WSTĘP DO INFORMATYKI BŁĘDY NUMERYCZNE I POPRAWNOŚĆ OBLICZEŃ
|
|
- Maria Sawicka
- 6 lat temu
- Przeglądów:
Transkrypt
1 Akademia Góriczo-Huticza Wdział Elektrotechiki, Automatki, Iformatki i Iżierii Biomedczej WSTĘP DO INFORMATYKI Adria Horzk BŁĘDY NUMERYCZNE I POPRAWNOŚĆ OBLICZEŃ
2 POPRAWNOŚĆ OBLICZEŃ Obliczeia prowadzoe prz pomoc współczesch komputerów mogą bć bardzo dokłade i poprawe, lecz w wielu przpadkach wmaga to wiedz o procesach obliczeiowch, artmetce komputerowej, zaokrąglaiu itp., żeb obliczeia zaprojektować i wkować w sposób popraw umerczie. Obliczeia wkowae a komputerach arażoe są róże rodzaje błędów wikające z: Ograiczoej dokładości dach źródłowch Ograiczoej ilości bitów a reprezetację dach Kowersjami pomiędz sstemami liczbowmi Zaokrągleń spowodowach reprezetacją dach Obcięciami i uproszczeiami obliczeń wikające z ieskończoch sum Trudością wkowaia operacji a bardzo małch i dużch liczbach Brak wiedz a te temat może prowadzić do błędego budowaia algortmów i powstawaia błędów umerczch podczas obliczeń!
3 BŁĘDY NUMERYCZNE Błęd umercze możem podzielić a czter podstawowe kategorie:. Błęd dach wejściowch wstępują wówczas, gd dae liczbowe wprowadzae do pamięci i rejestrów masz cfrowej odbiegają od dokładch ich wartości (p. fizczch, biometrczch) ze względu a ograiczoą dokładość urządzeń pomiarowch (p. ciężar, odległość). 2. Błęd reprezetacji powstają, gd wstępuje koieczość reprezetacji liczb w maszie z wkorzstaiem skończoej długości słów biarch (ciągów bitów), co wmusza zaokrąglaie. Do błędów reprezetacji dochodzi rówież a skutek kowersji wielu liczb rzeczwistch z sstemu źródłowego (zwkle dziesiętego) a sstem dwójkow, stosowa w techice komputerowej, p. liczba 0,4 ie posiada swojego dokładego odpowiedika w sstemie dwójkowm, gdż (0,4)[0] = (0.0(00))[2]! 3. Błęd obcięcia związae są z koieczością zmiejszeia ilości działań, p. podczas obliczaia ciągów/szeregów/sum ieskończoch lub przbliżoego wzaczaia całek ozaczoch. 4. Błęd zaokrągleń pojawiają się w trakcie zaokrąglaia obliczoch wartości z powodu ograiczoej długości słów biarch.
4 BŁĘDY DANYCH WEJŚCIOWYCH Urządzeia pomiarowe zawsze charakterzują się ograiczoą dokładością wkowach pomiarów wielkości fizczch. Róże stosowae w przemśle orm określają dopuszczalą wielkość odchleń urządzeń pomiarowch od rzeczwistch wartości, jakie powi wskazwać: Stąd wikają błęd dach wejściowch.
5 BŁĘDY REPREZENTACJI Błęd reprezetacji ajczęściej powstają w trakcie kowersji liczb pomiędz sstemami liczbowmi. O ile m ludzie jesteśm przzwczajei liczć w sstemie dziesiętm, o tle komputer stosują sstem dwójkow. Z tm związae są jedak pewe trudości, gdż ie każde skończoe rozwiięcie liczb w sstemie dziesiętm posiada takowe w sstemie dwójkowm i vice versa! Może am się więc wdawać, iż wpisujem do komputera dokładą wartość, p. liczbę wmierą 0,4, lecz właśie wted dochodzi do błędu reprezetacji, gdż komputer od razu kowertuje taką liczbę a dwójkową postać wewętrzą, a tu okazuje się, iż ie istieje dokład odpowiedik tej liczb w sstemie dwójkowm, czli skończoe rozwiięcie dwójkowe, gdż: 0, 4 0 = = = [2] 2 e 0, 4 0 * 2 = (0),90 0, 90 0 * 2 = (),80 0, 80 0 * 2 = (),60 0, 60 0 * 2 = (),20 0, 20 0 * 2 = (0),40 0, 40 0 * 2 = (0),80
6 BŁĘDY OBCIĘCIA Błęd obcięcia często związae są z przbliżaiem obliczeń ieskończoch: gd wstępuje koieczość pomiięcia ajmiej istotch wrazów wrażeia. Błęd obcięcia charakterstcze są rówież w stuacjach, gd ze względu a zbt długi czas obliczeń, decdujem się a uproszczeie obliczeń pomijając miej istote szczegół bądź ograiczam dokładość przbliżeń, p. prz wzaczaiu wartości całek ozaczoch: gdzie N jest ilością podziałów przedziału [a, b], a h szerokością tego przedziału....!... 2! 2 0 N e N!... 2! 2 0 N N N h T h d I N b a 0 2 N a b h
7 BŁĘDY ZAOKRĄGLEŃ Słowa biare służące do zapisu liczb w techice cfrowej dspoują ograiczoą ilością bitów możliwch do wkorzstaia w celu zapamiętaia określoej liczb. Moża tego dokoać ze skończoą dokładością. Jeśli więc zabrakie bitów a reprezetację liczb, ieuikioe jest jej zaokrągleie, p.: W sstemie dziesiętm zae są stuacje koieczości zaokrąglaia: 3 0, , , , Podobie dzieje się to w sstemie dwójkowm, gdzie wik pewej operacji (p. dzieleia) ie posiada skończoego rozwiięcia dwójkowego lub rozwiięcie to przekracza maksmalą ilość dostępch bitów w stosowam słowie biarm służącm do przechowwaia wiku działaia. Wted dochodzi do błędów zaokrągleń.
8 BŁĘDY ZAOKRĄGLEŃ Jeśli mam możliwość przechowwaia tlko 0 cfr zaczącch, wted wik takiego dodawaia ie będzie taki, jaki bśm się spodziewali a skutek wkoaia operacji dodawaia: , = , lecz po zaokrągleiu wiku do 0 cfr zaczącch otrzmam: , = Dochodzi więc poowie do błędu w wiku zaokrągleia. A co się staie, jeśli będziem mieli pętlę obliczeiową, w której będziem dodawali małą liczbę do dużej aż do osiągięcia pewej wartości pozwalającej a zakończeie się pętli?
9 NIESTABILNOŚĆ NUMERYCZNA Z iestabilością umerczą mam do czieia wted, gd małe błęd dach lub popełiae w trakcie obliczeń rosą szbko w trakcie dalszch obliczeń powodując istote/duże błęd/ziekształceia wików obliczeń. PRZYKŁAD: Obliczaie ciągu całek ozaczoch: wprowadzając zależość rekurecją: umożliwiającą wzaczeie astępego elemetu ciągu całek a podstawie poprzediego: d d d d d
10 PRZYKŁAD NIESTABILNOŚCI NUMERYCZNEJ Obliczam więc elemet zerow ciągu całek wg wzoru, dokoujem zaokrągleia wiku do 3 cfr zaczącch i astępie próbujem wzaczć koleje elemet ciągu całek a podstawie poprzedich z wzaczoej wcześiej zależości: Całka ozaczoa reprezetuje pole pod fukcją, a więc musi bć ieujeme. Dlaczego już w czwartm kroku otrzmaliśm wartość ujemą całki? Każd astęp wraz ciągu potecjalie moż wcześiejsz błąd przez!
11 PRZYKŁAD STABILNOŚCI NUMERYCZNEJ Cz możem więc taki ciąg całek obliczć poprawie? Potecjalie możem rówież spróbować wzaczć poprzedi wraz ciągu a podstawie kolejego odpowiedio przekształcając wprowadzoą zależość: Lecz skąd wziąć wartość -tego wrazu ciągu? Załóżm świadomie popełiając błąd, iż dwa koleje wraz są jedakowe: W tm przpadku okazuje się, iż mimo potecjalie dużego błędu początkowego, otrzma zerow wraz tego ciągu został wzaczo poprawie, gdż błąd w każdm astęp kroku bł dzielo przez!
12 KUMULACJA BŁĘDÓW NUMERYCZNYCH W trakcie różch operacji artmetczch może dochodzić do kumulacji błędów, p. jeśli dwie liczb obarczoe są pewmi zami błędami dach wejściowch, to w wiku wkoaia operacji a tch liczbach błęd rówież zostaą poddae tej operacji powodując kumulację możliwch błędów. PRZYKŁAD:
13 UWARUNKOWANIE ZADANIA Zadaie jest źle uwarukowae, jeśli względie małe błęd dach początkowch powodują duże błęd wików obliczeń. Zadie źle uwarukowae obarczoe jest dużmi błędami wików iezależie od zastosowaej metod lub algortmu obliczaia. PRZYKŁAD: Proste rówoległe w przestrzei Jeśli współrzęde puktów defiiującch proste rówoległe zostaą obarczoe chociażb ajmiejszm błędem, przestaą bć rówoległe i możliwe będzie wzaczeie pewego puktu ich przecięcia! Uwarukowaie zadaia umerczego to wrażliwość jego rozwiązaia a poprawość dach początkowch.
14 BIBLIOGRAFIA I LITERATURA UZUPEŁNIAJĄCA. L. Baachowski, K. Diks, W. Rtter: Algortm i struktur dach, WNT, Warszawa, Z. Fortua, B. Macukow, J. Wąsowski: Metod umercze, WNT, Warszawa, J. i M. Jakowsc: Przegląd metod i algortmów umerczch, WNT, Warszawa, A. Kiełbasiński, H. Schwetlick: Numercza algebra liiowa, WNT, Warszawa M. Ssło: Elemet Iformatki. 6. A. Szepietowski: Podstaw Iformatki. 7. R. Tadeusiewicz, P. Moszer, A. Szdełko: Teoretcze podstaw iformatki. 8. W. M. Turski: Propedeutka iformatki. 9. N. Wirth: Wstęp do programowaia sstematczego. 0. N. Wirth: ALGORYTMY + STRUKTURY DANYCH = PROGRAMY.
(x 1 y 1 ) (x n y n ) 2. 1<j<m x i y i. x2 y 2 gdy x 1 = y 1 x 2 y 2 + x 1 + y 1 gdy x 1 = y 1. gdy x, y, 0 nie są współliniowe
. Metrka Zadaie.. Pokazać, że metrka jest fukcją ieujemą. Zadaie.2. Odowodić, że poiższe wzor defiiuja metrki. a) (metrka euklidesowa) X = R. d e (, ) := ( ) 2 +... + ( ) 2 b) (metrka taksówkowa) X = R
METODY KOMPUTEROWE 1
MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc
REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH
REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie
STATYSTYKA I ANALIZA DANYCH
TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica
REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH
REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Reprezentacja
3. Wykład III: Warunki optymalności dla zadań bez ograniczeń
3 Wkład III: Waruki optmalości dla zadań bez ograiczeń Podae poiże waruki optmalości dla są uogólieiem powszechie zach waruków dla fukci ede zmiee (zerowaie się pierwsze pochode i lokala wpukłość) 3 Twierdzeie
Przykładowe zadania dla poziomu rozszerzonego
Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,
Ćwiczenie 5 ITERACYJNY ALGORYTM LS. IDENTYFIKACJA OBIEKTÓW NIESTACJONARNYCH ALGORYTM Z WYKŁADNICZYM ZAPOMINANIEM.
Kompterowe Sstem Idetfikacji Laboratorim Ćwiczeie 5 IERACYJY ALGORY LS. IDEYFIKACJA OBIEKÓW IESACJOARYCH ALGORY Z WYKŁADICZY ZAPOIAIE. gr iż. Piotr Bros, bros@agh.ed.pl Kraków 26 Kompterowe Sstem Idetfikacji
Bielecki Jakub Kawka Marcin Porczyk Krzysztof Węgrzyn Bartosz. Zbiorcze bazy danych
Bielecki Jakub Kawka Marci Porczk Krzsztof Węgrz Bartosz Zbiorcze baz dach Marzec 2006 Spis treści. Opis działalości bizesowej firm... 3 2. Omówieie struktur orgaizacjej... 4 3. Opis obszaru bizesowego...
Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16
Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)
KADD Metoda najmniejszych kwadratów
Metoda ajmiejszych kwadratów Pomiary bezpośredie o rówej dokładości o różej dokładości średia ważoa Pomiary pośredie Zapis macierzowy Dopasowaie prostej Dopasowaie wielomiau dowolego stopia Dopasowaie
Michał Gruca ZASADY OPRACOWANIA WYNIKÓW POMIARÓW
Michał Gruca ZASADY OPRACOWANIA WYNIKÓW POMIARÓW 1. Wstęp Pomiarem jest procesem pozawczm, któr umożliwia odwzorowaie właściwości fizczch obiektów w dziedziie liczb. Sam proces pomiarow jest ciągiem czości
WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ
WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA
Całkowanie przez podstawianie i dwa zadania
Całkowanie przez podstawianie i dwa zadania Antoni Kościelski Funkcje dwóch zmiennch i podstawianie Dla funkcji dwóch zmiennch zachodzi następując wzór na całkowanie przez podstawianie: f(x(a, b), (a,
Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie
Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,
Ocena dopasowania modelu do danych empirycznych
Ocea dopasowaia modelu do dach empirczch Po oszacowaiu parametrów modelu ależ zbadać, cz zbudowa model dobrze opisuje badae zależości. Jeśli okaże się, że rozbieżość międz otrzmam modelem a dami empirczmi
RÓWNANIA RÓŻNICZKOWE WYKŁAD 11
RÓWNANIA RÓŻNICZKOWE WYKŁAD Szeregi potęgowe Defiicja Fukcja y = f () jest klasy C jeżeli jest -krotie różiczkowala i jej -ta pochoda jest fukcją ciągłą. Defiicja Fukcja y = f () jest klasy C, jeżeli jest
25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx
5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.
Ćwiczenie 361 Badanie układu dwóch soczewek
Nazwisko... Data... Wdział... Imię... Dzień tg.... Godzina... Ćwiczenie 36 Badanie układu dwóch soczewek Wznaczenie ogniskowch soczewek metodą Bessela Odległość przedmiotu od ekranu (60 cm 0 cm) l Soczewka
Zadania z Matematyka 2 - SIMR 2008/ szeregi zadania z rozwiązaniami. n 1. n n. ( 1) n n. n n + 4
Zadaia z Matematyka - SIMR 00/009 - szeregi zadaia z rozwiązaiami. Zbadać zbieżość szeregu Rozwiązaie: 0 4 4 + 6 0 : Dla dostateczie dużych 0 wyrazy szeregu są ieujeme 0 a = 4 4 + 6 0 0 Stosujemy kryterium
Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech
1.3. Największa liczba naturalna (bez znaku) zapisana w dwóch bajtach to a) b) 210 c) d) 32767
Egzami maturaly z iformatyki Zadaie. (0 pkt) Każdy z puktów tego zadaia zawiera stwierdzeie lub pytaie. Zazacz (otaczając odpowiedią literę kółkiem) właściwą kotyuację zdaia lub poprawą odpowiedź. W każdym
Metody Obliczeniowe w Nauce i Technice laboratorium
Marci Rociek Iformatyka, II rok Metody Obliczeiowe w Nauce i Techice laboratorium zestaw 1: iterpolacja Zadaie 1: Zaleźć wzór iterpolacyjy Lagrage a mając tablicę wartości: 3 5 6 y 1 3 5 6 Do rozwiązaia
ZADANIA ZAMKNIĘTE. Zadanie 1. (1 pkt) Wartość wyrażenia. b dla a 2 3 i b 2 3 jest równa A B. 5 C. 6 D Zadanie 2.
Zachęcam do samodzielej prac z arkuszem diagostczm. Pozaj swoje moce i słabe stro, a astępie popracuj ad słabmi. Żczę przjemego rozwiązwaia zadań. Zadaie. ( pkt) Wartość wrażeia a ZADANIA ZAMKNIĘTE b dla
Równania różniczkowe
Równania różniczkowe I rzędu Andrzej Musielak Równania różniczkowe Równania różniczkowe I rzędu Równanie różniczkowe pierwszego rzędu to równanie w którm pojawia się zmienna x, funkcja tej zmiennej oraz
Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.
Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)
EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012
Centralna Komisja Egzaminacjna EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ODPOWIEDZI I PROPOZYCJE OCENIANIA PRZYKŁADOWEGO ZESTAWU ZADAŃ PAŹDZIERNIK 2011 Zadania
SKRYPT Z MATEMATYKI. Wstęp do matematyki. Rafał Filipów Piotr Szuca
Publikacja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego SKRYPT Z MATEMATYKI Wstęp do matematki Rafał Filipów Piotr Szuca Publikacja współfinansowana przez Unię Europejską
Klucz odpowiedzi i schemat punktowania do próbnego zestawu egzaminacyjnego z zakresu przedmiotów matematyczno-przyrodniczych
Klucz odpowiedzi i schemat punktowania do próbnego zestawu egzaminacjnego z zakresu przedmiotów matematczno-przrodniczch Z a d a n i a z a m k n i ę t e Numer zadania 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 0 3
Materiał ćwiczeniowy z matematyki Marzec 2012
Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0
Wektory. P. F. Góra. rok akademicki
Wektor P. F. Góra rok akademicki 009-0 Wektor zwiazan. Wektorem zwiazanm nazwam parę punktów. Jeżeli parę tę stanowią punkt,, wektor przez nie utworzon oznaczm. Graficznie koniec wektora oznaczam strzałką.
x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem
9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3
Programowanie nieliniowe optymalizacja funkcji wielu zmiennych
Ekonomia matematczna II Ekonomia matematczna II Prowadząc ćwiczenia Programowanie nieliniowe optmalizacja unkcji wielu zmiennch Modele programowania liniowego często okazują się niewstarczające w modelowaniu
Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16
Egzami,.6.6, godz. 9:-: Zadaie. puktów) Wyzaczyć wszystkie rozwiązaia rówaia z i w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej bez używaia fukcji trygoometryczych) oraz zazaczyć
Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 11
Matematyka I Bezpieczeństwo jądrowe i ochroa radiologicza Semestr zimowy 2018/2019 Wykład 11 Całka ozaczoa podstawowe pojęcia Defiicja podziału odcika Podziałem P odcika < a, b > a części azywamy zbiór
Józef Beluch Akademia Górniczo-Hutnicza w Krakowie. Wpływ wag współrzędnych na wyniki transformacji Helmerta
Józef Beluch Akadema Górczo-Hutcza w Krakowe płw wag współrzędch a wk trasformacj Helmerta . zór a trasformację współrzędch sposobem Helmerta: = c + b = d + a + a b () 2 2. Dwa modele wzaczea parametrów
MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum
MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu
3 Arytmetyka. 3.1 Zbiory liczbowe.
3 Arytmetyka. 3.1 Zbiory liczbowe. Bóg stworzył liczby aturale, wszystko ie jest dziełem człowieka. Leopold Kroecker Ozaczeia: zbiór liczb aturalych: N = {1, 2,...} zbiór liczb całkowitych ieujemych: N
Lista 5. Odp. 1. xf(x)dx = xdx = 1 2 E [X] = 1. Pr(X > 3/4) E [X] 3/4 = 2 3. Zadanie 3. Zmienne losowe X i (i = 1, 2, 3, 4) są niezależne o tym samym
Lista 5 Zadaia a zastosowaie ierówosci Markowa i Czebyszewa. Zadaie 1. Niech zmiea losowa X ma rozkład jedostajy a odciku [0, 1]. Korzystając z ierówości Markowa oszacować od góry prawdopodobieństwo, że
Analiza numeryczna Kurs INP002009W. Wykład 1 Narzędzia matematyczne. Karol Tarnowski A-1 p.223
Aaliza umerycza Kurs INP002009W Wykład Narzędzia matematycze Karol Tarowski karol.tarowski@pwr.wroc.pl A- p.223 Pla wykładu Czym jest aaliza umerycza? Podstawowe pojęcia Wzór Taylora Twierdzeie o wartości
POLITECHNIKA OPOLSKA
POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia
W wielu obliczeniach w matematyce bądź fizyce wykonanie niektórych kroków zależy od spełnienia warunku.
W wielu obliczeniach w matematyce bądź fizyce wykonanie niektórych kroków zależy od spełnienia warunku. Nie wolno dzielić przez zero i należy sprawdzić, czy dzielna nie jest równa zeru. W dziedzinie liczb
EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY
Cetrala Komisja Egzamiacyja Arkusz zawiera iformacje prawie chroioe do mometu rozpoczęcia egzamiu. Układ graficzy CKE 2010 KOD WISUJE ZDAJĄCY ESEL Miejsce a aklejkę z kodem EGZAMIN MATURALNY Z INORMATYKI
Internetowe Kółko Matematyczne 2004/2005
Iteretowe Kółko Matematycze 2004/2005 http://www.mat.ui.toru.pl/~kolka/ Zadaia dla szkoły średiej Zestaw I (20 IX) Zadaie 1. Daa jest liczba całkowita dodatia. Co jest większe:! czy 2 2? Zadaie 2. Udowodij,
METODY NUMERYCZNE. Wykład 2. Analiza błędów w metodach numerycznych
METODY NUMERYCZNE Wykład. Aaliza błędów w metodach umeryczych Met.Numer. wykład Po co wprowadzamy liczby w formacie zmieoprzecikowym (floatig poit)? Przykład. W jaki sposób moża zapisać liczbę 56.78 a
Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy
Klucz odpowiedzi do zadań zamkiętych oraz schematy oceiaia zadań otwartych Matematyka CZERWIEC 0 Schemat oceiaia Klucz puktowaia zadań zamkiętych Nr zad Odp 5 6 8 9 0 5 6 8 9 0 5 6 B C C B C C A A B B
lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów
9. CAŁKA POWÓJNA 9.. Całka podwójna w prostokącie Niech P będzie prostokątem opisanm na płaszczźnie OXY nierównościami: a < < b, c < < d, a f(,) funkcją określoną i ograniczoną w tm prostokącie. Prostokąt
Rozwiązywanie układu równań metodą przeciwnych współczynników
Rozwiązwanie układu równań metodą przeciwnch współcznników Sposob postępowania krok po kroku: I. przgotowanie równań. pozbwam się ułamków mnoŝąc kaŝd jednomian równania równań przez najmniejszą wspólną
WSTĘP DO INFORMATYKI
Akdemi Górniczo-Hutnicz Wydził Elektrotechniki, Automtyki, Informtyki i Inżynierii Biomedycznej WSTĘP DO INFORMATYKI SYSTEMY KODOWANIA ORAZ REPREZENTACJA I ARYTMETYKA LICZB Adrin Horzyk www.gh.edu.pl SYSTEMY
Elementy statystyki opisowej Izolda Gorgol wyciąg z prezentacji (wykład I)
Elemety statystyki opisowej Izolda Gorgol wyciąg z prezetacji (wykład I) Populacja statystycza, badaie statystycze Statystyka matematycza zajmuje się opisywaiem i aalizą zjawisk masowych za pomocą metod
Równania różniczkowe cząstkowe
Równania różniczkowe cząstkowe Definicja: Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch
PODSTAWY INFORMATYKI wykład 10.
PODSTAWY INFORMATYKI wykład 10. Adrian Horzyk Web: http://home.agh.edu.pl/~horzyk/ E-mail: horzyk@agh.edu.pl Google: Adrian Horzyk Gabinet: paw. D13 p. 325 Akademia Górniczo-Hutniacza w Krakowie WEAIiE,
Obliczenia naukowe Wykład nr 6
Obliczenia naukowe Wykład nr 6 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [1] D. Kincaid, W. Cheney, Analiza
Egzamin maturalny z informatyki Poziom rozszerzony część I
Zadaie 1. Długość apisów biarych (7 pkt) Opisaa poiżej fukcja rekurecyja wyzacza, dla liczby aturalej 0, długość apisu uzyskaego przez sklejeie biarych reprezetacji liczb aturalych od 1 do 1. ukcja krok
Definicja interpolacji
INTERPOLACJA Defiicja iterpolacji Defiicja iterpolacji 3 Daa jest fukcja y = f (x), x[x 0, x ]. Zamy tablice wartości tej fukcji, czyli: f ( x ) y 0 0 f ( x ) y 1 1 Defiicja iterpolacji Wyzaczamy fukcję
Wykład 1 Podstawy projektowania układów logicznych i komputerów Synteza i optymalizacja układów cyfrowych Układy logiczne
Element cfrowe i układ logicne Wkład Literatura M. Morris Mano, Charles R. Kime Podstaw projektowania układów logicnch i komputerów, Wdawnictwa Naukowo- Technicne Giovanni De Micheli - Sntea i optmaliacja
Met Me ody numer yczne Wykład ykład Dr inż. Mic hał ha Łan Łan zon Instyt Ins ut Elektr Elektr echn iki echn i Elektrot Elektr echn olo echn
Metody numeryczne Wykład 2 Dr inż. Michał Łanczont Instytut Elektrotechniki i Elektrotechnologii E419, tel. 4293, m.lanczont@pollub.pl, http://m.lanczont.pollub.pl Zakres wykładu Arytmetyka zmiennopozycyjna
Ekstrema funkcji dwóch zmiennych
Wkład z matematki inżnierskiej Ekstrema funkcji dwóch zmiennch JJ, IMiF UTP 18 JJ (JJ, IMiF UTP) EKSTREMA 18 1 / 47 Ekstrema lokalne DEFINICJA. Załóżm, że funkcja f (, ) jest określona w pewnm otoczeniu
Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera
Istrukcja do ćwiczeń laboratoryjych z przedmiotu: Badaia operacyje Temat ćwiczeia: Problemy trasportowe cd Problem komiwojażera Zachodiopomorski Uiwersytet Techologiczy Wydział Iżyierii Mechaiczej i Mechatroiki
Wersja najbardziej zaawansowana. Zestaw nr 1: Ciągi liczbowe własności i granica
Wersja ajbardziej zaawasowaa. Zestaw r : Ciągi liczbowe własości i graica.. Niech a dla.... Sprawdzić cz a jest ciągiem mootoiczm artmetczm... Sprawdzić cz astępując ciąg jest ciągiem geometrczm. Wpisać
Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!
Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,
RÓWNANIA RÓŻNICZKOWE WYKŁAD 5
RÓWNANIA RÓŻNICZKOWE WYKŁAD 5 Równania różniczkowe rzędu drugiego Równania rzędu drugiego sprowadzalne do równań rzędu pierwszego Równanie różniczkowe rzędu drugiego postaci F ( x, ', ") 0 ( nie wstępuje
Obliczenia naukowe Wykład nr 2
Obliczenia naukowe Wykład nr 2 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [1] D. Kincaid, W. Cheney, Analiza
Metody numeryczne. Janusz Szwabiński. nm_slides.tex Metody numeryczne Janusz Szwabiński 2/10/ :02 p.
Metody numeryczne Janusz Szwabiński szwabin@ift.uni.wroc.pl nm_slides.tex Metody numeryczne Janusz Szwabiński 2/10/2002 23:02 p.1/63 Plan wykładu 1. Dokładność w obliczeniach numerycznych 2. Złożoność
BŁĘDY OBLICZEŃ NUMERYCZNYCH
BŁĘDY OBLICZEŃ NUMERYCZNYCH błędy zaokrągleń skończona liczba cyfr (bitów) w reprezentacji numerycznej błędy obcięcia rozwinięcia w szeregi i procesy iteracyjne - w praktyce muszą być skończone błędy metody
ELEMENTY TEORII ZBIORÓW ROZMYTYCH
ELEMENTY TEORII ZBIORÓW ROZMYTYCH OPRACOWAŁ: M. KWIESIELEWICZ POJĘCIA NIEPRECYZYJNE ODDZIAŁYWANIA CZŁOWIEK-OBIEKT TECHNICZNY OTOCZENIE (Hoang 990: człowieka na otoczenie, np.: ergonomiczna konstrukcja
O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii
O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję
MODELE MATEMATYCZNE W UBEZPIECZENIACH. 1. Renty
MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 2: RENTY. PRZEPŁYWY PIENIĘŻNE. TRWANIE ŻYCIA 1. Rety Retą azywamy pewie ciąg płatości. Na razie będziemy je rozpatrywać bez żadego związku z czasem życiem człowieka.
RÓWNANIA RÓŻNICZKOWE WYKŁAD 3
RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 Równania różniczkowe liniowe Metoda przewidwań Metoda przewidwań całkowania równania niejednorodnego ' p( x) opiera się na następującm twierdzeniu. Twierdzenie f ( x) Suma
Kolorowanie Dywanu Sierpińskiego. Andrzej Szablewski, Radosław Peszkowski
olorowaie Dywau ierpińskiego Adrzej zablewski, Radosław Peszkowski pis treści stęp... Problem kolorowaia... Róże rodzaje kwadratów... osekwecja atury fraktalej...6 zory rekurecyje... Przekształcaie rekurecji...
Zasada indukcji matematycznej. Dowody indukcyjne.
Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy
Równania różniczkowe cząstkowe
Równania różniczkowe cząstkowe Definicja Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch
Analiza wyników symulacji i rzeczywistego pomiaru zmian napięcia ładowanego kondensatora
Aaliza wyików symulacji i rzeczywistego pomiaru zmia apięcia ładowaego kodesatora Adrzej Skowroński Symulacja umożliwia am przeprowadzeie wirtualego eksperymetu. Nie kostruując jeszcze fizyczego urządzeia
Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy
Klucz odpowiedzi do zadań zamkiętych oraz schematy oceiaia zadań otwartych Matematyka CZERWIEC 0 Klucz puktowaia zadań zamkiętych Nr zad Odp 5 6 8 9 0 5 6 8 9 0 5 6 B C C B C C A A B B C A B A A A B D
Egzamin maturalny z matematyki CZERWIEC 2011
Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr
MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU
Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów
III. LICZBY ZESPOLONE
Pojęcie ciała 0 III LICZBY ZESPOLONE Defiicja 3 Niech K będie dowolm biorem Diałaiem wewętrm (krótko będiem mówić - diałaiem) w biore K awam każdą fukcję o : K K K Wartość fukcji o dla elemetów K oacam
Metody numeryczne I. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/61
Metody numeryczne I Dokładność obliczeń numerycznych. Złożoność obliczeniowa algorytmów Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/61 ... the purpose of
Artykuł techniczny CVM-NET4+ Zgodny z normami dotyczącymi efektywności energetycznej
1 Artykuł techiczy Joatha Azañó Dział ds. Zarządzaia Eergią i Jakości Sieci CVM-ET4+ Zgody z ormami dotyczącymi efektywości eergetyczej owy wielokaałowy aalizator sieci i poboru eergii Obeca sytuacja Obece
Scenariusz lekcji: Kombinatoryka utrwalenie wiadomości
Sceariusz lekcji: Kombiatoryka utrwaleie wiadomości 1 1. Cele lekcji a) Wiadomości Uczeń: za pojęcia: permutacja, wariacja i kombiacja, zdarzeie losowe, prawdopodobieństwo, za iezbęde wzory. b) Umiejętości
INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW
INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ Opracował: Dr iż. Grzegorz
Charakterystyki liczbowe zmiennych losowych: wartość oczekiwana i wariancja
Charakterystyki liczbowe zmieych losowych: wartość oczekiwaa i wariacja dr Mariusz Grządziel Wykłady 3 i 4;,8 marca 24 Wartość oczekiwaa zmieej losowej dyskretej Defiicja. Dla zmieej losowej dyskretej
Interpolacja. Układ. x exp. = y 1. = y 2. = y n
MES 07 lokaln Interpolacja. Układ Interpolacja, wprowadzenie Interpolacja: po co nam to? Ptania MES polega na wznaczaniu interesującch nas parametrów w skończonej ilości punktów. A co leż pomiędz tmi punktami?
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych (w zakresie materiału przedstawionego na wykładzie organizacyjnym)
Podstawy opracowaia wyików pomiarów z elemetami aalizepewości pomiarowych (w zakresie materiału przedstawioego a wykładzie orgaizacyjym) Pomiary Wyróżiamy dwa rodzaje pomiarów: pomiar bezpośredi, czyli
A.Z. Górski, S. Drożdż, J. Kwapień, P. Oświęcimka. Zakład Teorii Systemów Złożonych, Instytut Fizyki Jądrowej PAN, Kraków
COMPLEXITY CHARACTERISTICS OF CURRENCY NETWORKS A.Z. Górski, S. Drożdż, J. Kwapień, P. Oświęcimka Zakład Teorii Sstemów Złożoch, Isttut Fizki Jądrowej PAN, Kraków Układ o wielkiej złożoości moża przedstawiać
Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji
http://www.ii.ui.wroc.pl/ sle/teachig/a-apr.pdf Aaliza umerycza Staisław Lewaowicz Grudzień 007 r. Aproksymacja fukcji Pojęcia wstępe Defiicja. Przestrzeń liiową X (ad ciałem liczb rzeczywistych R) azywamy
Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17
Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria Środowiska w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era inżniera
Elementy cyfrowe i układy logiczne
Element cfrowe i układ logiczne Wkład 6 Legenda Technika cfrowa. Metod programowania układów PLD Pamięć ROM Struktura PLA Struktura PAL Przkład realizacji 3 4 5 6 7 8 Programowanie PLD po co? ustanowić
Elementy rach. macierzowego Materiały pomocnicze do MES Strona 1 z 7. Elementy rachunku macierzowego
Elemety rach macierzowego Materiały pomocicze do MES Stroa z 7 Elemety rachuku macierzowego Przedstawioe poiżej iformacje staowią krótkie przypomieie elemetów rachuku macierzowego iezbęde dla zrozumieia
ZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE
ZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE WARTOŚĆ BEZWZGLĘDNA LICZBY Wartość bezwzględą liczby rzeczywistej x defiiujemy wzorem: { x dla x 0 x = x dla x < 0 Liczba x jest to odległość a osi liczbowej
Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria i Gospodarka Wodna w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era
PODSTAWY INFORMATYKI wykład 5.
PODSTAWY INFORMATYKI wykład 5. Adrian Horzyk Web: http://home.agh.edu.pl/~horzyk/ E-mail: horzyk@agh.edu.pl Google: Adrian Horzyk Gabinet: paw. D13 p. 325 Akademia Górniczo-Hutnicza w Krakowie WEAIiE,
MES polega na wyznaczaniu interesujących nas parametrów w skończonej ilości punktów. A co leży pomiędzy tymi punktami?
MES- 07 Interpolacja, wprowadzenie Interpolacja: po co nam to? Ptania MES polega na wznaczaniu interesującch nas parametrów w skończonej ilości punktów. A co leż pomiędz tmi punktami? Na razie rozpatrwaliśm
EMN. dr Wojtek Palubicki
EMN dr Wojtek Palubicki Zadanie 1 Wyznacz wszystkie dodatnie liczby zmiennopozycyjne (w systemie binarnym) dla znormalizowanej mantysy 3-bitowej z przedziału [0.5, 1.0] oraz cechy z zakresu 1 c 3. Rounding
Pierwiastki kwadratowe z liczby zespolonej
Pierwiastki kwadratowe z liczb zespolonej Pierwiastkiem kwadratowm z liczb w C nazwam każdą liczbę zespoloną z C, dla której z = w. Zbiór wszstkich pierwiastków oznaczam smbolem w. Innmi słow w = {z C
Wypadkowa zbieżnego układu sił
.4.. padkowa zbieżego układu sił rzestrze układ sił Siłami zbieżmi azwam sił, którch liie działaia przeciają się w jedm pukcie, azwam puktem zbieżości (rs..a). oieważ sił działające a ciało sztwe moża
Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia. i ich zastosowań w przemyśle" POKL /10
Podstaw algortmów rekurejh mgr iż. Adam Kozak mgr iż. TomaszGłowaki tglowaki@s.put.poza.pl poza pl Zajęia fiasowae z projektu "Rozwój i doskoaleie kształeia a Politehie Pozańskiej w zakresie tehologii