Prawo indukcji elektromagnetycznej (prawo Faradaya). Reguła Lenza

Wielkość: px
Rozpocząć pokaz od strony:

Download "Prawo indukcji elektromagnetycznej (prawo Faradaya). Reguła Lenza"

Transkrypt

1 5. Magnetostatyka. Cewk ndukcyjne Wykład XII. INDUKCJA EEKTROMAGNETYCZNA Prawo ndukcj elektromagnetycnej (prawo Faraday. Reguła ena W obwode (woju) obejmującym menający sę w case strumeń magnetycny powstaje napęce ndukowane (sła elektromotorycna ndukowana e nd ) o wartośc v N bewględnej proporcjonalnej do man strumena w case /, neależnej od sposobu wywoływana man strumena obejmującego uwojene, np. popre ruch uwojena w polu magnetycnym nemennym w b) (t) case (rys., cy popre many prądu w umesconym obok, neruchomym uwojenu (rys. b). (t) Wory defncyjne, nadające różne nak napęcukowanemu sem ndukowanej e nd, mają następujące postac: =, e nd =. (5.7a, b) Aby określć wrot lub e nd, korysta sę reguły ena (naywanej prawem prekory), w myśl której: skutek wynkający prebegu jawska stara sę precwdałać prycyne wywołującej to jawsko. Dla ułatwena można posłużyć sę hpotetycnym prądem ena, który wytwara strumeń precwstawający sę manom strumena podstawowego (rys. a b ). a ) b ) >, > + = const. + v e nd u nd e nd > 3 Cewka ndukcyjna Cewka ndukcyjna (nacej: wojnca, solenod, nduktor) jest uwojenem o określonej lcbe wojów, wra otocenem stanowącym środowsko wytwaranego pola magnetycnego. Pre strumeń magnetycny cewk (obejmowany pre cewkę) roume sę strumeń obejmowany pre jej woje. Zwoje cewk są rołożone w prestren, węc ogólne każdy nch może obejmować nny strumeń (nną cęść strumena cewk). Strumeń obejmowany pre wój cewk naywa sę strumenem skojaronym tym wojem lub skojarenem magnetycnym tego woju. Cewka predstawona na rys. obok składa sę e wojów o numerach:,,...,, obejmujących strumene:,,...,. Napęce ndukowane w cewce jest sumą napęć ndukowanych w jej wojach (pre strumene nm skojarone): u nd = k= k d( ) d = =. (5.8) Welkość, tn. suma strumen skojaronych e wojam cewk = = k k=.... (5.8 naywa sę strumenem skojaronym cewką lub skojarenem magnetycnym cewk.

2 Wykład XII Jeśl skojarena magnetycne poscególnych wojów cewk są jednakowe, równe strumenow obejmowanemu pre cewkę = = =... =, (5.9 to skojarene magnetycne cewk wynos =, (5.9b) a napęce ndukowane w nej - =. (5.9c) Indukcyjność własna Zjawsko ndukowana sę napęca w cewce lub pojedyncym woju (obwode elektrycnym), wskutek man prądu płynącego w tej cewce lub tym woju, naywa sę ndukcją własną lub samondukcją. Take cewk lub woje, występujące jako elementy obwodu, nosą mano ndukcyjnośc. Marą dolnośc cewk (woju, obwodu) prądem, do wytworena własnego strumena skojaronego, jest ndukcyjność własna wyrażona worem =. (5.) Jednostką ndukcyjnośc własnej jest wymenony już wceśnej henr (T) cyl omosekunda (Ω s). Ogólne, na wartość stosunku do może wpływać wartość ora charakter mennośc lub. Zależność () jest węc w ogólnym prypadku nelnowa (rys.. Jeśl uwojene cewk jest osadone na rdenu ferromagnetycnym, który stanow magnetowód, to wykres (), podobne jak (H), predstawa pętlę hsterey (rys. b). Cewk (ndukcyjnośc) o charakterystykach nelnowych be hsterey hstereą naywa sę nelnowym. b) c) Operowane pojęcem ma sens, jeśl stosunek do ma stałą wartość, cyl ależność () jest lnowa (rys. c). Taka cewka (ndukcyjność) nos nawę lnowej. Cechę lnowośc mają cewk uwojenam umesconym w środowsku o stałej wartośc prenkalnośc magnetycnej µ. W praktyce a lnowe uważa sę cewk berdenowe (powetrne) ora w ogranconym akrese cewk o rdenach stalowych e scelną powetrną cewk o rdenach wykonanych e specjalnych materałów (permnvar, operm). Pry równych strumenach skojaronych poscególnym wojam cewk (rys.): Θ = U µ = R µ = = =... =, (5. =, (5.b) = = = = Λµ, (5.) Θ R d =. (5.) Napęce ndukowane w cewce pre płynący pre ną prąd naywa sę napęcem samondukcj. µ

3 5. Magnetostatyka. Cewk ndukcyjne 3 Indukcyjność wajemna Zjawsko ndukowana sę napęca w cewce lub pojedyncym woju (obwode elektrycnym), wskutek man prądu płynącego w nnej cewce lub nnym woju, naywa sę ndukcją wajemną. Take cewk lub woje (sprężone magnetycne) nosą mano ndukcyjnośc sprężonych. Zostaną predstawone ależnośc dotycące dwóch cewek sprężonych (jeśl w układe jest węcej takch cewek, to każde e sprężeń jest opsywane osobno użycem tej samej formuły). s g g Sprężene cewek ne jest ngdy dealne: cęść strumena wytwaranego pre prąd jednej cewk ne jest obejmowana pre drugą, na odwrót. Strumene własne, wytwarane pre prądy, delą sę na strumene główne (wajemne) g g, strumene roprosena s s (rys. obok): = g +, (5.3 s = g +. (5.3b) s Całkowte skojarena magnetycne cewek są wąane e strumenam własnym wajemnym (głównym): g ; g. Pryjęto, że strumene składowe (własne ora wajemne) obejmują wsystke woje jednej lub drugej cewk, albo obu cewek. Zakładając lnowość ndukcyjnośc, tn. proporcjonalność wsystkch roważanych strumen do wywołujących je prądów (co sprowada sę do warunku nemennośc µ ), defnuje sę welkośc stałe (parametry cewek): - ndukcyjnośc własne =, =, (5.4a, b) - ndukcyjnośc wajemne - ndukcyjnośc główne - ndukcyjnośc roprosena g s g =, g =, s =, Jednostką ww. ndukcyjnośc jest henr (H) cyl omosekunda (Ω s). g s g =, (5.5a, b) g =, (5.6a, b) s =. (5.7a, b) Wykauje sę, że jeśl strumene g g prebegają w tym samym, jednorodnym środowsku (µ = const.), to jest jedna ndukcyjność wajemna = = M. (5.8) Z podanych wyżej worów wynka, że: = g + s, = g + s, (5.8a, b) ora s =, g =, cyl g g M = =, M węc M = g = g = g g. (5.8c) g

4 4 Wykład XII Wprowadając współcynnk sprężena magnetycnego: - cewk. wględem - cewk. wględem. - cewek. k k g g = = = g g = = = s s, (5.9, (5.9b) M k = k k =, (5.9c) otrymuje sę wór M = k. (5.9d) Cewk sprężone magnetycne pownny meć onacone gwadkam lub kropkam acsk jednomenne (nna nawa: jednakomenne). Pry prądach dopływających do acsków jednomennych tej samej strony w obu cewkach, np. ewnątr (rys. obok), mów sę o sprężenu dodatnm, a pry prądach dopływających precwnych stron o sprężenu ujemnym. Gdy sprężene jest dodatne, strumene główne cewek mają ten sam wrot, a gdy ujemne precwny. Strumene główne cewek tworą łącne strumeń główny całkowty g, aś strumeń główny strumene roprosena strumene obejmowane pre cewk : g = g g, g + s ± =, = g + s. (5.3a, b, c) Znak ± we wore (5.3 w dalsych, nżej amesconych ależnoścach, onaca pry sprężenu dodatnm +, a pry sprężenu ujemnym. Cewk sprężone predstawa sę symbolcne, używając pojęć ndukcyjnośc własnych wajemnej (na rys. a sprężene dodatne). Skojarena magnetycne napęca ndukowane cewek sprężonych magnetycne wyrażają sę następująco: b) M.. + M M + M M =, (5.3 + = ± M =, (5.3b) + = ± M d d = ± M, (5.3. d d = ± M, (5.3b). gde (rys. b): =, = ±M =, = ±M. g s s g, (5.33a, b). (5.33c, d) W lterature spotyka sę też nne asady ndeksowana podanych wyżej welkośc. Można np. spotkać onacena g = g =, prowadące w konsekwencj do onaceń, w mejscu pryjętych tu..

5 5. Magnetostatyka. Cewk ndukcyjne 5 Energa pola magnetycnego cewk b) d Energa wytworona w polu magnetycnym cewk, w case, równa sę pracy prądu w jej obwode elektrycnym (rys. : albo dwµ = und = d, (5.34 d dwµ = = Θ. (5.34b) Całkowta energa pola magnetycnego cewk wynos W ( ) ( Θ ) µ = d = Θ. (5.34c) Zwąk (5.34a, b, c) predstawono poglądowo na rys. b. Jeśl wartośc lub rosną, to pole obraujące W µ węksa sę, cyl energa jest poberana obwodu elektrycnego gromadona w polu magnetycnym, jeśl natomast lub maleją, to W µ mnejsa sę, cyl energa pola jest wracana do obwodu. Idealna (bereystancyjn cewka jest węc elementem bestratnym (konserwatywnym). a ) b ) Z ależnośc: (5.6 (5.), dotycących obwodów pokaanych na rys. a, ora (5.34c), wynkają następujące wory dla cewk lnowej: W µ Θ = Rµ = Θ =. (5.35 R Wµ = = =, (5.35b) Zwąk powyżse predstawono poglądowo na rys. b. Energa pola magnetycnego cewek sprężonych Energa pola magnetycnego wytwarana pre prądy w uwojenach dwóch cewek sprężonych pry manach skojareń magnetycnych d d wynos dw Ze worów (5.3 (5.3b) wynka, że: a atem: stąd: Θ = R µ W µ dw µ W µ Θ = Θ R µ µ d + d =. (5.36) d = d + d = d ± M d, (5.36 d = d + d = d ± M d, (5.36b) dw Θ Θ W µ dw µ = W µ Θ µ d + d + d + d = d ± M d + d ) + =, (5.37 dwµ ( d, (5.37b) W µ = + + +, (5.38 Wµ = ± M +. (5.38b) µ

6 6 Wykład XII Uwględnając możlwość różnych naków Θ = g + s, wględem Θ = g + s (godnych pry sprężenu dodatnm, precwnych pry sprężenu ujemnym), predstawa sę ależność (5.38 w postac wąanej welkoścam obwodu magnetycnego (rys. sprężene dodatne): Θ ( ) ( ) Θ ± g ± Θ g ( ± Θ ) ( ± ) Wµ = = s Θ R µ.s Θ ( Θ Θ ) ( ) ± s g ± g Θ s = + + = (5.38c) R µ. s Θ s Θ Θ s = + +, Θ gde: Θ = Θ ± Θ, = g ± g. (5.38d, e) Gęstość energ pola magnetycnego Ogólne, natężene pola magnetycnego ndukcja magnetycna są funkcjam położena, lec ograncając roważana do elementarnej rurk magnetycnej (rys. pryjmuje sę, że pole magnetycne w tak małym fragmence prestren jest równomerne, atem energa pola rokłada sę w nm równomerne. Dla welkośc elementarnych, wory (5.3c), (5.3d) (5.34b) pryjmują postac: b) c) R µ.s U µ l, H H ρ Wµ ρ Wµ H H S = S, U µ = H l, d( W ) = U ( ), µ = µ µ µ d stąd U d( ) = l S H W d. Ilocyn l S jest objętoścą rurk, węc objętoścowa (prestrenn gęstość energ magnetycnej wyraża sę worem ( H ) ρ Wµ = H d. (5.39 Dla środowska o stałej wartośc µ ależność (5.39 pryjmuje postac: ρ W µ = = µ H = H. (5.39b) µ Objętoścowej gęstośc energ magnetycnej odpowada pole powerchn mędy osą rędnych charakterystyką magnesowana w układe współrędnych, H rys. b (prenkalność µ menn, rys. c (prenkalność µ stał. Transformator bestratny Transformator jest urądenem umożlwającym prenosene energ jednego obwodu elektrycnego do drugego obwodu elektrycnego, na drode magnetycnej. Idealne (bestratne) cewk sprężone są prototypem transformatora bestratnego. H ( ) ( ) M.. W transformatore (rys. obok) wyróżna sę stronę perwotną stronę wtórną; odpowedno do tego: napęce perwotne u, prąd perwotny, napęce wtórne u prąd wtórny. Strałkowane napęca prądu transformatora po strone perwotnej jest typu odbornkowego, a po strone wtórnej generatorowego. Onacene acsków dla prądów odpowada sprężenu ujemnemu, tn. Θ = Θ Θ, = g g.

7 5. Magnetostatyka. Cewk ndukcyjne 7 Napęca po obu stronach transformatora bestratnego są napęcam ndukowanym: d d d d. = M,. = + M. (5.4a, b) Wykorystując ależnośc (5.8a, b, c): = g + s, = g + s, M = g = g, apsuje sę równana (5.4a, b) w następującej postac: d d d und. s = g g, (5.4 d d d und. + s = g g. (5.4b) Po onacenu wyraów predstawających napęca na ndukcyjnoścach roprosena: d d us = s, us = s, (5.4a, b) ora onacenu prekstałcenu wyrażeń po prawych stronach równań (5.4a, b): d d u g = g, (5.43 d d d d u g = g = g, (5.43b) otrymuje sę równana:. us = ug,. + us = ug, (5.44a, b) którym odpowada dwuobwodowy schemat astępcy transformatora bestratnego (rys. ponżej). s ϑ : s u s g. u g u g. g Wynkem delena stronam równań (5.43 (5.43b) jest welkość naywana prekładną transformatora: u g ϑ = =. (5.45) u Zależność (5.8c) pryjmuje węc formę: g M = = ϑ g ϑ, (5.45 aś wory (5.43a, b) po dodatkowym, obustronnym pomnożenu drugego nch pre ϑ apsuje sę następująco: d d u g = g, ϑ (5.46 d d u g = ϑ u g = ϑ g. ϑ (5.46b) s s u s u s. u u nd. µ µ u s g Na podstawe tych ależnośc predstawa sę jednoobwodowy schemat astępcy transformatora bestratnego (rys. obok), na którym występują welkośc prelcone e strony wtórnej na stronę perwotną: u = u = ϑ u = u, (5.47 u' g g ' g nd. = ϑ und., u' s us = ϑ, (5.47b, c)

8 8 Wykład XII ' =, µ = g = ϑ g, ' s = ϑ s. ϑ (5.47d, e, f) Ostatecne otrymuje sę równana: u u + u u = u' + u, (5.48a, b) nd. = s, s ' nd. d d' us = s, u' s = ' s, (5.48c, d) d u = µ µ, = µ + '. (5.48e, f) Uwaga. Stosując prekładnę /ϑ amast ϑ, prelca sę welkośc e strony perwotnej na wtórną. W energetyce defnuje sę prekładne transformatora (napęcowe lub wojowe) jako stosunk welkośc górnych dolnych, tn. dotycących stron wyżsego nżsego napęca. Wartość tak określonej prekładn ne może być mnejsa od. Powyżse roważana dotycą węc transformatora energetycnego aslanego od strony górnej (jeśl jest nacej, to a ϑ wstawa sę wsęde /ϑ ). Transformator dealny a transformator bestratny Transformator dealny jest elementem o dwóch parach acsków, defnowanym pre równana (rys. : ϑ : u = ϑ u, =. (5.49a, b) u u ϑ Realacja fycna transformatora dealnego (pod różnym nawam) może dotycyć arówno prądu mennego, jak stałego. Pod pewnym warunkam, pry prąde b) s ϑ : s mennym, transformator bestratny spełna u dość dokładne równana transformatora s µ u s dealnego. Aby określć te warunk, predstawono dwuobwodowy schemat astępcy. µ u g u g. transformatora bestratnego transformatorem dealnym (rys. b). Jak wdać, sprężene pownno być dealne ( s =, s =, węc k =, M = ) jak najwękse ( µ =, węc µ = g = ϑ M ). Wtedy: und. ϑ und., ϑ. Transformator recywsty W uwojenach recywstego transformatora występują straty Joule a, którym prypsane są reystancje. Dołąca sę je seregowo (po strone perwotnej wtórnej) do transformatora bestratnego. Reystancję uwojena wtórnego R prelca sę na stronę perwotną wg woru: R' = ϑ R. Strumeń główny recywstego transformatora prebega wyłącne w powetru lub w rdenu ferromagnetycnym, albo cęścowo rdenu cęścowo w powetru (w scelne powetrnej). W rdenu występują jawska hsterey prądów wrowych, którym wąane są straty energ, którym prypsana jest reystancja R Fe. Straty w ferromagnetyku ależą nelnowo od ndukcj magnetycnej cęstośc premagnesowywana rdena, ale pry stałej wartośc skutecnej cęstotlwośc napęca traktuje sę reystancję R Fe jako stałą. Dołąca sę ją równolegle do ndukcyjnośc głównej (magnesującej) µ transformatora bestratnego. Na rys. obok pokaany jest jednoobwodowy schemat astępcy transformatora rdenem ferromagnetycnym, skonstruowany godne powyżsym objaśnenam. R s s R Fe µ u R Fe u µ u

INDUKCJA ELEKTROMAGNETYCZNA. - Prąd powstający w wyniku indukcji elektro-magnetycznej.

INDUKCJA ELEKTROMAGNETYCZNA. - Prąd powstający w wyniku indukcji elektro-magnetycznej. INDUKCJA ELEKTROMAGNETYCZNA Indukcja - elektromagnetyczna Powstawane prądu elektrycznego w zamknętym, przewodzącym obwodze na skutek zmany strumena ndukcj magnetycznej przez powerzchnę ogranczoną tym obwodem.

Bardziej szczegółowo

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego.

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego. Transformator Φ r Φ M Φ r i i u u Φ i strumień magnetycny prenikający pre i-ty wój pierwsego uwojenia; siła elektromotorycna indukowana w i-tym woju: dφ ei, licba wojów uwojenia pierwotnego i wtórnego.

Bardziej szczegółowo

R w U R + R R V = U1. grr2 = V U U. P pobiera energię + R. R 1 g V s U 2 U 1. I z

R w U R + R R V = U1. grr2 = V U U. P pobiera energię + R. R 1 g V s U 2 U 1. I z adane W obwode, o schemace pokaanym na rysnk, oblcyć moc reystora. Dane: 4,5,,. ( ) K: [] G [W] adane Wynacyć stosnek napęć k / w obwode o schemace pokaanym na rysnk. Dane: k, 4 k, 5 k, g,5. g s s g s

Bardziej szczegółowo

WYBRANE STANY NIEUSTALONE TRANSFORMATORA

WYBRANE STANY NIEUSTALONE TRANSFORMATORA WYBRANE STANY NIEUSTAONE TRANSFORMATORA Analę pracy ransformaora w sanach prejścowych można preprowadć w oparcu o równana dynamk. Rys. Schema deowy ransformaora jednofaowego. Onacmy kerunk prądów napęć

Bardziej szczegółowo

Tomasz Grębski. Liczby zespolone

Tomasz Grębski. Liczby zespolone Tomas Grębsk Lcby espolone Kraśnk 00 Sps Treśc: Lcby espolone Tomas Grębsk- Wstęp. Podstawowe wadomośc o lcbe espolonej.. Interpretacja geometrycna lcby espolonej... Moduł lcby espolonej. Lcby sprężone..

Bardziej szczegółowo

Badanie transformatora jednofazowego

Badanie transformatora jednofazowego BADANIE TRANSFORMATORA JEDNOFAZOWEGO Cel ćwicenia Ponanie budowy i asady diałania ora metod badania i podstawowych charakterystyk transformatora jednofaowego. I. WIADOMOŚCI TEORETYCZNE Budowa i asada diałania

Bardziej szczegółowo

Sprawdzanie transformatora jednofazowego

Sprawdzanie transformatora jednofazowego Sprawdanie transformatora jednofaowego SPRAWDZANIE TRANSFORMATORA JEDNOFAZOWEGO Cel ćwicenia Ponanie budowy i asady diałania ora metod badania i podstawowych charakterystyk transformatora jednofaowego.

Bardziej szczegółowo

Badanie transformatora jednofazowego. (Instrukcja do ćwiczenia)

Badanie transformatora jednofazowego. (Instrukcja do ćwiczenia) 1 Badanie transformatora jednofaowego (Instrukcja do ćwicenia) Badanie transformatora jednofaowego. CEL ĆICZENI: Ponanie asady diałania, budowy i właściwości.transformatora jednofaowego. 1 IDOMOŚCI TEORETYCZNE

Bardziej szczegółowo

TRANSFORMATORY. Transformator jednofazowy. Zasada działania. Dla. mamy. Czyli. U 1 = E 1, a U 2 = E 2. Ponieważ S. , mamy: gdzie: z 1 E 1 E 2 I 1

TRANSFORMATORY. Transformator jednofazowy. Zasada działania. Dla. mamy. Czyli. U 1 = E 1, a U 2 = E 2. Ponieważ S. , mamy: gdzie: z 1 E 1 E 2 I 1 TRANSFORMATORY Transformator jednofaowy Zasada diałania E E Z od Rys Transformator jednofaowy Dla mamy Cyli e ω ( t) m sinωt cosωt ω π sin ωt + m m π E ω m f m 4, 44 f m E 4, 44 f E m 4, 44 f m E, a E

Bardziej szczegółowo

GAZY DOSKONAŁE I PÓŁDOSKONAŁE

GAZY DOSKONAŁE I PÓŁDOSKONAŁE TERMODYNAMIKA GAZY DOSKONAŁE I PÓŁDOSKONAŁE Prawo Boyle a Marotte a p V = const gdy T = const Prawo Gay-Lussaca V = const gdy p = const T Równane stanu gau dosonałego półdosonałego p v = R T gde: p cśnene

Bardziej szczegółowo

4. Podzielnica uniwersalna 4.1. Budowa podzielnicy

4. Podzielnica uniwersalna 4.1. Budowa podzielnicy 4. Podelnca unwersalna 4.. Budowa podelncy Podelnca jest pryrądem podałowym, który stanow specjalne wyposażene frearek unwersalnych. Podstawowym astosowanem podelncy jest dokonywane podału kątowego. Jest

Bardziej szczegółowo

SERIA III ĆWICZENIE 3_1A. Temat ćwiczenia: Badanie transformatora jednofazowego. Wiadomości do powtórzenia:

SERIA III ĆWICZENIE 3_1A. Temat ćwiczenia: Badanie transformatora jednofazowego. Wiadomości do powtórzenia: SER ĆCZENE 3_1 Temat ćwicenia: Badanie transformatora jednofaowego. iadomości do powtórenia: 1. Budowa i dane namionowe transformatora jednofaowego. 1 U 1 U 1 ansformator jest urądeniem prenaconym do pretwarania

Bardziej szczegółowo

ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany

ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany Wykład II ELEKTROCHEMIA Wykład II b Nadnapęce Równane Buttlera-Volmera Równana Tafela Równowaga dynamczna prąd wymany Jeśl układ jest rozwarty przez elektrolzer ne płyne prąd, to ne oznacza wcale, że na

Bardziej szczegółowo

PRZEKŁADNIE FALOWE. 1. Wstęp. (W. Ostapski)

PRZEKŁADNIE FALOWE. 1. Wstęp. (W. Ostapski) PRZEKŁADNIE FALOWE (W. Ostapsk). Wstęp Perwsy patent na prekładnę harmoncną waną w Polsce falową otrymał w 959 roku w USA C.W. Musser, [04, 05]. Rok późnej była ona preentowana na wystawe w Nowym Yorku

Bardziej szczegółowo

Indukcyjność. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Indukcyjność. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Indukcyjność Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2019 Indukcyjność Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Powszechnie stosowanym urządzeniem, w którym wykorzystano zjawisko indukcji elektromagnetycznej

Bardziej szczegółowo

Prąd elektryczny U R I =

Prąd elektryczny U R I = Prąd elektryczny porządkowany ruch ładunków elektrycznych (nośnków prądu). Do scharakteryzowana welkośc prądu służy natężene prądu określające welkość ładunku przepływającego przez poprzeczny przekrój

Bardziej szczegółowo

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 2)

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu. (Cz. 2) Poltechnka Wrocławska nstytut Maszyn, Napędów Pomarów Elektrycznych Materał lustracyjny do przedmotu EEKTOTEHNKA (z. ) Prowadzący: Dr nż. Potr Zelńsk (-9, A10 p.408, tel. 30-3 9) Wrocław 005/6 PĄD ZMENNY

Bardziej szczegółowo

Wykład lutego 2016 Krzysztof Korona. Wstęp 1. Prąd stały 1.1 Podstawowe pojęcia 1.2 Prawa Ohma Kirchhoffa 1.3 Przykłady prostych obwodów

Wykład lutego 2016 Krzysztof Korona. Wstęp 1. Prąd stały 1.1 Podstawowe pojęcia 1.2 Prawa Ohma Kirchhoffa 1.3 Przykłady prostych obwodów Wykład Obwody prądu stałego zmennego 9 lutego 6 Krzysztof Korona Wstęp. Prąd stały. Podstawowe pojęca. Prawa Ohma Krchhoffa.3 Przykłady prostych obwodów. Prąd zmenny. Podstawowe elementy. Obwody L.3 mpedancja.4

Bardziej szczegółowo

OKRES ZWROTU JAKO JEDNA Z METOD OCENY OPŁACALNOŚCI PRZEDSIĘWZIĘĆ INWESTYCYJNYCH

OKRES ZWROTU JAKO JEDNA Z METOD OCENY OPŁACALNOŚCI PRZEDSIĘWZIĘĆ INWESTYCYJNYCH Magdalena Dynus Katedra Fnansów Bankowośc Wyżsa Skoła Bankowa w Torunu OKRES ZWROTU JAKO JEDNA Z METOD OCENY OPŁACALNOŚCI PRZEDSIĘWZIĘĆ INWESTYCYJNYCH Wprowadene Okres wrotu należy do podstawowych metod

Bardziej szczegółowo

Transformator jednofazowy (cd) Rys. 1 Stan jałowy transformatora. Wartość tego prądu zwykle jest mniejsza niż 5% prądu znamionowego:

Transformator jednofazowy (cd) Rys. 1 Stan jałowy transformatora. Wartość tego prądu zwykle jest mniejsza niż 5% prądu znamionowego: Transformator jednofaowy (cd) W transformatore pracującym be obciążenia (stan jałowy) wartość prądu po stronie wtórna jest równy eru (Rys. 1). W takim prypadku pre uwojenie strony pierwotnej prepływa tylko

Bardziej szczegółowo

Wybrane stany nieustalone transformatora:

Wybrane stany nieustalone transformatora: Wybrane stany nieustalone transformatora: Założenia: - amplituda napięcia na aciskach pierwotnych ma wartość stałą nieależnie od jawisk achodących w transformatore - warcie występuje równoceśnie na wsystkich

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie obwodów prądu sinusoidalnie zmiennego

LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie obwodów prądu sinusoidalnie zmiennego Ćwczene 1 Wydzał Geonżyner, Górnctwa Geolog ABORATORUM PODSTAW EEKTROTECHNK Badane obwodów prądu snusodalne zmennego Opracował: Grzegorz Wśnewsk Zagadnena do przygotowana Ops elementów RC zaslanych prądem

Bardziej szczegółowo

POLE MAGNETYCZNE W PRÓŻNI - CD. Zjawisko indukcji elektromagnetycznej polega na powstawaniu prądu elektrycznego w

POLE MAGNETYCZNE W PRÓŻNI - CD. Zjawisko indukcji elektromagnetycznej polega na powstawaniu prądu elektrycznego w POL AGNTYCZN W PRÓŻNI - CD Indukcja elektomagnetyczna Zjawsko ndukcj elektomagnetycznej polega na powstawanu pądu elektycznego w zamknętym obwodze wskutek zmany stumena wektoa ndukcj magnetycznej. Np.

Bardziej szczegółowo

Algebra WYKŁAD 1 ALGEBRA 1

Algebra WYKŁAD 1 ALGEBRA 1 Algebra WYKŁAD ALGEBRA Realacja predmotu Wykład 30 god. Ćwcena 5 god. Regulamn alceń: www.mn.pw.edu.pl/~fgurny ALGEBRA Program ajęć Lcby espolone Algebra macery Układy równań lnowych Geometra analtycna

Bardziej szczegółowo

WPROWADZENIE DO PRZEDMIOTU

WPROWADZENIE DO PRZEDMIOTU WPROWADZENE DO PRZEDMOU Pole magnetyczne wytwarzane jest tylko wyłączne przez przepływ prądu elektrycznego. Pole magnetyczne opsane jest przez wektor natężena pola H, którego zwrot, kerunek wartość jest

Bardziej szczegółowo

5. Badanie transformatora jednofazowego

5. Badanie transformatora jednofazowego 5. Badanie transformatora jednofaowego Celem ćwicenia jest ponanie budowy i asady diałania transformatora jednofaowego, jego metod badania i podstawowych charakterystyk. 5.. Wiadomości ogólne 5... Budowa

Bardziej szczegółowo

Ćwiczenie 13. Wyznaczanie ruchliwości i koncentracji nośników prądu w półprzewodnikach metodą efektu Halla. Cel ćwiczenia

Ćwiczenie 13. Wyznaczanie ruchliwości i koncentracji nośników prądu w półprzewodnikach metodą efektu Halla. Cel ćwiczenia Ćwicenie 13 Wynacanie ruchliwości i koncentracji nośników prądu w półprewodnikach metodą efektu alla Cel ćwicenia Celem ćwicenia jest aponanie się e jawiskiem alla, stałoprądowa metoda badania efektu alla,

Bardziej szczegółowo

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 3. Analiza obwodów RLC przy wymuszeniach sinusoidalnych w stanie ustalonym

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 3. Analiza obwodów RLC przy wymuszeniach sinusoidalnych w stanie ustalonym ĆWCZENE 3 Analza obwodów C przy wymszenach snsodalnych w stane stalonym 1. CE ĆWCZENA Celem ćwczena jest praktyczno-analtyczna ocena obwodów elektrycznych przy wymszenach snsodalne zmennych.. PODSAWY EOEYCZNE

Bardziej szczegółowo

Naprężenia wywołane ciężarem własnym gruntu (n. geostatyczne)

Naprężenia wywołane ciężarem własnym gruntu (n. geostatyczne) Naprężena wywołane cężarem własnym gruntu (n. geostatycne) wór ogólny w prypadku podłoża uwarstwonego: h γ h γ h jednorodne podłoże gruntowe o cężare objętoścowym γ γ h n m γ Wpływ wody gruntowej na naprężena

Bardziej szczegółowo

Prądy wirowe (ang. eddy currents)

Prądy wirowe (ang. eddy currents) Prądy wirowe (ang. eddy currents) Prądy można indukować elektromagnetycznie nie tylko w przewodnikach liniowych, ale również w materiałach przewodzących o dowolnym kształcie i powierzchni, jeżeli tylko

Bardziej szczegółowo

KATEDRA ELEKTROTECHNIKI LABORATORIUM ELEKTROTECHNIKI

KATEDRA ELEKTROTECHNIKI LABORATORIUM ELEKTROTECHNIKI KTEDR ELEKTROTECHNIKI LBORTORIUM ELEKTROTECHNIKI =================================================================================================== Temat ćwiczenia POMIRY OBODCH SPRZĘŻONYCH MGNETYCZNIE

Bardziej szczegółowo

Ć W I C Z E N I E N R E-8

Ć W I C Z E N I E N R E-8 NSTYTUT FZYK WYDZAŁ NŻYNER PRODUKCJ TECHNOOG ATERAŁÓW POTECHNKA CZĘSTOCHOWSKA PRACOWNA EEKTRYCZNOŚC AGNETYZU Ć W C Z E N E N R E-8 NDUKCJA WZAJENA Ćwiczenie E-8: ndukcja wzajemna. Zagadnienia do przestudiowania.

Bardziej szczegółowo

Pole magnetyczne. Za wytworzenie pola magnetycznego odpowiedzialny jest ładunek elektryczny w ruchu

Pole magnetyczne. Za wytworzenie pola magnetycznego odpowiedzialny jest ładunek elektryczny w ruchu Pole magnetyczne Za wytworzene pola magnetycznego odpowedzalny jest ładunek elektryczny w ruchu Źródła pola magnetycznego Źródła pola magnetycznego I Sła Lorentza - wektor ndukcj magnetycznej Sła elektryczna

Bardziej szczegółowo

gdzie: L( G ++ )- współczynnik złożoności struktury , -i-ty węzeł, = - stopień rozgałęzienia i-tego węzła,

gdzie: L( G ++ )- współczynnik złożoności struktury , -i-ty węzeł, = - stopień rozgałęzienia i-tego węzła, Struktury drewaste rogrywające parametrycne od każdego werchołka pocątkowego różną sę medy sobą kstałtem własnoścam. Stopeń łożonośc struktury może być okreśony pre współcynnk łożonośc L G ++ ) ++ L G

Bardziej szczegółowo

Analiza transformatora

Analiza transformatora ĆWICZENIE 4 Analia transformatora. CEL ĆWICZENIA Celem ćwicenia jest ponanie bodowy, schematu astępcego ora ocena pracy transformatora.. PODSTAWY TEORETYCZNE. Budowa Podstawowym adaniem transformatora

Bardziej szczegółowo

Elektryczność i Magnetyzm

Elektryczność i Magnetyzm Elektryczność Magnetyzm Wykład: Potr Kossack Pokazy: Paweł Trautman, Aleksander Boguck Wykład dwudzesty szósty 8 czerwca 7 Z poprzednego wykładu Paramagnetyzm Paulego Obserwacja domen magnetycznych, MFM,

Bardziej szczegółowo

E wektor natęŝenia pola, a dr element obwodu, którego zwrot określa przyjęty kierunek obchodzenia danego oczka.

E wektor natęŝenia pola, a dr element obwodu, którego zwrot określa przyjęty kierunek obchodzenia danego oczka. Lista 9. do kursu Fizyka; rok. ak. 2012/13 sem. letni W. InŜ. Środ.; kierunek InŜ. Środowiska Tabele wzorów matematycznych (http://www.if.pwr.wroc.pl/~wsalejda/mat-wzory.pdf) i fizycznych (http://www.if.pwr.wroc.pl/~wsalejda/wzf1.pdf;

Bardziej szczegółowo

Grupa obrotów. - grupa symetrii kuli, R - wszystkie możliwe obroty o dowolne kąty wokół osi przechodzących przez środek kuli

Grupa obrotów. - grupa symetrii kuli, R - wszystkie możliwe obroty o dowolne kąty wokół osi przechodzących przez środek kuli Grupa obrotów - grupa smetr kul R - wsstke możlwe obrot o dowolne kąt wokół os prechodącch pre środek kul nacej O 3 grupa obrotów właścwch - grupa cągła - każd obrót określa sę pre podane os l kąta obrotu

Bardziej szczegółowo

OBWODY MAGNETYCZNE SPRZĘśONE

OBWODY MAGNETYCZNE SPRZĘśONE Obwody magnetyczne sprzęŝone... 1/3 OBWODY MAGNETYCZNE SPRZĘśONE Strumień magnetyczny: Φ = d B S (1) S Strumień skojarzony z cewką: Ψ = w Φ () Indukcyjność własna: L Ψ = (3) i Jeśli w przekroju poprzecznym

Bardziej szczegółowo

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu

Politechnika Wrocławska Instytut Maszyn, Napędów i Pomiarów Elektrycznych. Materiał ilustracyjny do przedmiotu Poltechnka Wrocławska nstytut Maszyn, Napędów Pomarów Elektrycznych A KŁ A D M A S Z YN E EK T Materał lustracyjny do przedmotu EEKTOTEHNKA Y Z N Y Z H Prowadzący: * (z. ) * M N Dr nż. Potr Zelńsk (-9,

Bardziej szczegółowo

TWIERDZENIA O WZAJEMNOŚCIACH

TWIERDZENIA O WZAJEMNOŚCIACH 1 Olga Kopac, Adam Łodygows, Wojcech Pawłows, Mchał Płotowa, Krystof Tymber Konsultacje nauowe: prof. dr hab. JERZY RAKOWSKI Ponań 2002/2003 MECHANIKA BUDOWI 7 ACH TWIERDZENIE BETTIEGO (o wajemnośc prac)

Bardziej szczegółowo

INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI BADANIE TRANSFORMATORA. Autor: Grzegorz Lenc, Strona 1/11

INSTRUKCJA LABORATORIUM ELEKTROTECHNIKI BADANIE TRANSFORMATORA. Autor: Grzegorz Lenc, Strona 1/11 NSTRKCJA LABORATORM ELEKTROTECHNK BADANE TRANSFORMATORA Autor: Grzegorz Lenc, Strona / Badanie transformatora Celem ćwiczenia jest poznanie zasady działania transformatora oraz wyznaczenie parametrów schematu

Bardziej szczegółowo

ĆWICZENIE NR 2 POMIARY W OBWODACH RLC PRĄDU PRZEMIENNEGO

ĆWICZENIE NR 2 POMIARY W OBWODACH RLC PRĄDU PRZEMIENNEGO ĆWENE N POMAY W OBWODAH PĄD PEMENNEGO el ćwczena: dośwadczalne sprawdzene prawa Oha, praw Krchhoffa zależnośc fazowych ędzy snsodalne zenny przebega prądów napęć w obwodach zawerających eleenty,,, oraz

Bardziej szczegółowo

ANALIZA NAPRĘŻEŃ KONTAKTOWYCH I NAPRĘŻEŃ ZGINAJĄCYCH WYSTĘPUJĄCYCH W PARACH ZĘBATYCH PRZEKŁADNI POWER SHIFT

ANALIZA NAPRĘŻEŃ KONTAKTOWYCH I NAPRĘŻEŃ ZGINAJĄCYCH WYSTĘPUJĄCYCH W PARACH ZĘBATYCH PRZEKŁADNI POWER SHIFT Jan ZWOLAK Marek MARTYNA ANALIZA NAPRĘŻEŃ KONTAKTOWYCH I NAPRĘŻEŃ ZGINAJĄCYCH WYSTĘPUJĄCYCH W PARACH ZĘBATYCH PRZEKŁADNI POWER SHIFT ANALYSIS OF CONTACT STRESS AND BENDING STRESS OCCURING IN LOADED TOOTHED

Bardziej szczegółowo

Przykład 3.1. Projektowanie przekroju zginanego

Przykład 3.1. Projektowanie przekroju zginanego Prkład.1. Projektowane prekroju gnanego Na belkę wkonaną materału o wtrmałośc różnej na ścskane rocągane dałają dwe sł P 1 P. Znając wartośc tch sł, schemat statcn belk, wartośc dopuscalnego naprężena

Bardziej szczegółowo

Metody analizy obwodów

Metody analizy obwodów Metody analzy obwodów Metoda praw Krchhoffa, która jest podstawą dla pozostałych metod Metoda transfguracj, oparte na przekształcenach analzowanego obwodu na obwód równoważny Metoda superpozycj Metoda

Bardziej szczegółowo

ANALIZA NAPRĘŻEŃ KONTAKTOWYCH I NAPRĘŻEŃ ZGINAJĄCYCH WYSTĘPUJĄCYCH W PRZEKŁADNIACH ZĘBATYCH POWER SHIFT

ANALIZA NAPRĘŻEŃ KONTAKTOWYCH I NAPRĘŻEŃ ZGINAJĄCYCH WYSTĘPUJĄCYCH W PRZEKŁADNIACH ZĘBATYCH POWER SHIFT -0 T R I B O L O G I A 55 Jan ZWOLAK *, Marek MARTYNA ** ANALIZA NAPRĘŻEŃ KONTAKTOWYCH I NAPRĘŻEŃ ZGINAJĄCYCH WYSTĘPUJĄCYCH W PRZEKŁADNIACH ZĘBATYCH POWER SHIFT ANALYSIS OF CONTACT STRESS AND BENDING STRESS

Bardziej szczegółowo

ALGEBRA rok akademicki

ALGEBRA rok akademicki ALGEBRA rok akademck -8 Tdeń Tematka wkładu Tematka ćwceń ajęć Struktur algebracne (grupa cało; be Dałana na macerach perścen Defncja macer Dałana na macerach Oblcane wnacnków Wnacnk jego własnośc Oblcane

Bardziej szczegółowo

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ Ćwiczenie 4 WYZNCZNE NDUKCYJNOŚC WŁSNEJ WZJEMNEJ Celem ćwiczenia jest poznanie pośrednich metod wyznaczania indukcyjności własnej i wzajemnej na podstawie pomiarów parametrów elektrycznych obwodu. 4..

Bardziej szczegółowo

Sprawozdanie powinno zawierać:

Sprawozdanie powinno zawierać: Sprawozdane pownno zawerać: 1. wypełnoną stronę tytułową (gotowa do ćw. nr 0 na strone drugej, do pozostałych ćwczeń zameszczona na strone 3), 2. krótk ops celu dośwadczena, 3. krótk ops metody pomaru,

Bardziej szczegółowo

Zginanie Proste Równomierne Belki

Zginanie Proste Równomierne Belki Zginanie Proste Równomierne Belki Prebieg wykładu : 1. Rokład naprężeń w prekroju belki. Warunki równowagi. Warunki geometrycne 4. Zwiąek fiycny 5. Wskaźnik wytrymałości prekroju na ginanie 6. Podsumowanie

Bardziej szczegółowo

Fizyka współczesna. Zmienne pole magnetyczne a prąd. Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego

Fizyka współczesna. Zmienne pole magnetyczne a prąd. Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego Zmienne pole magnetyczne a prąd Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego Zmienne pole magnetyczne a prąd Wnioski (które wyciągnęlibyśmy, wykonując doświadczenia

Bardziej szczegółowo

Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona.

Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona. Wykład - LICZBY ZESPOLONE Algebra licb espolonych, repreentacja algebraicna i geometrycna, geometria licb espolonych. Moduł, argument, postać trygonometrycna, wór de Moivre a.' Zbiór Licb Zespolonych Niech

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

Zastosowanie metod grupowania sekwencji czasowych w rozpoznawaniu mowy na podstawie ukrytych modeli Markowa

Zastosowanie metod grupowania sekwencji czasowych w rozpoznawaniu mowy na podstawie ukrytych modeli Markowa BIULETYN INSTYTUTU AUTOMATYKI I ROBOTYKI NR 23, 2006 Zastosowane metod grupowana sekwencj casowych w roponawanu mowy na podstawe ukrytych model Markowa Tomas PAŁYS Zakład Automatyk, Instytut Telenformatyk

Bardziej szczegółowo

BADANIE TRANSFORMATORA JEDNOFAZOWEGO (opracował: Jan Sienkiewicz)

BADANIE TRANSFORMATORA JEDNOFAZOWEGO (opracował: Jan Sienkiewicz) BADANIE TRANSFORMATORA JEDNOFAZOWEGO (opracował: Jan Sienkiewic) Cel ćwicenia: ponanie budowy, asady diałania i własności transformatora ora achodących w nim jawisk w stanie jałowym, pry próbie warcia

Bardziej szczegółowo

Wykład FIZYKA II. 4. Indukcja elektromagnetyczna. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 4. Indukcja elektromagnetyczna.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 4. Indukcja elektromagnetyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ PRAWO INDUKCJI FARADAYA SYMETRIA W FIZYCE

Bardziej szczegółowo

OGÓLNE PODSTAWY SPEKTROSKOPII

OGÓLNE PODSTAWY SPEKTROSKOPII WYKŁAD 8 OGÓLNE PODSTAWY SPEKTROSKOPII E E0 sn( ωt kx) ; k π ; ω πν ; λ T ν E (m c 4 p c ) / E +, dla fotonu m 0 p c p hk Rozkład energ w stane równowag: ROZKŁAD BOLTZMANA!!!!! P(E) e E / kt N E N E/

Bardziej szczegółowo

Wykład 14: Indukcja cz.2.

Wykład 14: Indukcja cz.2. Wykład 14: Indukcja cz.. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 10.05.017 Wydział Informatyki, Elektroniki i 1 Przykład

Bardziej szczegółowo

>> ω z, (4.122) Przybliżona teoria żyroskopu

>> ω z, (4.122) Przybliżona teoria żyroskopu Prybliżona teoria żyroskopu Żyroskopem naywamy ciało materialne o postaci bryły obrotowej (wirnika), osadone na osi pokrywającej się osią geometrycną tego ciała wanej osią żyroskopową. ζ K θ ω η ω ζ y

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

Model matematyczny i symulacyjny bezłożyskowego silnika z magnesami trwałymi

Model matematyczny i symulacyjny bezłożyskowego silnika z magnesami trwałymi odel tetycny syulacyjny bełożyskowego slnka gne trwały Krystof Falkowsk, acej Henel, Paulna aurek Wojskowa Akadea Techncna Strescene: Wypożene pokładowe współcesnych statków powetrnych konstruowane jest

Bardziej szczegółowo

PRZESTRZEŃ WEKTOROWA (LINIOWA)

PRZESTRZEŃ WEKTOROWA (LINIOWA) PRZESTRZEŃ WEKTOROWA (LINIOWA) Def. 1 (X, K,, ) X, K - ciało : X X X ( to diałanie wewnętrne w biore X) : K X X ( to diałanie ewnętrne w biore X) Strukturę (X, K,, ) naywamy prestrenią wektorową : 1) Struktura

Bardziej szczegółowo

V. TERMODYNAMIKA KLASYCZNA

V. TERMODYNAMIKA KLASYCZNA 46. ERMODYNAMIKA KLASYCZNA. ERMODYNAMIKA KLASYCZNA ermodynamka jako nauka powstała w XIX w. Prawa termodynamk są wynkem obserwacj welu rzeczywstych procesów- są to prawa fenomenologczne modelu rzeczywstośc..

Bardziej szczegółowo

Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika. r opór wewnętrzny baterii R- opór opornika

Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika. r opór wewnętrzny baterii R- opór opornika Obwód składający się z baterii (źródła siły elektromotorycznej ) oraz opornika r opór wewnętrzny baterii - opór opornika V b V a V I V Ir Ir I 2 POŁĄCZENIE SZEEGOWE Taki sam prąd płynący przez oba oporniki

Bardziej szczegółowo

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1

Bardziej szczegółowo

Funkcje pola we współrzędnych krzywoliniowych cd.

Funkcje pola we współrzędnych krzywoliniowych cd. Funkcje pola we współrędnych krywoliniowych cd. Marius Adamski 1. spółrędne walcowe. Definicja. Jeżeli M jest rutem punktu P na płascynę xy, a r i ϕ są współrędnymi biegunowymi M, to mienne u = r, v =

Bardziej szczegółowo

Wykład 15: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Wykład 15: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok Wykład 15: Indukcja Dr inż. Zbigniew zklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ 1 Pole magnetyczne a prąd elektryczny Do tej pory omawiano skutki

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA NWERSYTET TECHNOLOGCZNO-RZYRODNCZY W BYDGOSZCZY WYDZAŁ NŻYNER MECHANCZNEJ NSTYTT EKSLOATACJ MASZYN TRANSORT ZAKŁAD STEROWANA ELEKTROTECHNKA ELEKTRONKA ĆWCZENE: E BADANE TRANSFORMATORA JEDNOFAZOWEGO iotr

Bardziej szczegółowo

Pracownia fizyczna i elektroniczna. Wykład lutego Krzysztof Korona

Pracownia fizyczna i elektroniczna. Wykład lutego Krzysztof Korona Pracownia fizyczna i elektroniczna Wykład. Obwody prądu stałego i zmiennego 4 lutego 4 Krzysztof Korona Plan wykładu Wstęp. Prąd stały. Podstawowe pojęcia. Prawa Kirchhoffa. Prawo Ohma ().4 Przykłady prostych

Bardziej szczegółowo

Tensorowe. Wielkości fizyczne. Wielkości i Jednostki UŜywane w Elektryce Wielkość Fizyczna to właściwość fizyczna zjawisk lub obiektów,

Tensorowe. Wielkości fizyczne. Wielkości i Jednostki UŜywane w Elektryce Wielkość Fizyczna to właściwość fizyczna zjawisk lub obiektów, Welkośc Jednosk UŜywane w Elekryce Welkość Fzyczna o właścwość fzyczna zjawsk lub obeków, Przykłady: W. f.: kórą moŝna zmerzyć. czas, długość, naęŝene pola elekrycznego, przenkalność elekryczna kryszałów.

Bardziej szczegółowo

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.

RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego. RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu

Bardziej szczegółowo

X L = jωl. Impedancja Z cewki przy danej częstotliwości jest wartością zespoloną

X L = jωl. Impedancja Z cewki przy danej częstotliwości jest wartością zespoloną Cewki Wstęp. Urządzenie elektryczne charakteryzujące się indukcyjnością własną i służące do uzyskiwania silnych pól magnetycznych. Szybkość zmian prądu płynącego przez cewkę indukcyjną zależy od panującego

Bardziej szczegółowo

2. UKŁADY ELEKTRYCZNE ORAZ ZASADY ICH MODELOWANIA SIECIOWEGO I ZACISKOWEGO 2.1. UKŁAD I JEGO PROCESY ENERGETYCZNE

2. UKŁADY ELEKTRYCZNE ORAZ ZASADY ICH MODELOWANIA SIECIOWEGO I ZACISKOWEGO 2.1. UKŁAD I JEGO PROCESY ENERGETYCZNE Wykład : Układy elektryczne oraz zasady ch modelowana. UKŁADY ELEKTRYCZNE ORAZ ZASADY ICH MODELOWANIA SIECIOWEGO I ZACISKOWEGO.. UKŁAD I JEGO PROCESY ENERGETYCZNE Układem elektrycznym nazywamy tak kład

Bardziej szczegółowo

Temat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia.

Temat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia. Temat: Analiza pracy transformatora: stan jałowy, obciążenia i zwarcia. Transformator może się znajdować w jednym z trzech charakterystycznych stanów pracy: a) stanie jałowym b) stanie obciążenia c) stanie

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

BADANIA CHARAKTERYSTYK HYDRAULICZNYCH KSZTAŁTEK WENTYLACYJNYCH

BADANIA CHARAKTERYSTYK HYDRAULICZNYCH KSZTAŁTEK WENTYLACYJNYCH INSTYTUT KLIMATYZACJI I OGRZEWNICTWA ĆWICZENIA LABORATORYJNE Z WENTYLACJI I KLIMATYZACJI: BADANIA CHARAKTERYSTYK HYDRAULICZNYCH KSZTAŁTEK WENTYLACYJNYCH 1. WSTĘP Stanowsko laboratoryjne pośwęcone badanu

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIERSYTET TECHNOLOGICZNO-PRZYRODNICZY BYDGOSZCZY YDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆICZENIE: E3 BADANIE ŁAŚCIOŚCI

Bardziej szczegółowo

Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Indukcja elektromagnetyczna. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Indukcja elektromagnetyczna Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Strumień indukcji magnetycznej Analogicznie do strumienia pola elektrycznego można

Bardziej szczegółowo

Lekcja 59. Histereza magnetyczna

Lekcja 59. Histereza magnetyczna Lekcja 59. Histereza magnetyczna Histereza - opóźnienie w reakcji na czynnik zewnętrzny. Zjawisko odkrył i nazwał James Alfred Ewing w roku 1890. Najbardziej znane przypadki histerezy występują w materiałach

Bardziej szczegółowo

ver magnetyzm cd.

ver magnetyzm cd. ver-10.01.12 magnetyzm cd. praca przemieszczenia obwodu w polu B B F F=ΙlB B j (siła Ampere a) dw =Fdx=Ι lbdx=ι BdS Φ B = B d S= BdS dφ B =BdS dw =ΙdΦ B =Ι B d S strumień dx dla obwodu: W =Ι dφ B =Ι Φ

Bardziej szczegółowo

Laboratorium wytrzymałości materiałów

Laboratorium wytrzymałości materiałów Poltechnka ubelska MECHNK aboratorum wytrymałośc materałów Ćwcene - Wynacane momentu bewładnośc prekroju gnanej belk defncj woru Gegera Prygotował: ndrej Teter (do użytku wewnętrnego) Wynacane momentu

Bardziej szczegółowo

ĆWICZENIE NR 2 BADANIA OBWODÓW RLC PRĄDU HARMONICZNEGO

ĆWICZENIE NR 2 BADANIA OBWODÓW RLC PRĄDU HARMONICZNEGO ĆWENE N BADANA OBWODÓW PĄD HAMONNEGO el ćwczena: dośwadczalne sprawdzene prawa Oha praw Krchhoffa oraz zależnośc fazowych poędzy snusodalne zenny przebega prądów napęć w obwodach zawerających eleenty,,,

Bardziej szczegółowo

MAGNETYZM. PRĄD PRZEMIENNY

MAGNETYZM. PRĄD PRZEMIENNY Włodzimierz Wolczyński 47 POWTÓRKA 9 MAGNETYZM. PRĄD PRZEMIENNY Zadanie 1 W dwóch przewodnikach prostoliniowych nieskończenie długich umieszczonych w próżni, oddalonych od siebie o r = cm, płynie prąd.

Bardziej szczegółowo

Nazwa przedmiotu: Techniki symulacji. Kod przedmiotu: EZ1C Numer ćwiczenia: Ocena wrażliwości i tolerancji układu

Nazwa przedmiotu: Techniki symulacji. Kod przedmiotu: EZ1C Numer ćwiczenia: Ocena wrażliwości i tolerancji układu P o l i t e c h n i k a B i a ł o s t o c k a W y d i a ł E l e k t r y c n y Nawa predmiotu: Techniki symulacji Kierunek: elektrotechnika Kod predmiotu: EZ1C400 053 Numer ćwicenia: Temat ćwicenia: E47

Bardziej szczegółowo

SYMULACJA UKŁADU REDUKCJI DRGAŃ Z TŁUMIKIEM MAGNETOREOLOGICZNYM I ELEKTROMAGNETYCZNYM PRZETWORNIKIEM ENERGII

SYMULACJA UKŁADU REDUKCJI DRGAŃ Z TŁUMIKIEM MAGNETOREOLOGICZNYM I ELEKTROMAGNETYCZNYM PRZETWORNIKIEM ENERGII MODELOWANIE INŻYNIERSKIE ISSN 9-77X 39, s. 77-, Gliwice SYMULACJA UKŁADU REDUKCJI DRGAŃ Z TŁUMIKIEM MAGNETOREOLOGICZNYM I ELEKTROMAGNETYCZNYM PRZETWORNIKIEM ENERGII BOGDAN SAPIŃSKI, PAWEŁ MARTYNOWICZ,

Bardziej szczegółowo

WYKŁAD 4 STAN JAŁOWY I ZWARCIE TRANSFORMATORA

WYKŁAD 4 STAN JAŁOWY I ZWARCIE TRANSFORMATORA WYKŁAD 4 STA JAŁOWY ZWARCE TRASFORMATORA 4.. Moc pozorna transformatora jednofazowego. Rozpatrzmy transformator jednofazowy z rdzeniem płaszczowym pokazany na rys.4.. Przekrój kolumny rdzenia wynosi S

Bardziej szczegółowo

Wykład V OBWODY MAGNETYCZNE PRĄDU STAŁEGO

Wykład V OBWODY MAGNETYCZNE PRĄDU STAŁEGO Wykład V OBWODY MAGNETYCZNE PRĄDU STAŁEGO OBWÓD MAGNETYCZNY Obwodem magnetycznym nazywamy zespół elementów wykonanych zwykle z materiałów ferromagnetycznych tworzących drogę zamkniętą dla strumienia magnetycznego,

Bardziej szczegółowo

Wyznaczanie przenikalności magnetycznej i krzywej histerezy

Wyznaczanie przenikalności magnetycznej i krzywej histerezy Ćwiczenie 13 Wyznaczanie przenikalności magnetycznej i krzywej histerezy 13.1. Zasada ćwiczenia W uzwojeniu, umieszczonym na żelaznym lub stalowym rdzeniu, wywołuje się przepływ prądu o stopniowo zmienianej

Bardziej szczegółowo

WYKŁAD 2 INDUKOWANIE SIŁY ELEKTROMOTORYCZNEJ

WYKŁAD 2 INDUKOWANIE SIŁY ELEKTROMOTORYCZNEJ WYKŁAD DUKOWA SŁY KTOMOTOYCZJ.. Źródłowy i odbiornikowy system oznaczeń. ozpatrzmy elementarny obwód elektryczny prądu stałego na przykładzie ładowania akumulatora samochodowego przedstawiony na rys...

Bardziej szczegółowo

Wykład 14: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Wykład 14: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok Wykład 14: Indukcja Dr inż. Zbigniew zklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Pole magnetyczne a prąd elektryczny Do tej pory omawiano skutki

Bardziej szczegółowo

Wielokryteriowa optymalizacja liniowa (WPL)

Wielokryteriowa optymalizacja liniowa (WPL) arek isyński BO UŁ 007 - Wielokryteriowa optymaliaja liniowa (WPL) -. Wielokryteriowa optymaliaja liniowa (WPL) Zadaniem WPL naywamy następująe adanie optymaliaji liniowej: a a m L O L L O L L a a n n

Bardziej szczegółowo

Ćwiczenie nr 7. Badanie wybranych elementów i układów z rdzeniami ferromagnetycznymi

Ćwiczenie nr 7. Badanie wybranych elementów i układów z rdzeniami ferromagnetycznymi Ćwiczenie nr 7 Badanie wybranych elementów i układów z rdzeniami ferromagnetycznymi. Cel ćwiczenia Celem ćwiczenia jest badanie dławika jako elementu nieliniowego, wyznaczenie jego parametrów zastępczych

Bardziej szczegółowo

INDUKCJA ELEKTROMAGNETYCZNA; PRAWO FARADAYA

INDUKCJA ELEKTROMAGNETYCZNA; PRAWO FARADAYA INDUKJA EEKTOMAGNETYZNA; PAWO FAADAYA. uch ramki w polu magnetycznym: siła magnetyczna wytwarza SEM. uch magnesu względem ramki : powstanie wirowego pola elektrycznego 3. Prawo Faradaya 4. eguła entza

Bardziej szczegółowo

MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH

MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH MES W ANALIZIE SPRĘŻYS UKŁADÓW PRĘOWYCH Prykłady obliceń Belki Lidia FEDOROWICZ Jan FEDOROWICZ Magdalena MROZEK Dawid MROZEK Gliwice 7r. 6-4 Lidia Fedorowic, Jan Fedorowic, Magdalena Mroek, Dawid Mroek

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się

Bardziej szczegółowo

Pracownia fizyczna i elektroniczna. Wykład marca Krzysztof Korona

Pracownia fizyczna i elektroniczna. Wykład marca Krzysztof Korona Pracownia fizyczna i elektroniczna Wykład. Obwody prądu stałego i zmiennego 8 marca 0 Krzysztof Korona Plan wykładu Wstęp. Prąd stały. Podstawowe pojęcia. Prawa Kirchhoffa,. Prawo Ohma ().4 Przykłady prostych

Bardziej szczegółowo