Ą Ś ć Ć ć ć Ś Ń Ą Ń Ś Ś Ę Ź Ą Ą Ą Ś ć Ź Ź Ś Ś ź ŚŚ Ć Ś Ś Ą Ą ć ć Ź ź Ź ć Ź Ź ź Ź ć Ć

Bardziej szczegółowo

MACIERZE I WYZNACZNIKI

MACIERZE I WYZNACZNIKI MCIERZE I WYZNCZNIKI Defiicj Mcierą o współcyikch recywistych (espoloych) i wymire m x ywmy pryporądkowie kżdej pre licb turlych (i,k), i,,, m, k,,,, dokłdie jedej licby recywistej ik [ ik ] mx (espoloej)

Bardziej szczegółowo

ć ć ć Ś ć Ż

ć ć ć Ś ć Ż Ę ć ć ć Ś ć Ż Ę Ś ŚĆ Ś ć ć ć Ś ć ć ć ć ć ć Ś Ć ć ć ć ć ć ć ć ć ć ć ć ć Ś ć Ś Ż Ś Ę ć ć Ż ŚĆ ć ć ć ć ć Ż ć ć ć ć ć ć ć ź ć Ż ć ć ć ć ź ć ć ć ć ć ć ć Ć ć ć Ę ć ź ć ć ć ć ć ć ć Ę ź Ę ć ć ć ć ć ć ć ć ć ć ć

Bardziej szczegółowo

Ł Ł Ę Ż ć ć ą Ź ą Ś Ę ą Ź Ą Ż Ą ą ź ą Ł Ą Ś Ą ą

Ł Ł Ę Ż ć ć ą Ź ą Ś Ę ą Ź Ą Ż Ą ą ź ą Ł Ą Ś Ą ą ą Ł Ó ą Ą ą ą Ó Ś Ó ą Ż ą Ś Ą Ł Ł Ę Ż ć ć ą Ź ą Ś Ę ą Ź Ą Ż Ą ą ź ą Ł Ą Ś Ą ą ć Ś ą ą ą ć ą ą ć ą ą Ź ą ćś ą ą ą Ż ą ą ć ą ć ą ć ą ą ć ć ą ą Ż ą ą ć Ł ĘŚĆ Ź Ść ą ą ą ą ŚŚ ć ą ą Ż Ź ą ć ć ć ą ą ąą ą ć ą

Bardziej szczegółowo

INSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr LABORATORIUM TEORII I TEHCNIKI STEROWANIA INSTRUKCJA LABORATORYJNA

INSTYTUT ENERGOELEKTRYKI POLITECHNIKI WROCŁAWSKIEJ Raport serii SPRAWOZDANIA Nr LABORATORIUM TEORII I TEHCNIKI STEROWANIA INSTRUKCJA LABORATORYJNA prwch rękops do żytk słżboweo ISTYTUT RGOLKTRYKI POLITCHIKI WROCŁAWSKIJ Rport ser SPRAWODAIA r LABORATORIUM TORII I THCIKI STROWAIA ISTRUKCJA LABORATORYJA ĆWICI r 9 Sterowe optymle dyskretym obektem dymcym

Bardziej szczegółowo

Ą ś ź ś ć ś ź ź ś ź

Ą ś ź ś ć ś ź ź ś ź ź ź Ź ś Ź ś ś Ą ś ź ś ć ś ź ź ś ź ś ś śćś ś ś ś ś ś Ę ś ź ś ś ś Ą ś Ę ś ś ś ź śćś ś ś ś ś ś ś Ź Ś Ń ć ś ś ść ś ś ś Ź ś ść ś ś ś Ź ś ś śćś Ś śćś ść ś ś śćś śćś ś ść ś śś śćś ś śćś śćś ść ść ź Ń ść ś Ę ś

Bardziej szczegółowo

ć ć ź ć ć ć Ź ź Ź ź

ć ć ź ć ć ć Ź ź Ź ź ć Ż Ż ć ć ć ź ć ć ć Ź ź Ź ź ć ź ć ź ć ź ź ź ź ź ź ź ć ć ź ć źć ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ź ć ć ć ź ć ć ć ć Ź ć ć ć Ó Ż ć ć Ź ć ć ć ć ć ć ć ć ć ć ć Ź ć ź ć ć ć ć ź ć ć ć

Bardziej szczegółowo

Ń Ą Ń Ń Ń

Ń Ą Ń Ń Ń ŁĄ Ń Ł ć ć ć Ę Ę Ą Ą Ę Ń Ą Ń Ń Ń Ń ć Ą Ź ć Ź ć Ź ć ź ź Ł Ą Ę ć ć Ę Ć Ć Ą ć Ć Ć Ł Ć Ź Ć Ą Ą Ą Ą ĄĄ Ć Ą Ą Ą ć Ć Ł Ć Ę Ć Ć Ę Ę Ć Ć Ę Ą Ć Ć Ń Ń Ć Ę Ć Ł Ć Ł Ą Ę Ź Ć Ł Ę Ł Ł Ł Ę Ę Ł Ę Ł Ć Ć Ą Ę Ł Ą Ć Ą Ź Ą Ę

Bardziej szczegółowo

ć ć ć ć ć ź Ź ć ć Ń Ę ź ź Ą ć ć

ć ć ć ć ć ź Ź ć ć Ń Ę ź ź Ą ć ć Ł Ł ź Ą Ź ć Ź ć Ę ć ź Ż ć ć Ń Ę Ę Ś ć ć ć ć Ć ć ć ć ć ć ź Ź ć ć Ń Ę ź ź Ą ć ć ć Ź Ż ć Ą ć Ł Ó Ł Ę Ę ĘŚĆ Ę ĘŚ ź Ę Ą Ą Ą ĘŚ Ź Ź Ź Ź Ż Ź ć ć Ź ć Ź Ł Ź Ź Ź ć ć Ą ć ć ć ć ć ć ć Ź Ź ź ć ć ć ć ć ć ć Ź ć Ą Ę Ą

Bardziej szczegółowo

ć ć Ł

ć ć Ł Ł Ą Ę Ó Ą Ę Ż Ę Ś ć ć Ł Ą ĘŚĆ ć Ś ć ć ć ć ć Ś ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ć ć ć ć ć Ł Ś ć ć ć ć ć ć ć ć ć ć Ł Ś ć ć ć ć ć Ć ć ć ć Ć ć ć ć ć ć ć Ć Ś Ł ć Ę ć Ł Ź ź ź ć Ł Ę Ę Ł ŁĄ Ż ć ć ć Ś ŚÓ Ś ć ć Ś

Bardziej szczegółowo

ĄĄ

ĄĄ Ń Ę Ą Ą ĄĄ Ś ĘĘ Ę Ę Ę Ś Ń Ń Ę Ę Ę Ń Ę Ą ź Ę Ś Ą ź ź Ę Ę Ń Ę Ę ź ź ź Ę Ń Ę Ą Ę ź ź Ń Ó Ó Ś Ę Ń Ń ź Ę Ą Ł ź Ą ź Ą Ę ź Ń Ą ź ź ź Ń ź ź ź ź Ą ź Ą Ę Ą ź Ą Ą Ś ź Ą Ę Ę Ę Ę Ę Ę ź Ń Ń ź Ę ź Ę Ń Ł Ł Ń Ś ź Ń Ń Ę

Bardziej szczegółowo

ź Ź Ź ć ć ć ź ć ć ć ć ć Ź

ź Ź Ź ć ć ć ź ć ć ć ć ć Ź ź Ź Ź ć ć ć ź ć ć ć ć ć Ź ć ć ć ć ć ć ć ć Ż ć ć ć ć ć ć ć ć ć ć ć Ż Ż ć ć ć ć ć ć ć ć Ż ć ć ć ź ć Ź ć ć ć ć ć ć ć ć ć ź ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ż ć ć ć ć Ż ć ć ć ć ć ć ć ć Ż ć Ł Ś Ś ć Ą Ę ć Ę ć Ż ć

Bardziej szczegółowo

Ą ŚĆ Ś Ś Ę ć

Ą ŚĆ Ś Ś Ę ć Ą Ę Ą Ą ŚĆ Ś Ś Ę ć ć ć ć ź ć ć ć ć ć ć ć ć Ą ć ć ć Ą Ś ć Ś ć ć Ą ć Ś Ś Ą Ś Ą ć ć Ą ź ź ć ć Ą ć ź ć Ą ć Ą ć ć ć ć ć ć ć ć ć ć ć ć ć ź ć ć Ś ć ć ć Ę Ą ć Ą ć ć ć ć ć ć Ł ź ź ź Ł Ł ć Ą ć ć ć ć ć Ą ć Ą ć Ą

Bardziej szczegółowo

Ę ź Ą

Ę ź Ą Ę ź Ą Ę Ł Ń Ż Ż ć Ł ć ć ć ć Ż Ż Ć Ż ć Ż Ż Ń Ć Ć Ć Ż ć ć ć Ć ć Ż Ż Ć Ć Ż Ż Ź Ż Ż ć ć ć Ż Ż Ć Ć Ż Ź Ż Ż ć Ż Ż Ć Ż ć Ż Ł Ń Ę ć Ż Ł Ż ć Ć ć ć Ę Ż ć Ć Ż ć ć Ź Ć ć Ć Ź ć ć ć Ć ć ć Ż ć ć ć ć Ż Ę ć Ę Ć ć Ć Ą Ż

Bardziej szczegółowo

Ę Ź ś ś ść ś ść ś ś ś ś Ż ż Ś ś Ę Ś ś śś Ł

Ę Ź ś ś ść ś ść ś ś ś ś Ż ż Ś ś Ę Ś ś śś Ł ś Ą ś Ż Ż Ł ź Ś Ż ż Ż ż ż Ó Ż Ę ś Ę Ę Ę ś ś Ł Ą Ę Ź ś ś ść ś ść ś ś ś ś Ż ż Ś ś Ę Ś ś śś Ł ż Ą ś ś ś ś ś ś ć ść Ę ś ś Ą Ę Ą ż Ę ś śś Ę ś ś ś ś ż Ę ć ś ć ż ć Óź Ę Ę Ę Ą ś ś ś Ś ś Ż Ż Ż żć ś ś ź Ę Ę ś ś

Bardziej szczegółowo

ń ż Ż

ń ż Ż Ł ń ć ń Ż ń ż Ż Ę ń Ź Ż Ń ż ń ż Ż ń ż Ć Ę Ę ć ć ż ć ń ć ć ć ć ć ć Ę ń ć ń Ż ć Ą Ż ć ń ż ć ć Ń Ń ż ć ć ć Ż ć ź ż ć ć ć ż Ę ć ć Ń ć ż ć Ą ć ć ć Ę ć ń ż ć ć ń Ń ż ń ć Ą ż ć ń ć ż ż Ę Ź Ż Ż ń Ę Ż Ę Ę ż ń ż

Bardziej szczegółowo

Ż Ą Ź ć Ę Ź ć

Ż Ą Ź ć Ę Ź ć Ą Ż Ą Ź ć Ę Ź ć ć Ż Ę Ę ć Ś ć Ż Ż Ź ć Ą ć Ę Ź ć Ś Ś Ę ć Ę ć Ź Ś ć ć ć Ż Ż Ę Ź Ę Ż Ź Ść Ś Ż Ś Ę Ź Ż Ś Ć Ą Ź Ę Ź ć Ż Ć Ę Ź Ż ź Ę Ź Ż Ę Ś Ź Ż Ż Ś Ś Ź Ź Ź Ź Ś Ę Ą Ę Ć Ś Ę Ź Ś Ś Ś Ź Ś Ę Ę Ź Ś Ź Ę Ź Ż Ę Ę ź

Bardziej szczegółowo

ć ć ź ć Ę Ź ć ć ć ć ć

ć ć ź ć Ę Ź ć ć ć ć ć Ą ć ź Ś ź ć ź ć ć ć ź ź ć ć ć ć ć ć ć ć ć ć ć ź ć Ę Ź ć ć ć ć ć ć ć Ę ć ź ć ć ć ź ć ć ć ź ć ć ź ć ć ć Ó ć ć ć ć ć ć ć ć Ę ć ć ć ć ź ć ć ć ć ć ć ć ć ć ć ć ź ć ć ć ź ź Ę ź ć ć ć Ó ć ć Ę ć ć ź ć ć ć Ó ź Ż

Bardziej szczegółowo

I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczby całkowite C : C..., 3, 2, 1,

I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczby całkowite C : C..., 3, 2, 1, I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczy turle N : N 0,,,,,,..., N,,,,,... liczy cłkowite C : C...,,,, 0,,,,... Kżdą liczę wymierą moż przedstwić z pomocą ułmk dziesiętego skończoego

Bardziej szczegółowo

ś ść ść ś ść ść ś ś ś ś ść ś ś ś ść ść

ś ść ść ś ść ść ś ś ś ś ść ś ś ś ść ść Ą Ł Ł Ł Ę Ł ś ś ś ś ść ść ść ść Ś ść ŚĆ ś ŚĆ ś ś ść ść ś ść ść ś ś ś ś ść ś ś ś ść ść ś ś ś Ż ś Ś ś Ś ść ś ś ś ś ś ś ś ś Ś ś ś ś ś Ł Ś ś ś ś Ś ś ś ź Ś ŚĆ ś ś ś ś ś ś Ś ś Ś ś ś ś ś ś ś ś Ś Ś ść ś ś ś ś

Bardziej szczegółowo

ź ź ć ź ź ź Ó Ó ć Ć ć ć Ą ć ć ź ć ć ć ć Ś

ź ź ć ź ź ź Ó Ó ć Ć ć ć Ą ć ć ź ć ć ć ć Ś Ś Ó ź ź ź ź ź ź ź ź ć ź ź ź Ó Ó ć Ć ć ć Ą ć ć ź ć ć ć ć Ś ć ć ć ć ź ź ć ź ź ć Ą ź ź ź ć ć ć ź ć ć ć ć Ó ź Ą ć ć ź ć ź ź ć ć ć Ż ć Ó ć ź ź ź ź ź Ą ź ź ź ź ź ź ć ć ź ć ź ć ź ć ź Ą ź ć ź ć ć Ó ć ć ć ć ć Ś

Bardziej szczegółowo

ź Ę ŚŚ Ś Ą Ę Ó Ó Ł Ą Ą ń ź Ń ź ń

ź Ę ŚŚ Ś Ą Ę Ó Ó Ł Ą Ą ń ź Ń ź ń Ą Ł Ę Ó ń Ó ć Ś ź Ę ŚŚ Ś Ą Ę Ó Ó Ł Ą Ą ń ź Ń ź ń ź ń Ń Ą Ó ĄŁ Ł Ś Ą Ś Ó Ń Ó Ś Ń ń ć ć Ó Ę Ó Ą Ą ź ź ń Ł Ś Ę ć ć ń ć ź ć ć ź ć ć Ó Ą Ń Ż ń ć ć ń Ń ć ć ź ć ć ć ć ć ń ń ć Ą Ń Ę ń ń Ń ź ź ń Ń ń Ń ć ń ń ć ć

Bardziej szczegółowo

Ę Ę Ó ć ź Ż Ż Ą Ł Ę ć Ę Ą ź ć ź ć Ę

Ę Ę Ó ć ź Ż Ż Ą Ł Ę ć Ę Ą ź ć ź ć Ę Ę Ń Ł ź ź Ż Ą Ł ć Ę Ę Ó ć ź Ż Ż Ą Ł Ę ć Ę Ą ź ć ź ć Ę ć Ż ć Ą ź Ę Ż Ę Ż Ą Ń ć ź Ł ć Ń ć ź ć ć Ń ć Ż Ę Ę ć ć ć Ą Ę Ę ź ć ć Ż Ż Ę ĘĘ Ż ć Ą Ę ć ć ć Ę ć ź ć Ś ź Ę ć Ź ć Ę ć Ę ź ć Ż Ż Ż ć Ś Ę ć Ż Ż ź Ł Ę ć

Bardziej szczegółowo

Ę Ę ź Ę Ą ć ć Ę Ą ć Ą Ę ć Ę Ę ć

Ę Ę ź Ę Ą ć ć Ę Ą ć Ą Ę ć Ę Ę ć Ń Ń Ż Ś Ś ź Ą ŻŻ ź ć Ą ć ć ź Ą Ę ź Ę Ę Ę Ę ź Ę Ą ć ć Ę Ą ć Ą Ę ć Ę Ę ć ć ć ć ć Ź Ź ć Ź Ę ć ć ć Ż ć ć ć ć ć ć ć ć ć ź ć Ż Ż ć Ż ć Ż ć Ś Ż ć Ż ć Ż Ź ć Ż ć Ź ź ć ć Ż ć ć Ś Ż Ź Ś ć ć ź ć ć ć Ń ć Ż Ż ć Ę ź

Bardziej szczegółowo

Ć Ź ć Ę ć Ę Ć Ź Ź Ć

Ć Ź ć Ę ć Ę Ć Ź Ź Ć Ź Ć Ć Ź ć Ę ć Ę Ć Ź Ź Ć Ł Ą Ę Ć ć ćź ć Ź Ź Ź Ź Ą Ć ć Ł Ł Ł Ę ć ć Ź Ą ć Ę ć Ź Ź Ź Ź ć Ź Ź ć Ź ć Ł ć Ą Ć Ć Ć ć Ź Ą Ź ć Ź Ł Ł Ć Ź Ą ć Ć ć ć ć ć Ć Ć ć Ć ć ć Ł Ę Ź ć Ć ć Ź Ź Ć Ź Ź ć ć Ź ć Ź Ź Ź Ą Ę Ń Ź Ć Ą

Bardziej szczegółowo

ą ą ż ąż Ę ć ć ż ż ż ć ą ą

ą ą ż ąż Ę ć ć ż ż ż ć ą ą ą ą ź ą ą ż ż ź ź ą ą ż ąż Ę ć ć ż ż ż ć ą ą ą ą ż ż ż ż ż ż ć ą ą ą ą ź ż ą ą ż ź Ź ć ż ż ż ź ą ż ż ż ą ż ą ą ż ż ż Ó ż ć ą ż ż ą ż ą ż ą ż ż ż ż ż ż ć ź ć Ł ć ż ć ż ż ż ć ż ż ą ć ą ż ć ź ż ż ć ć ć ź

Bardziej szczegółowo

ć ć Ą ć Ęć Ó Ą ź ć ć ć ć ź ź Ą ć Ę ć ź ć ć ć ź ć ź ć ć ć Ś Ź ź

ć ć Ą ć Ęć Ó Ą ź ć ć ć ć ź ź Ą ć Ę ć ź ć ć ć ź ć ź ć ć ć Ś Ź ź ź Ó ć Ę ć Ó ć ć ć ć Ź ć ź ć ć Ź ć ć ć Ą ć Ęć Ó Ą ź ć ć ć ć ź ź Ą ć Ę ć ź ć ć ć ź ć ź ć ć ć Ś Ź ź ć Ą ć Ą ć ź ć ź ć Ę ć ć Ź ź Ę ć ć ć ć Ę Ę ź ć Ó ć ć ć ć ć ć ć ć ć Ź Ź ć ć ć ź Ę ć ć ć ć Ę Ąć ź Ź ć Ą ć ć

Bardziej szczegółowo