Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia. i ich zastosowań w przemyśle" POKL /10
|
|
- Jacek Janicki
- 8 lat temu
- Przeglądów:
Transkrypt
1 Podstaw algortmów rekurejh mgr iż. Adam Kozak mgr iż. TomaszGłowaki poza pl Zajęia fiasowae z projektu "Rozwój i doskoaleie kształeia a Politehie Pozańskiej w zakresie tehologii iformatzh i ih zastosowań w przemśle" POKL / Projekt współfiasowa przez Uię Europejską w ramah Europejskiego Fuduszu Społezego
2 Pla Czm jest rekureja? Idukja matematza Niezmieiki pętli Realizaja rekureji Fraktale Ceh Układ iterowah odwzorowań afiizh Zbior Madelbrota Zbior Julii Projekt współfiasowa przez Uię Europejską w ramah Europejskiego Fuduszu Społezego
3 Rekureja O rekureji (rekursji) mówim wted, gd defiija pewego obiektu (p. matematzego) t zawiera odwołaie ł do pewej trasformaji tego obiektu, Ab zaleźć trasformaję tego obiektu ależ poowie zastosować tą samą defiiję itd... Każda defiija i rekureja składa się z: zależośi rekurejej wrażeia startowego (podstaw wioskowaia, waruku brzegowego) Projekt współfiasowa przez Uię Europejską w ramah Europejskiego Fuduszu Społezego 3
4 Przkład defiiji rekurejh Silia: zależość rekureja:! (-)! wrażeie startowe:! Współzik dwumiaow: zależość rekureja: wrażeie ż startowe: t + k k k Zbiór lizb ałkowith podzielh przez d : zależość rekureja: wrażeie startowe sg( k,5) d i gdzie k d k i Z Projekt współfiasowa przez Uię Europejską w ramah Europejskiego Fuduszu Społezego 4
5 Przkładowe zadaia Zajdź defiiję rekureją iągu elimiują w pełi bezpośrediąś zależość ż od ( ): Dla iągów reprezetowah przez fukje posiadająe fukję odwrotą moża skorzstać ze shematu: + f ( ) f ( ) f ( + ) f f ( ) ( + ) Ie: 3, 3, 3 log +,, Projekt współfiasowa przez Uię Europejską w ramah Europejskiego Fuduszu Społezego 5
6 Idukja matematza Idukja matematza jest twierdzeiem opartm a szzególm przpadku zależośi ż ś rekurejej j a zdaiah logizh Zależośią ą rekureją ą jest implikaja międz ę kolejmi zdaiami logizmi Wrażeiem startowm jest waruek pozątkow Zasada idukji skońzoej Zasada silej idukji (zupełej) ZR : S(k) S(k+) ZR : S( ) S( +)... S(-) S() S(+) WP : S( ) WP: S( ) S( +)... S( ) Projekt współfiasowa przez Uię Europejską w ramah Europejskiego Fuduszu Społezego 6
7 Przkładowe zadaia Udowodij, użwają idukji matematzej:. Dla : i( i + ) i +. Dla : i i i i 3 3. Nierówość Beroulliego dla lizb ałkowith, > -, : ( + ) + 4. Dla d,, iąg, d, -d, d, -d,..., d, -d da wzorem rekurejm [ ] + ma postać jawą: d ( ) ( + ) sg(, d + 4,5) Projekt współfiasowa przez Uię Europejską w ramah Europejskiego Fuduszu Społezego 7
8 Przkładowe zadaia.d. 5. Dla : 6 jest podziele przez., b a, a + b ab 6. Dla, a,b, jeśli ( ) to wzór jaw a iąg ma postać: 7. Dla : 3 - jest podziele przez 6. b a 8. Dla : F ( L + L+ ) gdzie F to lizb Fiboaiego, a 5 L lizb Luasa: F, F, F F + F L, F, L L + L Projekt współfiasowa przez Uię Europejską w ramah Europejskiego Fuduszu Społezego 8
9 Niezmieiki pętli Zdaie logize λ jest iezmieikiem pętli: while (g) { istrukje; } jeśli zahodzi implikaja: jeśli g i λ są prawdziwe przed wejśiem do pętli, to λ jest prawdziwe wkażdej iteraji, oraz po wjśiu z pętli, atomiast g po wjśiu z pętli jest fałszem: iijalizaja zmieh // g λ while ( g) { istrukje; } // g λ Projekt współfiasowa przez Uię Europejską w ramah Europejskiego Fuduszu Społezego 9
10 Niezmieiki pętli Zastosowaie? Dowodzeie poprawośiś algortmów Sprawdzaie działająh algortmów (p. aserje przed, wewątrz ipopętli sprawdzająe waruki będąe zam iezmieikiem) Klasz przkład algortm dzieleia, zajdują dla lizb, q > (dzielik), lizb k (krotość), oraz resztę r: q > r, spełiająe rówość kq+r < iput < iit < assert while } > ; q > ; > k ( g) ; r ; > g λ : { < istrutios > k < assert > λ g r q, k + ; r r q; λ ( kq + r) ( r ) ( kq + r) ( ) < assert > g λ : g r < q, λ r Ie trwiale iezmieiki pęli: q r Projekt współfiasowa przez Uię Europejską w ramah Europejskiego Fuduszu Społezego
11 Dowód poprawośi W każdej iteraji otrzmwae są owe wartośi zmieh k oraz r: k' k + r' r q Podstawiają owe wartośi do zależośi iezmieika: ( k + ) q + ( r q) kq + q + r q kq r k ' q + r' + Prz zm r, gdż warukiem wejśia do pętli jest r q Po wjśiu z pętli r < q, wię spełioa jest zakładaa własość q > r Projekt współfiasowa przez Uię Europejską w ramah Europejskiego Fuduszu Społezego
12 Niezmieiki pętli - zadaie Zajdź iezmieik pętli i udowodij poprawość algortmu: Dae wejśiowe: >. k Dae wjśiowe: k, q ( k, q N ) takie, że q / q < iput > > ; k ; < iit > k ; q ; < assert while ( g) > g λ : g q, { < istrutios > k k + ; q q < assert > λ } λ... ; < assert > g λ : g / q, λ... Projekt współfiasowa przez Uię Europejską w ramah Europejskiego Fuduszu Społezego
13 Realizaja rekureji Rekureja w jęzkah programowaia jest zwkłm wwołaiem fukji (fukja sama wwołuje siebie) Każde wwołaie fukji to odłożeie parametrów a stosie (parametr fukji oraz adres powrotu) Dla każdego algortmu rekurejego ależ rozważć koszt pamięiowe i oblizeiowe podejśia rekurejego oraz iterajego Np. Algortm wpełiaia spójego obszaru szbko może doprowadzić do przepełieia stosu (wersja iteraja jest bardziej oszzęda): it image[][], width, height, oldcolor, ewcolor; void fill(it, it ) { if (< < >width >height) retur; image[][] ewcolor; if (image[+][] oldcolor) fill(+,); if (image[-][] oldcolor) fill(-,); if (image[][+] oldcolor) fill(,+); if (image[][-] oldcolor) fill(,-); } Projekt współfiasowa przez Uię Europejską w ramah Europejskiego Fuduszu Społezego 3
14 Fraktale Obiekt geometrze posiadająe ehę samopodobieństwa (w każdej skali) w sesie dokładm, d przbliżom lub stohastzm Wmiar ie jest lizbą ą ałkowitą: ą N ( ε ) ~ ( ε ) d d log lim ε log N( ε ) ( ε ) log3 log3 ε, N ε TS log log ( ) 3 d lim, Mają stosukowo proste defiije rekureje Projekt współfiasowa przez Uię Europejską w ramah Europejskiego Fuduszu Społezego 4
15 Obraz rekurej Projekt współfiasowa przez Uię Europejską w ramah Europejskiego Fuduszu Społezego 5
16 Fraktale Fraktale to p.: Atraktor układu iterowah odwzorowań afiizh (IFS) Zbior Julii i Fatou Zbior Madelbrota Projekt współfiasowa przez Uię Europejską w ramah Europejskiego Fuduszu Społezego 6
17 Odwzorowaie zwężająe Nieh R będzie przestrzeią z metrką euklidesową d (hoć mogą bćć dowole przestrzeie metrze), wted f: R R jest odwzorowaiem zwężająm jeśli: (, ): a, a R : d ( f ( a ), f ( a ) ) λd ( a a ) λ, Twierdzeie Baaha: Istieje dokładie jede pukt p taki, że f(p)p (pukt stał odwzorowaia zwężająego) Rekureje wkoaie odwzorowaia zwężająego a(,) f(,)(/3,/3) π π π ( ) lim f ( ) os( ) os( os ) os( os( )) + f os Projekt współfiasowa przez Uię Europejską w ramah Europejskiego Fuduszu Społezego 7
18 Układ iterowah odwzorowań afiizh Rekureja defiija przekształeń obiektu geometrzego będąa sumą wików odwzorowań ń zwężająh ż h( (złożeie ł ż obrotu, traslaji i skalowaia zmiejszająego): {F i } ( i ) S S Sk i Fi ( Sk ) S lim Sk k S jest dowolm iepustm zbiorem puktów w daej przestrzei S jest fraktalem - atraktorem układu odwzorowań (puktem stałm), iezależm od rozkładu puktów w zbiorze S F wprzestrzeir i R ma postać: ' a + b + ' Fi (, ) ' ' d + e + f < δ < < δ < δ osϕ siϕ t + si os δ ϕ ϕ t Projekt współfiasowa przez Uię Europejską w ramah Europejskiego Fuduszu Społezego 8
19 Przkład kostrukji IFS Przkład kostrukji IFS - Trójkąt Trójkąt Sierpińskiego Sierpińskiego Sierpińskiego Sierpińskiego Układ odwzorowań: ( ) F, 3 ( ) + 4, F ϕ ϕ ( ) + 4, F ( ) + 4 3, 3 F F ( ) ( ) F Trójkąt Sierpińskiego jest puktem stałm układu odwzorowań zwężająh {F,F,F 3 } ( ) F, ( ) F, zwężająh {F, F, F 3 } 9 Projekt współfiasowa przez Uię Europejską w ramah Europejskiego Fuduszu Społezego
20 IFS zadaia Zadaie: zlokalizuj poszzególe odwzorowaia ((*) zdefiiuj) Paproć Barslea Układ 4 odwzorowań [źródło: Wikipedia] Dwa Sierpińskiego Układ 8 odwzorowań [źródło: Wikipedia] Trójkąt Sierpińskiego w przestrzei 3D (piramida) Układ 5 odwzorowań [źródło: Wikipedia] Projekt współfiasowa przez Uię Europejską w ramah Europejskiego Fuduszu Społezego
21 Zbior Madelbrota Przestrzeią dla th zbiorów jest domkięt zbiór C lizb zespoloh ( C C {z*} gdzie z* to pukt w ieskońzoośi ń ś i odwzorowa p. a sferze Riemaa) Fukja wmiera określoa a C ma postać: W ( z) w( z) a + a l( z) b z + b z z z + + az + a + + b z + b Nieh W będzie fukją wmierą zależą od Nieh W ( z) W ( W ( z) ) Zbiorem Madelbrota M(W ) azwam zbiór th wartośi parametru dla którh iąg () jest zbież: W ( ) { C : limw () } M W / C Projekt współfiasowa przez Uię Europejską w ramah Europejskiego Fuduszu Społezego
22 Zbior Madelbrota -przkład Najbardziej za jest zbiór Madelbrota dla odwzorowaia W ( z) z + Sprawdź, z pukt +i ależ do zbioru Madelbrota dla tego odwzorowaia orbi ita pu ktu W () + i i W () i + i i 3 W () ( i ) + i i + + i 4 W () ( i ) + i + i i... i Projekt współfiasowa przez Uię Europejską w ramah Europejskiego Fuduszu Społezego
23 Zbior Madelbrota - ilustraja Zbiór Madelbrota wraz z powiększeiem [obraz uzska za pomoą programu Ultra Fratal] Projekt współfiasowa przez Uię Europejską w ramah Europejskiego Fuduszu Społezego 3
24 Zbior Julii Brzeg międz kolorami (baseami prziągaia) jest zbiorem Julii dla odwzorowaia: W ( z + ) 3 ( z) z Do zbioru Fatou ależą obszar prziągaia 3 puktów stałh będąh pierwiastkami fukji f ( z ) z z W, 3 z z 3 { } 3 e ( + i 3), z ( + i 3) 3 f ( z ) z ( z ) z z ( z + z ) 3 f '( z) 3z z k,, Jest to zbiór Julii dla odwzorowaia W (z) otrzmaego metodą Newtoa szukaia miejs zerowh hdla f(z). Stąd pukt stabile tego odwzorowaia będą pierwiastkami i i f(z). Kolor zielo jest baseem prziągaia z, kolor zerwo z, a kolor iebieski z. + kπ i, Projekt współfiasowa przez Uię Europejską w ramah Europejskiego Fuduszu Społezego 4
(x 1 y 1 ) (x n y n ) 2. 1<j<m x i y i. x2 y 2 gdy x 1 = y 1 x 2 y 2 + x 1 + y 1 gdy x 1 = y 1. gdy x, y, 0 nie są współliniowe
. Metrka Zadaie.. Pokazać, że metrka jest fukcją ieujemą. Zadaie.2. Odowodić, że poiższe wzor defiiuja metrki. a) (metrka euklidesowa) X = R. d e (, ) := ( ) 2 +... + ( ) 2 b) (metrka taksówkowa) X = R
AM1.1 zadania 8 Przypomn. e kilka dosyć ważnych granic, które już pojawiły się na zajeciach. 1. lim. = 0, lim. = 0 dla każdego a R, lim (
AM11 zadaia 8 Przypom e kilka dosyć ważyh grai, które już pojawiły się a zajeiah e 1 lim 1 l(1+) (1+) 1, lim 1, lim a 1 si a, lim 1 0 0 0 0 l 2 lim 0, lim a 0 dla każdego a R, lim (1 + 1 e ) e, lim 1/
2.27. Oblicz wartość wyrażenia 3 a Wykaż, że jeżeli x i y są liczbami dodatnimi oraz x+ y =16, to ( 1+
MATURA z matematki w roku,, fragmet Liza log log log log log 7 log 8 jest: 7 A iewmiera, B ałkowita, C kwadratem liz aturalej, D większa od 7 : B 7 Oliz wartość wrażeia a wiedzą, że a a 7 Wskazówka: Zauważ,
Fraktale - ciąg g dalszy
Fraktale - ciąg g dalszy Koleja próba defiicji fraktala Jak Madelbrot zdefiiował fraktal? Co to jest wymiar fraktaly zbioru? Układy odwzorowań iterowaych (IFS Przykład kostrukcji pewego zbioru. Elemety
Ł Ś ś
ż ź Ą ą ą ą ą Ł ś ż ś ś ą ż Ż ś ż ż ż ą ż Ł ą ą ą ń ą ś ś ą ą ą ż ś ą ą ż ą ą ą ą ż ń ą ść Ł Ś ś ś ś ą ś ś ą ń ż ą ś ź Ż ą ą ż ś ż ś ść Ź ż ż ś ą ń ą ś ż Ź Ź ż ż ż ą Ó Ż Ź ą Ś ż ść ż ą ź ż ą ą Ź ą Ś Ż
ż Ę Ł Ą ż ż ż ź Ł ć Ł ż ć ć Ść ć ź ż ż Ź ć ć ć ć ć ć ć ż ż Ś Ś ż Ś ć ż ć ć Ł Ść ż Ś ż Ś ż ć ż ć ć ć ż ć ż ć ż ż ż ż ć ż ż Ł ć ż ć Ł ż Ź Ę ż ż Ś ć ż ż ć Ź Ś ż Ą ż ć Ś ć ć ż ć ć Ś ż Ź Ł ć ć ć Ć ć ć Ś ć ż
ń ń ń ń ń Ż ć Ż Ł Ż Ł Ś ć ń Ś Ę Ż ć ń Ż Ż Ż Ą Ż Ż Ł Ż Ś
ź Ł ń Ż Ż ń Ą ć ń ń ń Ż Ł ń ń ń ń ń ń ń Ż ć Ż Ł Ż Ł Ś ć ń Ś Ę Ż ć ń Ż Ż Ż Ą Ż Ż Ł Ż Ś ń Ę Ę ń ń ć Ż Ż Ą Ą Ż ć ć ń ć ć ń ć ń ń Ż Ż ń Ż Ż Ż ń Ź Ż Ż Ę ń Ł ń Ś Ł Ż ń ń Ś ń ć Ż Ż Ż Ę Ł Ż ń ń Ż ń Ą Ż ń Ż Ż ń
ż ń Ł ń ń ż ż ż ż ż
Ą ń ż ż ż Ś ż ń Ł ń ń ż ż ż ż ż ż Ś ń Ł ń ż ć ż ż ż ż Ł Ł ż ż ć ż ń Ź ć ż Ę ż ń ć Ź ż Ł ż Ł ż ż ć Ś ż ć ż Ą ż ń ż Ź ż Ź Ą ż ń ż ż ń ć ż ć ć ż ż ż ż ć ż ć Ś ż ń ż ż Ź ż ć ż Ę ż ć ż Ę Ą ń ż Ę Ź ż ć ć ć ć
Ę Ż Ż Ż ś ż Ż
Ż ż ż ś ś ż ż ż ś ż Ż Ź ś Ź Ź ś ś ż ż ś ś ś ś Ż ś Ż Ę Ż Ż Ż ś ż Ż ś ś ś Ż Ą ż ś ś ź Ż ż ż ś ś ż Ł Ż ź ż ż ś ś Ę ż ż ż ż Ę ś ż ć ś Ę ż ś ż ś Ż ż ś ż ś ść ść Ę ż ż ż ś ż Ą Ż Ś ś Ą Ż ż ż ś Ę ś Ż ś Ń ś ż Ą
Ę Ę ć ć Ę Ą Ę Ą Ę Ę Ę Ę Ę Ę ź Ę Ż Ę Ę Ę Ę ć Ę Ę ć Ę ć
Ł ź Ą Ł Ę Ż Ę Ą ź ź Ę Ę Ę Ę ć ć Ę Ą Ę Ą Ę Ę Ę Ę Ę Ę ź Ę Ż Ę Ę Ę Ę ć Ę Ę ć Ę ć ź Ę Ę Ę ź Ę ć ź Ę ć Ę ź ć Ę ć Ę Ł ź Ę Ę Ę Ę Ę Ę Ę Ę Ę Ę ź Ę ć ź Ę ć Ę Ę Ę Ę ź Ę Ę ź ź ź ź ź Ę ź ź ź Ę ć ć Ń ź ź ź ź ź Ą ć ź
ż
ż ż ż ń Ł Ń Ś Ę ż Ą ż ż ż Ż ż Ę ń ż ż ż Ą Ą ż Ą ń ż ń ć ż ć ć Ę Ą ż Ń Ę Ę Ę ż ź ż ż ć ż ż ć ć Ę Ą ż Ę ż ć ż ć ż Ę Ą ż Ę Ę Ę ż Ę ż ż ż Ż ż ć ż ń ć ń ż ż ż Ą Ę Ą ń ń ń ń ń ż Ą ć ż Ź ż ć Ą Ż ż Ś Ą ż Ą Ą ż
Ś Ę Ą Ł Ś Ł Ł Ł Ł Ł Ś Ś Ł Ł Ł Ą Ł Ł Ł Ł Ł Ą Ą Ł
ę Ą Ł Ł Ś Ę Ą Ł Ś Ł Ł Ł Ł Ł Ś Ś Ł Ł Ł Ą Ł Ł Ł Ł Ł Ą Ą Ł Ł ś ś ś ś ę ś ę ę ś ść ść ść ę ę ę ść ę ś Ą Ą ś Ż ść Ź Ś Ą ę ść ść ść Ą ś Ż ę Ż Ń Ą Ł ś ę ś ę ś ś ę ś ś ść Ę Ś ś Ś ś Ś ś Ś ź ę ź ę ść ś ę Ę ś Ł ść
Ż Ź Ż ż Ś Ś Ź Ż Ż Ż Ż Ż ć ć Ż
ż Ż Ź Ż ż Ś Ś Ź Ż Ż Ż Ż Ż ć ć Ż ć Ż Ę ż Ż Ź Ź ż Ż Ż ć Ż ż ć ż ć Ż Ż Ż ż Ż Ń ż Ż Ż ż ż ż ć ć Ż ć Ź ż ż Ź ż ć ż ć Ę ć ż Ł Ż ż ż ć ć Ż Ż ż Ż ż Ż ć Ż Ż ć Ż ż Ż Ż ć ć ć ć Ę ż ż ż Ę ź ż Ź Ź ż Ż Ń ć Ż Ź Ż Ż
ć Ą Ą Ł Ą
ź ź ź ć ć Ą Ą Ł Ą ź ź Ę Ą ź Ą ć Ł Ł Ą Ś Ę ź ź Ą Ą ź ć ć Ł Ę ć ź ć ć Ą Ć ź ź ź ć ć ć ć ć ź ź ć ć ź ć Ś Ę ć ć ć ć Ł ź ź ź ź ć Ę Ż ć ć ć ć Ę Ę ć Ę Ę ć ć Ę ć ć Ł ć Ć ć Ł Ł Ę Ę ć Ę ć ź ć Ń Ł Ł Ł Ś ć ć ć Ę Ś
Automatyka i Robotyka Analiza Wykład 14 dr Adam Ćmiel
Własośi zbiorów otwarth i domięth Tw. a) Suma dowolej ilośi zbiorów otwarth jest zbiorem otwartm. b) Iloz sońzoej ilośi zbiorów otwarth jest zbiorem otwartm. Dow. a) Mam rodzię zbiorów otwarth: U A s {
3. Wykład III: Warunki optymalności dla zadań bez ograniczeń
3 Wkład III: Waruki optmalości dla zadań bez ograiczeń Podae poiże waruki optmalości dla są uogólieiem powszechie zach waruków dla fukci ede zmiee (zerowaie się pierwsze pochode i lokala wpukłość) 3 Twierdzeie
Szeregi liczbowe i ich własności. Kryteria zbieżności szeregów. Zbieżność bezwzględna i warunkowa. Mnożenie szeregów.
Materiały dydaktyze Aaliza Matematyza (Wykład 3) Szeregi lizbowe i ih własośi. Kryteria zbieżośi szeregów. Zbieżość bezwzględa i warukowa. Możeie szeregów. Defiija. Nieh {a } N będzie iągiem lizbowym.
Ę Ę ĘŚ Ą Ł Ę ś ą ź ż ź ą ż ć ąż ą ś ą ń
ż ć Ę Ę ś ą ą ż ą ą ń ś ą ą Ą Ę Ą ą ą ą Ź ć ą ą ś ą ą ą Ą Ę Ą Ł ą ą ą ą Ę Ę ĘŚ Ą Ł Ę ś ą ź ż ź ą ż ć ąż ą ś ą ń Ą ą ż ż ą ą ż ś ż ź Ę ż ż ń Ę Ś Ę ś ż ą ą ą ż ś ś ś ż ż ą ą ż ą ż ś ą ą ż ś ś ą ą ś ż ś
Ś Ó Ź Ś Ś
Ą Ł Ś ĄŻ Ó Ó Ę Ś Ó Ź Ś Ś Ś ć Ó Ć ć Ó Ą ć ć ć ć ć ć Ż Ą Ó Ź ć Ó ć ć ź ć ć Ą Ż ć ć Ó ć Ó ć Ń ć Ż Ż Ż ć Ę ć ć ć ć Ż Ż Ó Ć Ś Ż ŻĄ Ź Ź Ż Ż Ź Ź ć Ź Ś Ć ć Ś Ż ć ć Ó ć Ó ć Ć Ć ć Ó ć ć Ó ć Ć Ź Ó Ó ć ć ć Ó Ź Ś Ź
Ciągi i szeregi liczbowe. Ciągi nieskończone.
Ciągi i szeregi liczbowe W zbiorze liczb X jest określoa pewa fukcja f, jeŝeli kaŝdej liczbie x ze zbioru X jest przporządkowaa dokładie jeda liczba pewego zbioru liczb Y Przporządkowaie to zapisujem w
Ć ć ń Ć ń ć ć Ć
ć Ł ś ś Ć ć ć ń Ć ć ń Ć ń ć ć Ć Ć Ć ń ć Ł ś ć ń ć Ć ś Ć ń ć ć ź ś ś ść Ł ść ś ć ź ć ś ć ś ć ć ć ć Ć ś ś ć Ć ń ś ź ć ź ć ś ń ń ń ś Ą źć Ć Ć Ć ć ź ć ź ś ć Ę Ć ś ć ś ć ć ś Ć ć ś Ę Ć Ć ć ź ć ć Ć ń Ę ć ć ń
ą ą Ź Ą Ó Ó Ó ż ą Ź Ó Ę ą
ÓŚ ż Ć ą ą ą Ź Ą Ó Ó Ó ż ą Ź Ó Ę ą ą Ę ŁĄ ż ą ą ą Ś ą Ś ą ą ą ż ć Ź ą ć Ó Ą Ę ą ś ą Ę ż ą ś Ź ą Ś ą Ą ŁĄ ś Ź Ś Ł Ź Ż ą Ć ś ś ć ś ą Ź ą ą ć Ź ś ą ą ą Ż Ó ś ś ś ś Ą Ś Ś ą Ź ą Ź ż ś ż Ę ć ś ą Ó ż ż Ą Ź Ż
Ę ś ś ń ź ź Ę ć Ę Ł ń ś ń ś Ż ń Ę ś ń Ę ś Ę ń ś ń ś ś Ż ś Ę ń ś ś ś Ę Ę ś ś ś Ę ś ść ś ść
Ś Ś ś ś ś ś Ą Ą ź ź ć ź Ę ś ń ś ś Ę ś ś ń ź ź Ę ć Ę Ł ń ś ń ś Ż ń Ę ś ń Ę ś Ę ń ś ń ś ś Ż ś Ę ń ś ś ś Ę Ę ś ś ś Ę ś ść ś ść ć Ę ć Ą ś ś ń ń ć ś ś ń Ń ś ś ć ć ń ś ź ś ść ń Ź ń ść ś ń ń ść ś ś ń ść ń ść
ż ć Ę ż ż ż Ń Ł ż ż ż ż ż ż ż ż
ż ć Ę ż ż ż Ń Ł ż ż ż ż ż ż ż ż ż ż Ń ż ż Ń Ń Ń ż ć ż ż ć ż ż ż ć Ą Ń ż ć ć ż ż ż ż ć ćż ż Ń Ń Ł ż Ń Ń Ń ć Ń ć ć Ń ż Ń Ń ż ż ż ć Ń ć ż ć ć ć ć Ń ż Ń Ń ć Ń Ę ż Ń ż ż ż Ł ż ć ż ć ż ż ż ż ć ć ż ż ć ź ż ż
Ł Ż ś ć ż ż ś ś ż ś Ę ś Ę ż ź Ż ść Ż
Ż Ę Ł Ż ś ć ż ż ś ś ż ś Ę ś Ę ż ź Ż ść Ż Ż ś ś ś ć ś Ż ć ź ż ś ż ć ź ź ź Ę ć ż Ń ść ć Ł Ż ś ść ś ż ć ż ć ć ć ć ć ść ć ś ś ć ż ź ć ć ż ś ć Ę ś ż ć ść ć ź ź ś Ź ś ść ś ś ć ś ż ż ś ś ś ś ś ż ś ś Ź ż ś Ś ś
Ż Ż Ł
Ż Ż Ł ć Ż Ł Ń Ń Ż Ś ć Ę ć ć ź ć ć Ź Ę ź Ń Ł ć ć Ę ć Ć Ę ć ć ć Ą Ń ć Ą Ą Ś Ę Ć Ę ć ź Ę Ł Ś ć Ą ź Ą Ń ć Ż Ę ć Ó ć ć ć Ę ć ć Ń ć ć ć ć ć Ę ć Ą ć Ę Ż Ć ć Ć ź Ą ź Ś Ę ź Ę Ą ć Ę Ę Ś Ń ź ć ć ć ź Ż ć ŚĆ Ę Ń Ń
ć ć
Ł Ź Ź Ś ć ć ć Ś ź Ę Ł ć ć ź ć Ś Ź Ź ź ź Ź ź ź Ś ć ć ć ć ź ć Ę Ś Ą Ń Ś Ł ź Ś Ś Ź Ś ź Ł Ź Ź ź Ś ć Ń Ś Ł ć Ś Ł Ę Ś ź Ź Ś Ą Ę Ś Ę ć ć Ś Ź Ł Ź Ś Ć Ść ć Ś Ś ź Ź ć Ź ć Ł ź ć Ś Ą ć Ść ć ć Ś Ś Ś Ą Ś Ś ć Ś Ś ć ć
ZADANIA Z TOPOLOGII I. PRZESTRZENIE METRYCZNE. II. ZBIORY OTWARTE I DOMKNIĘTE.
ZADANIA Z TOPOLOGII I. PRZESTRZENIE METRYCZNE. 1. Niech (X, ρ) będzie przestrzeią metryczą zaś a liczbą rzeczywistą dodatią. Wykaż, że fukcja σ: X X R określoa wzorem σ(x, y) = mi {ρ(x, y), a} jest metryką
Ł Ł Ę Ż ź
Ł Ł Ł Ę Ż ź Ż Ę Ź ć Ź ć ć ć ć ć Ż ć ź Ę Ź Ź Ę Ź Ą Ź Ą Ą Ż Ż Ę Ń Ź Ź ć Ę ć Ę Ę Ę Ę Ę Ą Ę ź ć Ą Ą Ę Ź Ł Ę Ż Ż Ą Ź Ą Ź Ź Ę Ń Ź Ś Ż Ą Ź ź ć ć Ą Ą Ł Ś Ź Ę Ę Ź Ę Ę Ą Ł Ę Ą Ę Ż Ą Ł Ł Ę Ę Ę Ę ź ź ć Ź ź Ś ć Ó
ń ż ś
Ł ń ń ś ś ń ń ń ś ż Ń ż ż ć Ą ń ż ż ń ż ś ś Ł ń ń ść Ł ż Ł Ń ź ść ń ż ż ż ś ś ś ż ś ż ż ś ń ń ż ź ż ż ż ń ź ń ś ń ń Ą ć Ę Ł ń Ń ż ść Ń ż Ę ż ż ż ż ż ż ż ść ż ś ń ż ż ż ż ś ś ś ś ż ś ż ś ć ś ż ż ć ś ż ć
ć ć Ść ć Ść ć ć ć ć
Ź Ść ć ć ć ć Ść ć ć ć ć Ść ć ć Ść ć Ść ć ć ć ć Ź Ź ć ć Ść ć ć ć ć ć ć ć ć ć ć ć ć Ść ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ś ć ć ć Ł ć ć Ł Ść ć ć ć ć ć Ź ć Ść ć ć Ść ć ć Ś ć Ł ć ć ć ć
Ł ś ś ś Ą ż Ą Ń Ł Ł
Ł Ł Ń Ń Ł ś ś ś Ą ż Ą Ń Ł Ł Ł ż Ę ż ż ś ś ż ć ż ś ś Ę ż Ę ż ś ś ż ż ś ś ś ż ż ż ś ść ż ś ż ż ż ż ż ź ś ż ż ś ż ż ś ś ś ż ć ż ż ć ś ż ś ś ż ś ż ż Ę ż ż Ź ź ź ś ź ż ż ż ź ż ż ść ż ś ś ś ż ź ż ś Ń ź ż ź ż
Ę ś Ł ń ś ś ć ć ś ś ś ń ń ń ść ń ść ś Ł ć ź ć Ę Ą ś ś ś ś ś ś ń ń źń ś ń ń ś ń ń ś ź ń Ę ń Ą Ę ś ś ć ń ś ń ń Ł ś ś ń ś ź ś ś ń ć ść ść ść ń ś ź ś ń ś ś ść ś ń ń ń ś Ę Ł ń Ą ś Ś Ę ń Ś Ę ść ś ś ń Ę ń ś ź
Ę ź Ż Ę ź ć ź ć Ą ć ć ć ć ć ż ź
ć ź ź ż ć ż ż ć ć ż ż ć ć ć Ź ż ć ż ź Ź Ź ć Ę ź Ż Ę ź ć ź ć Ą ć ć ć ć ć ż ź ź ż ć ć Ę ć Ą ć ż ć ż Ę Ź ż ź ż ć ź ż ć ź ż Ż ż Ź ć Ą Ś Ż Ń ż Ń ć Ń Ń ż Ą Ś Ł ć ż ż ż Ę ż Ń Ą ż ć Ł Ą ż ć ż Ą ż Ę Ę Ą ż ź Ą Ę
Ł Ę Ż Ą Ęć Ń Ń Ł Ę
Ł Ł Ł Ń Ń Ł Ę Ż Ą Ęć Ń Ń Ł Ę Ł ć ć ć ź ć ć ź ć ć ć ć Ś Ś Ł ć ć ć Ę Ą ć ć Ź ć ć Ó ć ć ź Ł Ń ć Ś ć ć ć ć ć ć ć Ń Ę ć ć ć Ś Ś ć Ę ź Ń Ę ć Ń ć ź ć Ń ć ć ć ć ć ć ć Ę ź ć ć ć ć ć ć ć ŚĆ ć ź ć ć Ł ć ź Ą ć ć Ą
ś ś Ż ś Ń Ń Ę Ł ć ś Ł
Ń Ń ś Ń ś ś Ż ś Ń Ń Ę Ł ć ś Ł Ń ś ś Ą ś Ł ś Ń Ą ść ś ś ść ć ś ź ść ść Ą Ń ść ś ść Ń ś ś ć Ń ś ć ć ć Ń Ł Ń ć Ń Ł Ę ś Ł Ł ć ś ź ć ś ś ć ść ś Ł ś Ł Ł Ń Ń Ś ść ś ś ś ść ć Ń ść ść ś ś ść ś ś ś ś ć Ń ść Ł ś
ź Ż Ż Ś ć ć Ł ż Ż Ż Ż Ż Ł Ż Ł Ż Ż Ż ż ż ż ż ż ż Ż ć Ż Ś Ś Ń Ść
Ż Ż ć Ę Ę Ę ż ć ż Ś Ż Ż Ś Ż Ó ź Ż Ż Ś ć ć Ł ż Ż Ż Ż Ż Ł Ż Ł Ż Ż Ż ż ż ż ż ż ż Ż ć Ż Ś Ś Ń Ść Ś Ś Ż ż Ż Ż Ł Ż ć ż Ś Ś Ż Ż Ś Ś Ż Ż ż Ż Ż Ść Ż Ż ż Ż Ż Ś Ą ć Ż ż Ł Ą ż Ś ż ż Ę Ż Ż Ś Ż Ę ć ż ż Ę ć ż ż Ż Ś Ż
ż ć ć ć ż ń ć ż ć ż Ę ć ż
Ł Ł ŁĄ Ł ż ż ź ż Ą ż ć ć ć ż ń ć ż ć ż Ę ć ż ń ń ż ć ć ż ć ć Ź ż ń ń ć Ę ż Ą Ę ż ń ć Ą Ą ż Ź ż ć ć ż ć ć ż ż ż ć ń ż ć ż ż ż Ę ć Ę Ł Ł ź ń Ź Ę ż ć Ą ń ć ż ź ż Ą Ź ń ż Ź Ą Ą ż ć ż ć ć Ą ż ć ć ż Ł ż ć ż
Ł Ł ż Ś ż Ś Ź ć
Ł Ę Ł Ł ż Ś ż Ś Ź ć ć Ść Ż ż ż ż Ś Ś Ć ć Ś Ę ĘĆ Ł Ł ŚĆ ŚĆ Ą ż ć ĘŚ Ą Ą Ę ż Ć Ś ć Ż Ż ć Ś Ą ż ż Ż Ą Ą Ś Ż ż ż Ś Ś Ę ż Ś Ś ż Ś Ż Ść Ś ż ć ż Ł ż ż ż Ł ż Ł Ż ż Ą Ą Ą ć Ś ż ż ż Ż Ś ż Ł Ś ź ż ż ź Ź ź ź Ź Ź Ę
Ę ż Ó Ł Ść ą ą ą Ą ć ż ą ż ń ą ć ż ć Ę ą ż ą ą ż ą ź ą ń ą ń ą ą ż ć
ż Ś Ą ć ą ą ą ż ż ą ą ć ą ż Ę ą ć ż ć Ó ą ą ń ą ż ń ą Ń ą ą ą Ą ą ż ż Ą ż ą ź ą ą ż ż Ę ź ą ż ą ą ą ż Ź ą ń Ę ż Ó Ł Ść ą ą ą Ą ć ż ą ż ń ą ć ż ć Ę ą ż ą ą ż ą ź ą ń ą ń ą ą ż ć ć ą ż ą ą ą ą ć ć ć ą ą
ź ń ń
ń ź ń ń Ś Ł ń ń ż ź Ść ż Ść ż ż Ł ż ń ń Ę Ś Ś Ś Ę ń ż Ł Ś Ł ń Ś Ś ń ć Ść ż Ę ż Ć Ę ż ź ń Ł Ę Ę ź ż Ę Ś Ę ż ż ż Ę Ś ż ż ż Ść Ą ż ż ż Ę Ś Ę ż ż Ś ż ż ż Ś Ł ż ż ż Ę ż ż ż Ą Ę Ę ć ż ż ć ń Ą Ą ź Ę ńź ż Ę Ę
ż Ł Ęż Ą Ę Ę ż ż ż ż Ł ń ń Ę Ę ż ż ć ż Ś ń ż ć ń ń ć ż Ł ć Ł ż Ą ń ń ć ż ż ż ć Ą Ę Ł ń Ł ć ń ń ż ż ż ż ź ż ż ż ć Ę ć ż ż ż ż ż ć ż Ą ć ż ż ć Ń ż Ę ż ż ń ć ż ż ć Ń ż ż ć ń Ę ż ż ć Ą ż ź ż ć ż Ę Ę ż ć ń
ć Ś
Ą Ą Ń Ą ć Ś Ą ć Ś Ś Ś Ś Ś Ś Ś Ś Ś Ś ź Ś ć Ś Ś ć Ś Ś ź Ż ć ź Ż ć Ą Ś ź ź ć Ę ć Ś ć Ś Ś Ś ź Ś Ś Ś Ś Ś Ś Ś Ś Ą ć ć ć ć Ę ć ć Ś Ś Ś ć ć ć Ś Ś Ś Ś ć Ą ć ź ć ć Ę Ą Ś Ę ć ć ź Ę ć ć Ś Ę ź ć ć Ą Ę Ę Ą Ś Ś ź ć ć
ń ż ń ń Ą ń ż ż ń ż ż ż Ż ń Ą ń
Ł Ą Ę ż ż ż ż Ó ż Ż Ż Ę Ż Ą Ż Ż ż Ś Ż Ś ń ż ń ń Ą ń ż ż ń ż ż ż Ż ń Ą ń Ę Ó Ł Ś ż ż Ę Ę ż Ó ż Ś Ę ń ń ń ż ń ń Ę Ę ń ż Ą ń Ś Ś Ę ń Ż Ę Ę ż ń ń ń ń ż Ę ń ń ń ń Ł Ę ń ń ń ń ż Ę ż ż ż Ź ż Ż ż Ż ż ż Ę ń Ę ż
Ż Ń Ś Ł Ó Ś ń Ż ń ć Ż ć ń ź Ż ć ć ć ń ń ć Ż Ż ć
ń Ż Ę Ń ń ń ć Ę ź ń ń ń ć Ż Ś Ż Ż Ń Ś Ł Ó Ś ń Ż ń ć Ż ć ń ź Ż ć ć ć ń ń ć Ż Ż ć Ż ć ń ń ń ć Ż ń ć ń ń Ó Ń ź ń ń Ś Ś Ż ć ć ć ć Ż ć ć ń ć ń Ż ć Ó Ż Ż Ż ć Ą ć Ó Ł Ą Ą Ó Ń ń ń ć ć ć ć ń ń ć Ń Ś ć Ś Ż ć ń Ż
Ą Ś Ó
Ó ź ź Ó Ą ć Ą Ś Ó Ś Ę Ś Ł Ź ć Ś ć Ź Ę Ś Ą Ó Ó ź ć ć Ź Ź Ę ć ź ź Ń Ł Ź Ź ź Ń Ź ć Ś Ę Ą Ś Ź Ń Ń ć Ó Ś Ś ź Ź Ź Ą Ń Ą ź Ń Ł Ń Ń Ń ź Ń ć ć ć ź ć Ś Ń ć ć Ę ć Ę ć Ę Ź Ś Ó Ź Ę Ś Ę Ź Ó Ź Ę Ń ć ź Ź Ó Ę ć Ś Ź Ń ć
ć ę ę ć ę Ś ę Ń ę ź ę ę ę Ś ę ę ę Ó Ł Ł Ę Ą ę
ć ę ę Ł Ą Ś Ś ę Ś ę ę ć ć ę ę ę ę ć Ś ć ę ę ć ę Ś ę Ń ę ź ę ę ę Ś ę ę ę Ó Ł Ł Ę Ą ę Ą ę Ą ę ć ę ć Ą ć ę ć ć ę Ę ę Ś Ą Ł Ó ę ć ę ę ę ę Ą ć ęć ę ć ę ę ę ę ę ę ę ę ę ę ę ę ę ę ę ę ę ę ę ę Ą ę ę ę ę Ń ę Ó
Ść ć Ż ć Ż Ś ć ż ń ż Ż ć Ś Ż ń
ć Ę ć Ę Ę Ż Ść ć Ż ć Ż Ś ć ż ń ż Ż ć Ś Ż ń ń Ż ż Ń ć ń Ó ć Ę Ż ć ć Ś Ż Ż ż Ż Ż Ż ń ż ż Ż Ż ż Ż Ż ć ć Ż ń ń ć ć ć ż Ś Ł ż Ę Ż ć ć ć ń Ż ń Ł ń ż ć ć Ż ż Ó ć ć ń ć Ż Ż ń ń ń ż Ż ć Ż ż Ż Ó ż Ż ć ż ż Ę Ż Ż
Ś ź Ś Ś
Ś ź Ś Ś Ę Ż Ę ź Ł Ą ź ź Ę ź Ą Ą Ę Ó Ś Ś Ś Ę Ś ź Ś Ś ź ź ź ź Ę Ą Ż Ą ź ź ź Ę ź Ę Ś ź ź ŚĆ Ś Ś ź ź Ą Ą Ą Ą ź ź ź Ż Ś Ą Ś Ą Ś Ń Ś Ą Ż Ś Ń Ś Ą Ą Ę Ś Ą ź ź ź Ą ź ź ź Ą Ż Ą Ą Ę ź Ę Ź ź ź Ą Ś Ą ź ź Ę ź Ą ź Ć
ń
Ę Ę ż Ę ć ń ń Ą Ą Ę ń ć Ą ń ń Ś ń ń ń ż ń ń ż ń ż ż ż ż ż ż ć ć Ą ź Ę ń ż ż ż Ż ż Ą Ł ż Ę ż ż Ę ć ć Ą ż ż ć ć ż ć ż Ę ż ż ń Ż ż ć Ą ż Ęć ń ż ż ń ć ć Ę Ł ż Ę Ę ć ż ń Ł ż Ż ż Ż Ę ż Ź ż Ź ż ź Ę Ź ń ż Ź ż
ć ć Ę Ó Ś ż ż Ś ż ż ż Ęć ż ć ć ż ż
Ń ć Ś ż ź ź ź ć ć Ę Ó Ś ż ż Ś ż ż ż Ęć ż ć ć ż ż Ę Ę ć ć ż Ł ż ź ż ż ż ć ż ż Ś ć ż ż ż Ś Ę ż Ó ć Ą ż ż ż ż ż ć ż ć ż ć Ą Ą ć Ę Ś Ś Ł ć ż ż ż Ł Ś Ś Ł ż Ę Ę ż ć Ę Ę ż ż ż Ł Ś ż ć ż ż ż ż Ś ż ż ć Ę ż ż ż
ż ć Ń Ł Ż Ść Ść ć Ż Ść Ż ć ć Ż ź Ś ć ć Ó ć ć Ść
ć Ż ż Ę ż ć Ń Ł Ż Ść Ść ć Ż Ść Ż ć ć Ż ź Ś ć ć Ó ć ć Ść Ż Ść Ż ć Ż Ż Ż ż Ż ć Ł Ś Ż Ś ć Ż ć Ż ż ź Ż Ś ć ć ć ć Ó ć Ż Ść Ż ć ć Ż ż Ł Ż Ę ć ć ć Ż ć ć Ż ż ż ć Ż Ż ć Ł ć Ż Ć Ż Ż Ś Ż Ż Ż ć Ż ć ż ć Ż Ś Ż ć Ł ć