Politechnika Gdańska

Wielkość: px
Rozpocząć pokaz od strony:

Download "Politechnika Gdańska"

Transkrypt

1 EWOLUCYJNA OPTYMALIZACJA WIELORYTERIALNA I JEJ ZASTOSOWANIA W AUTOMATYCE Zdzisław owalczuk Politechnika Gdańska Wydział Elektroniki Telekomunikacji i Informatyki atedra Automatyki Narutowicza 11/1, 8-95 Gdańsk kova@pg.gda.pl ZTS

2 WPROWADZENIE ZAGADNIENIE optymalizacja wielu kryteriów - bez definiowania szczegółowych relacji pomiędzy nimi STOSOWANE METODY ważonych zysków odległości sekwencyjnych ograniczeń nierównościowych rankingu według Pareto-optymalności... NOWA IDEA EVOLUCYJNYCH OBLICZEŃ oparta na informacji o rodzajniku genetycznym wariancie kryterialnym

3 WIELORYTERIALNA OPTYMALIZACJA Rozważmy m-wymiarowy wektor funkcji kryterialnych gdzie T m [ f x f x ] R f x = x 1 f m x = T n [ x x ] R 1 x n jest wektorem poszukiwanych parametrów Założenie: wszystkie współrzędne f x są funkcjami zysku zadanie wielokryterialnej maksymalizacji bez ograniczeń: max x f x

4 GENETYCZNY WARIANT W naturze podział ze względu na płeć wiąże się z: - funkcjonalną przydatnością dla danej grupy / gatunku - funkcjami rozrodczymi Idea genetycznego rodzajnika wariantu kryterialnego: - podział funkcji celu na podzbiory warianty rozwiązań - przydział każdemu wariantowi atrybutu rodzajnika Xj GENDERS={ X1, X,... Xj,..., Xs } Przykład: Dwuelementowy zbiór rodzajników GENDERS={ XX, XY}

5 Genetyczny rodzajnik motywacje: - może wynikać z wyróżnionych wspólnych charakterystyk poszczególnych kryteriów wspólny Xj opisuje cele podobne rodzaj wewnętrznej rywalizacji - mniej istotnej dla projektanta różne Xj wyrażają rozmaite grupy interesów rodzaj zewnętrznej rywalizacji -trudny do rozsądzenia dla projektanta patrz pojęcie Pareto-optymalności Ewolucyjny cykl obliczeń: - dynamiczny przydział rodzajnika -krzyżowanie jedynie osobników o różnych rodzajnikach Xj

6 METODA WARIANTÓW RYTERIALNYCH SUBOPTYMALNOŚĆ Podział wektora funkcji celu f x na s podwektorów T m [ f x f x f ] R f x = x 1 s gdzie m j T f jx R -j-ty podwektor subkryterium; j = 1,,..., s opisany rodzajnikiem Xj analizowanych osobników Ocena Pareto-optymalności osobników względem subkryteriów Wektor rang i-tego osobnika: r [ r x r x r x ] T x i = 1 i i s i gdzie rj x i rj x = µ µ x + 1, µ = max µ i jmax j jmax i= 1,,, N - ranga i-tego rozwiązania x i w j-tym wariancie Xj i j x i µ x - stopień zdominowania x i w sensie Pareto względem fj j i

7 METODA WARIANTÓW GENETYCZNYCH PRESELECJA Genetyczna preselekcja przydział rodzajnika j max ϕi, i = arg max j= 1,,..., s j= 1,,..., s ϕ i = l ϕ j i gdzie ϕ j i = r j r x j max i, r j max = max i= 1,,..., N { r x } j i ϕi rj max - najwyższy rozmyty stopień suboptymalności, tj. przynależności i-tego osobnika do l i -tego wariantu - najwyższa ranga uzyskana wśród wszystkich osobników względem j-tego subkryterium fj tj. dla j-tego rodzajnika Xj Selekcja wariantowych puli rodzicielskich oparta na o suboptymalności z zastosowaniem stochastycznego doboru resztowego Nowe rozwiązania pokolenia generowane poprzez krzyżowanie jedynie osobników o różnym rodzajniku wariancie

8 Program GVAR GEND Inicjacja populacji V o N osobnikach; dopóki t t max Obliczenie przystosowania każdego osobnika; P-suboptymalny ranking osobników; Rozpoznanie genetycznego rodzajnika osobników; Selekcja suboptymalnych pul rodzicielskich; Tworzenie nowej generacji V poprzez: -krzyżowanie osobników różnowariantowych; - mutację; Zastąpienie starej populacji nową V V ; t t+1; koniec

9 PROSTE PRZYŁADY Rozważmy 1-parametrowe zadanie optymalizacji eksperyment 1 min x f x = min x [ f x f x ] T 1 gdzie 1 x = x + 5 f f x = x 5 oraz naturalny podział na dwa jedno-wymiarowe subkryteria warianty: - rodzajnik genetyczny XY - rodzajnik genetyczny XX f 1 x f x GENDERS={ XY, XX }

10 45 4 Wyniki klasycznego GA osobniki 4 35 liczba osobników f x =x-5 f 1 x =x f x, f x x Histogram osobników ostatniej populacji

11 Wyniki metody GVAR osobniki XY osobniki XX 35 liczba osobników f x=x-5 f 1 x=x f x, f x x Histogram osobników ostatniej populacji

12 Rozważmy -parametryczne zadanie -kryterialne eksperyment min x f x = min x [ f x f x ] T 1 gdzie 1 x1, x = x1 + 5 f + x x1, x = x1 5 f + x oraz dwa -wymiarowe subkryteria warianty: - rodzajnik genetyczny XY - rodzajnik genetyczny XX f1 x1, x f x1, x GENDERS={ XY, XX }

13 Wyniki klasycznego GA x x 1 Rozwiązania optymalne w przestrzeni parametrów

14 Wyniki klasycznego GA Optymalność rozwiązań w zbiorze wartości osiągalnych

15 Wyniki algorytmu GVAR x x 1 Rozwiązania optymalne w przestrzeni parametrów

16 Wyniki metody GVAR Optymalność rozwiązań w zbiorze wartości osiągalnych

17 SYNTEZA REGULATORA PID Rozważmy zadanie wielokryterialnej optymalizacji regulatora PID 1 G c s = p + + st i st d dotyczące wektora parametrów: x T 3 [ x x ] = x 1 3 R gdzie x x x 1 3 = = T = T i p d

18 Założone funkcje kryterialne: IMSE = 1 [ e& x, t + λe x, t ] f x = dt ISC = f 3 x = u x, t dt g m x = f4 x = gain margin p m x = f5 x = phase margin

19 Dobieramy dwa subkryteria / warianty o różnych rodzajnikach: T 5 [ f x f ] f x = x R 1 gdzie f T [ f x f ] 1 x = 1 x R - JAOŚĆ XX kryteria całkowe f T [ f x f ] x = 4 5 x R - ODPORNOŚĆ XY zapasy wzmocnienia i fazy

20 PRZYŁADOWA WIELORYTERIALNA OPTYMALIZACJA Rozważmy nieminimalnofazowy obiekt liniowy: G p s = s s.5s + 1 s s + 6s + 1 oraz przeszukiwaną kostkę parametrów PID: x1 = p [, 1 ] x = T i [, 3] x3 = T d [, 1]

21 WYNII EWOLUCYJNYCH POSZUIWAŃ 35 3 GA GVAR 5 ISC IMSE Dwa typy P-optymalizacji w kategoriach jakościowych

22 5 45 GA GVAR pm gm Dwa typy P-optymalizacji w kategoriach odpornościowych

23 8 6 rozwiązania jakościowe rozwiązania odpornościowe 4 ISC IMSE P-optymalne rozwiązania na płaszczyźnie jakościowej

24 5 45 rozwiązania jakościowe rozwiązania odpornościowe 4 pm gm P-optymalne rozwiązania na płaszczyźnie odpornościowej

25 WYNII SYMULACJI wyjście układ zamknięty PID Ziegler-Nichols PID tradycyjny GA PID jakościowy GVAR PID odpornościowy GVAR czas [s] Odpowiedzi skokowe układu sterowania obiektem nominalnym

26 .5 Układ zamknięty PID Ziegler-Nichols PID tradycyjny GA PID jakościowy GVAR PID odpornościowy GVAR 1.5 wyjście 1 ście czas [s] Odpowiedzi skokowe układu sterowania obiektem zaburzonym

27 SYNTEZA GENERATORA RESIDUÓW System FDI usterki zakłócenia sterowanie f t dt ut F F 1 vt N B x& t xt C yt Szumy pomiarowe pomiary Szumy obiektowe wt A Obiekt B x t & xt yt C Generator resztowy A Q rt residua

28 Problem wielokryterialnej optymalizacji generatora resztowego = min min, min, min, min, max, 6 5 4, 3,, 1,, Q Q Q Q Q J Q Q Q Q Q J J J J J J opt =, 1 1 s s J rf G W Q =, s s J rd G W Q =, 3 3 s s J rw G W Q =, 4 4 s s J rv G W Q J s 1 6 = C A J s 1 5 C A = gdzie

29 Macierzowe funkcje przenoszenia { C n 1 1 [ si A C ] F F } G s = Q + F G G G rf rd rw rv s = QC n 1 [ si A C ] N [ si A ] 1 s = QC C n 1 = Q{ I m C n [ si A C ] } s oraz [ M j ] M s = supσ ω M s = σ ω [ M] σ [] - największa wartość szczególna macierzy W s, W s, W3 s, W4 1 s - macierze wagowe

30 Przedefiniowanie problemu wielokryterialnej optymalizacji optymalizacja w-własnych { } i λ macierzy A C przy: przyjęciu Q jako macierzy jednostkowej ustaleniu macierzy ważących W s, W s, W s, W s wyznaczaniu macierzy dla ustalonego spektrum opt, Q J, Q = opt J = opt λ J λ

31 Podział kryteriów na 3 subkryteria rodzajniki / warianty gdzie T 6 [ J λ J λ J λ ] J λ = R 1 3 T [ λ ] R J1 λ = J1 - JAOŚĆ X1 wpływ usterek na residuum J T 3 [ J λ J λ J λ ] λ = 3 4 R - NIEWRAŻLIWOŚĆ X wpływ zakłóceń oraz szumów wejściowych i pomiarowych J T [ J λ J λ ] 3 λ = 5 6 R - ODPORNOŚĆ X3 wpływ odchyłek od nominalnego modelu obiektu

32 Rozważmy stanowy model okrętowego systemu napędowego x & t = Ax t + Bu t + Nd t + F1 f t + w t y t = Cx t + F f t + v t gdzie x = [ θ n v ] T Q eng - wektor stanu θ -kąt natarcia śruby względem kierunku obrotów n -prędkość obrotowa wału v -prędkość okrętu Qeng - moment obrotowy silnika Diesla u = [ θ ] T ref Y - wektor sterowania θref -wartość zadana kąta natarcia Y - wtrysk paliwa

33 f [ θ θ n] T = & θ & θ - addytywny wektor usterek -błąd pomiaru kata natarcia - wyciek hydrauliczny wolny dryft kąta natarcia n -błąd pomiaru prędkości obrotowej d = [ ] T Q f T ext -zakłócenia Q f - moment tarcia Text -zewnętrzna siła reprezentująca wpływ wiatru i fal y = [ θ n v ] T m m m - pomiary w, v R 3 -szumy wejściowe i pomiarowe

34 Wektor poszukiwanych wartości własnych j-tych osobników λ j = λ λ λ λ 1 j j 3 j 4 j R 4 Hiperkostka poszukiwanych parametrów 1 λ j [ 3,.5] λ j [ 3,.5] 3 λ j [ 1, 31] 4 λ j [ 1, 31]

35 WYNII EWOLUCYJNYCH POSZUIWAŃ 18 GA GVAR J 1 max J 1 max Dwa typy P-optymalizacji w kategoriach jakościowych

36 6x 1 8 GA GVAR 8 x 15 7 J 4 min J 3 min x J 3 min.5 J min 1 1.5x J min x 1-6 Dwa typy P-optymalizacji w kategoriach niewrażliwościowych

37 4.5 5 x 18 GA GVAR J 6 min J 5 min x 1 8 Dwa typy P-optymalizacji w kategoriach odpornościowych

38 18 16 rozwiązania jakościowe rozwiązania niewrażliwe rozwiązania odporne 14 J 1 max J 1 max Rozwiązania P-optymalne na płaszczyźnie jakościowej

39 rozwiązania niewrażliwe rozwiązania jakościowe rozwiązania odpornościowe 1x x J 4 min 6 4 J 3 min x J 3 min J min 3 x J min x 1-6 Rozwiązania P-optymalne w przestrzeni niewrażliwości

40 4 x rozwiązania odporne rozwiązania jakościowe rozwiązania niewrażliwe.5 J 6 min J x min Rozwiązania P-optymalne na płaszczyźnie odpornościowej

41 6 5 Liczba frontów Pareto 4 3 rozwiązania niewrażliwe rozwiązania odpornościowe rozwiązania jakościowe rozwiązania klasyczne numer generacji Liczba frontów Pareto w trakcie ewolucji

42 WYNII SYMULACJI θ n. θ.5 θ high low n max min θ n time second Sekwencja możliwych addytywnych usterek

43 4 rozwiązanie jakościowe rozwiązanie klasyczne r θ r n r v Czas [s] Przebiegi sygnałów w dwu generatorach resztowych

44 4 rozwiązanie niewrażliwe rozwiązanie klasyczne r θ r n r v czas [s] Przebiegi sygnałów w dwu generatorach resztowych

45 r θ rozwiązanie odporne rozwiązanie klasyczne r n r v Czas [s] Przebiegi sygnałów w dwu generatorach resztowych

46 WNIOSI Nowa metoda rozwiązywania zadań wielokryterialnej optymalizacji oparta na obliczeniach ewolucyjnych z zastosowaniem preselekcji, tj. rozpoznawania genetycznego rodzajnika / wariantu suboptymalności Informacja o stopniu przynależności do wariantu uzyskiwana jest poprzez Pareto-optymalny ranking rozwiązań Informacja ta wykorzystywana jest w procesie między-wariantowego krzyżowania Miejsce i rola Pareto-optymalizacji: - subkryterialna suboptymalna ocena rozwiązań / osobników - preselekcja jednowariantowych / rodzajnikowych pul rodzicielskich - końcowa ocena różno- wariantowych rozwiązań por. koncepcję globalnego wskaźnika optymalności rzyżowanie różnowariantowych osobników jest bardziej skuteczne z p.w. wymiany materiału genetycznego i dynamiki poszukiwań unika się też w ten sposób krzyżowania osobników podobnych

47 Praktyczne aspekty w kategoriach skuteczności w opozycji do podejścia klasycznego: 1 możliwość prostego formułowania subkryteriów bez ważenia bardziej regularne fronty Pareto efekt kryterialnego niszowania 3 większa liczba frontów Pareto mniejszy wymiar przestrzeni 4 rozmaitość rozwiązań przeciwdziałająca przedwczesnej zbieżności 5 bardziej efektywne, różnowariantowe krzyżowanie z p.w. postępu 6 jasne podstawy wyboru ostatecznych rozwiązań Zastosowania wariantowej/rodzajnikowej Pareto-optymalizacji EC/GA: - optymalizacja parametryczna regulatorów PID, GPC,..., - filtrów analogowych, cyfrowych,... - obserwatorów detekcyjnych i układów diagnostycznych, - modeli rozmytych, sieci neuronowych, itd.

Inżynieria Systemów Dynamicznych (4)

Inżynieria Systemów Dynamicznych (4) Inżynieria Systemów Dynamicznych (4) liniowych (układów) Piotr Jacek Suchomski Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 grudnia 2010 O czym będziemy mówili? 1 2 WE OKREŚLO 3 ASYMPTO 4 DYNAMICZ

Bardziej szczegółowo

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI Podstawy automatyki / Józef Lisowski. Gdynia, 2015 Spis treści PRZEDMOWA 9 WSTĘP 11 1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI 17 1.1. Automatyka, sterowanie i regulacja 17 1.2. Obiekt regulacji

Bardziej szczegółowo

Opis systemów dynamicznych w przestrzeni stanu. Wojciech Kurek , Gdańsk

Opis systemów dynamicznych w przestrzeni stanu. Wojciech Kurek , Gdańsk Opis systemów dynamicznych Mieczysław Brdyś 27.09.2010, Gdańsk Rozważmy układ RC przedstawiony na rysunku poniżej: wejscie u(t) R C wyjście y(t)=vc(t) Niech u(t) = 2 + sin(t) dla t t 0 gdzie t 0 to chwila

Bardziej szczegółowo

przetworzonego sygnału

przetworzonego sygnału Synteza falek ortogonalnych na podstawie oceny przetworzonego sygnału Instytut Informatyki Politechnika Łódzka 28 lutego 2012 Plan prezentacji 1 Sformułowanie problemu 2 3 4 Historia przekształcenia falkowego

Bardziej szczegółowo

Zastosowania metod odkrywania wiedzy do diagnostyki maszyn i procesów

Zastosowania metod odkrywania wiedzy do diagnostyki maszyn i procesów Zastosowania metod odkrywania wiedzy do diagnostyki maszyn i procesów Wojciech Moczulski Politechnika Śląska Katedra Podstaw Konstrukcji Maszyn Sztuczna inteligencja w automatyce i robotyce Zielona Góra,

Bardziej szczegółowo

Podstawy Automatyki. Wykład 6 - Miejsce i rola regulatora w układzie regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 6 - Miejsce i rola regulatora w układzie regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 6 - Miejsce i rola regulatora w układzie regulacji Instytut Automatyki i Robotyki Warszawa, 2015 Regulacja zadajnik regulator sygnał sterujący (sterowanie) zespół wykonawczy przetwornik pomiarowy

Bardziej szczegółowo

Obserwatory stanu, zasada separowalności i regulator LQG

Obserwatory stanu, zasada separowalności i regulator LQG Obserwatory stanu, zasada separowalności i regulator LQG Zaawansowane Techniki Sterowania Wydział Mechatroniki Politechniki Warszawskiej Anna Sztyber ZTS (IAiR PW) LQR Anna Sztyber / 29 Plan wykładu Obserwatory

Bardziej szczegółowo

Analityczne metody detekcji uszkodzeń

Analityczne metody detekcji uszkodzeń Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 5 Model procesu Rozważmy czasowo-dyskretny model liniowy gdzie: k dyskretny czas, x(k) R n wektor stanu, x(k + 1) = Ax(k)

Bardziej szczegółowo

Podstawy automatyki. Energetyka Sem. V Wykład 1. Sem /17 Hossein Ghaemi

Podstawy automatyki. Energetyka Sem. V Wykład 1. Sem /17 Hossein Ghaemi Podstawy automatyki Energetyka Sem. V Wykład 1 Sem. 1-2016/17 Hossein Ghaemi Hossein Ghaemi Katedra Automatyki i Energetyki Wydział Oceanotechniki i Okrętownictwa Politechnika Gdańska pok. 222A WOiO Tel.:

Bardziej szczegółowo

Technika regulacji automatycznej

Technika regulacji automatycznej Technika regulacji automatycznej Wykład 3 Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 32 Plan wykładu Wprowadzenie Układ pierwszego rzędu Układ drugiego

Bardziej szczegółowo

Automatyka i robotyka

Automatyka i robotyka Automatyka i robotyka Wykład 5 - Stabilność układów dynamicznych Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 43 Plan wykładu Wprowadzenie Stabilność modeli

Bardziej szczegółowo

Problemy optymalizacji układów napędowych w automatyce i robotyce

Problemy optymalizacji układów napędowych w automatyce i robotyce Akademia Górniczo-Hutnicza im. Stanisława Staszica Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Katedra Automatyki Autoreferat rozprawy doktorskiej Problemy optymalizacji układów napędowych

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA AUTOMATYKI. Robot do pokrycia powierzchni terenu

WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA AUTOMATYKI. Robot do pokrycia powierzchni terenu WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA AUTOMATYKI Robot do pokrycia powierzchni terenu Zadania robota Zadanie całkowitego pokrycia powierzchni na podstawie danych sensorycznych Zadanie unikania przeszkód

Bardziej szczegółowo

Algorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki

Algorytmy genetyczne. Dariusz Banasiak. Katedra Informatyki Technicznej Wydział Elektroniki Dariusz Banasiak Katedra Informatyki Technicznej Wydział Elektroniki Obliczenia ewolucyjne (EC evolutionary computing) lub algorytmy ewolucyjne (EA evolutionary algorithms) to ogólne określenia używane

Bardziej szczegółowo

Automatyka i robotyka

Automatyka i robotyka Automatyka i robotyka Wykład 8 - Regulator PID Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 29 Plan wykładu regulator PID 2 z 29 Kompensator wyprzedzająco-opóźniający

Bardziej szczegółowo

Podstawy Automatyki. Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID Instytut Automatyki i Robotyki Warszawa, 2015 Jakość układu regulacji Oprócz wymogu stabilności asymptotycznej, układom regulacji stawiane

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 206/207

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Podstawy Automatyki Badanie i synteza kaskadowego adaptacyjnego układu regulacji do sterowania obiektu o

Bardziej szczegółowo

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy Automatyka i robotyka ETP2005L Laboratorium semestr zimowy 2017-2018 Liniowe człony automatyki x(t) wymuszenie CZŁON (element) OBIEKT AUTOMATYKI y(t) odpowiedź Modelowanie matematyczne obiektów automatyki

Bardziej szczegółowo

Sterowanie napędów maszyn i robotów

Sterowanie napędów maszyn i robotów Wykład 7b - Układy wieloobwodowe ze sprzężeniem od zmiennych stanu Instytut Automatyki i Robotyki Warszawa, 2014 Układy wieloobwodowe ze sprzężeniem od zmiennych stanu Zadanie przestawiania Postać modalna

Bardziej szczegółowo

Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan

Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan Wprowadzenie do technik regulacji automatycznej prof nzw. dr hab. inż. Krzysztof Patan Czym jest AUTOMATYKA? Automatyka to dziedzina nauki i techniki zajmująca się teorią i praktycznym zastosowaniem urządzeń

Bardziej szczegółowo

Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych

Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych Mechatronika i inteligentne systemy produkcyjne Modelowanie systemów mechatronicznych Platformy przetwarzania danych 1 Sterowanie procesem oparte na jego modelu u 1 (t) System rzeczywisty x(t) y(t) Tworzenie

Bardziej szczegółowo

Algorytmy ewolucyjne. Łukasz Przybyłek Studenckie Koło Naukowe BRAINS

Algorytmy ewolucyjne. Łukasz Przybyłek Studenckie Koło Naukowe BRAINS Algorytmy ewolucyjne Łukasz Przybyłek Studenckie Koło Naukowe BRAINS 1 Wprowadzenie Algorytmy ewolucyjne ogólne algorytmy optymalizacji operujące na populacji rozwiązań, inspirowane biologicznymi zjawiskami,

Bardziej szczegółowo

METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne

METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne dr hab. inż. Andrzej Obuchowicz, prof. UZ Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski A. Obuchowicz: MSI - algorytmy ewolucyjne

Bardziej szczegółowo

Obiekt. Obiekt sterowania obiekt, który realizuje proces (zaplanowany).

Obiekt. Obiekt sterowania obiekt, który realizuje proces (zaplanowany). SWB - Systemy wbudowane w układach sterowania - wykład 13 asz 1 Obiekt sterowania Wejście Obiekt Wyjście Obiekt sterowania obiekt, który realizuje proces (zaplanowany). Fizyczny obiekt (proces, urządzenie)

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - podstawy matematyczne Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje, wiele

Bardziej szczegółowo

Tematyka egzaminu z Podstaw sterowania

Tematyka egzaminu z Podstaw sterowania Tematyka egzaminu z Podstaw sterowania Rafał Trójniak 6 września 2009 Spis treści 1 Rozwiązane tematy 1 1.1 Napisać równanie różniczkowe dla zbiornika z odpływem grawitacyjnym...............................

Bardziej szczegółowo

WAE Jarosław Arabas Adaptacja i samoczynna adaptacja parametrów AE Algorytm CMA-ES

WAE Jarosław Arabas Adaptacja i samoczynna adaptacja parametrów AE Algorytm CMA-ES WAE Jarosław Arabas Adaptacja i samoczynna adaptacja parametrów AE Algorytm CMA-ES Dynamika mutacyjnego AE Mutacja gaussowska σ=0.1 Wszystkie wygenerowane punkty Wartość średnia jakości punktów populacji

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 13. PROBLEMY OPTYMALIZACYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska PROBLEMY OPTYMALIZACYJNE Optymalizacja poszukiwanie

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018

Bardziej szczegółowo

Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek

Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek Problem zapożyczania kanałów z wykorzystaniem narzędzi optymalizacji Wprowadzenie Rozwiązanie problemu przydziału częstotliwości prowadzi do stanu, w którym każdej stacji bazowej przydzielono żądaną liczbę

Bardziej szczegółowo

Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ

Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ Projektowanie układów regulacji w dziedzinie częstotliwości dr hab. inż. Krzysztof Patan, prof. PWSZ Wprowadzenie Metody projektowania w dziedzinie częstotliwości mają wiele zalet: stabilność i wymagania

Bardziej szczegółowo

Podstawy Automatyki. Wykład 9 - Dobór regulatorów. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 9 - Dobór regulatorów. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 9 - Dobór regulatorów. Instytut Automatyki i Robotyki Warszawa, 2017 Dobór regulatorów Podstawową przesłanką przy wyborze rodzaju regulatora są właściwości dynamiczne obiektu regulacji. Rysunek:

Bardziej szczegółowo

Wielokryterialne wspomaganie decyzji Redakcja naukowa Tadeusz Trzaskalik

Wielokryterialne wspomaganie decyzji Redakcja naukowa Tadeusz Trzaskalik Wielokryterialne wspomaganie decyzji Redakcja naukowa Tadeusz Trzaskalik W książce autorzy przedstawiają dyskretne problemy wielokryterialne, w których liczba rozpatrywanych przez decydenta wariantów decyzyjnych

Bardziej szczegółowo

Sterowanie napędów maszyn i robotów

Sterowanie napędów maszyn i robotów Wykład 5 - Identyfikacja Instytut Automatyki i Robotyki (IAiR), Politechnika Warszawska Warszawa, 2015 Koncepcje estymacji modelu Standardowe drogi poszukiwania modeli parametrycznych M1: Analityczne określenie

Bardziej szczegółowo

Sposoby modelowania układów dynamicznych. Pytania

Sposoby modelowania układów dynamicznych. Pytania Sposoby modelowania układów dynamicznych Co to jest model dynamiczny? PAScz4 Modelowanie, analiza i synteza układów automatyki samochodowej równania różniczkowe, różnicowe, równania równowagi sił, momentów,

Bardziej szczegółowo

Algorytmy ewolucyjne optymalizacji wielokryterialnej sterowane preferencjami decydenta

Algorytmy ewolucyjne optymalizacji wielokryterialnej sterowane preferencjami decydenta Algorytmy ewolucyjne optymalizacji wielokryterialnej sterowane preferencjami decydenta Dr Janusz Miroforidis MGI Metro Group Information Technology Polska Sp. z o.o. listopad 2010 Wprowadzenie Plan prezentacji

Bardziej szczegółowo

Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka

Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka Modelowanie jako sposób opisu rzeczywistości Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka 2015 Wprowadzenie: Modelowanie i symulacja PROBLEM: Podstawowy problem z opisem otaczającej

Bardziej szczegółowo

Algorytmy ewolucyjne

Algorytmy ewolucyjne Algorytmy ewolucyjne Dr inż. Michał Bereta p. 144 / 10, Instytut Modelowania Komputerowego mbereta@pk.edu.pl beretam@torus.uck.pk.edu.pl www.michalbereta.pl Problemy świata rzeczywistego często wymagają

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Automatyka zastosowania, metody i narzędzia, perspektywy Synteza systemów sterowania z wykorzystaniem regulatorów

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 2017/2018

Bardziej szczegółowo

Politechnika Warszawska Instytut Automatyki i Robotyki. Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI

Politechnika Warszawska Instytut Automatyki i Robotyki. Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI Politechnika Warszawska Instytut Automatyki i Robotyki Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI 1. Dobór rodzaju i nastaw regulatorów PID Rodzaje regulatorów 2 Regulatory dwustawne (2P)

Bardziej szczegółowo

Regulator liniowo kwadratowy na przykładzie wahadła odwróconego

Regulator liniowo kwadratowy na przykładzie wahadła odwróconego Regulator liniowo kwadratowy na przykładzie wahadła odwróconego kwiecień 2012 Sterowanie Teoria Przykład wahadła na wózku Dany jest system dynamiczny postaci: ẋ = f (x, u) (1) y = h(x) (2) Naszym zadaniem

Bardziej szczegółowo

Filtr Kalmana. Struktury i Algorytmy Sterowania Wykład 1-2. prof. dr hab. inż. Mieczysław A. Brdyś mgr inż. Tomasz Zubowicz

Filtr Kalmana. Struktury i Algorytmy Sterowania Wykład 1-2. prof. dr hab. inż. Mieczysław A. Brdyś mgr inż. Tomasz Zubowicz Filtr Kalmana Struktury i Algorytmy Sterowania Wykład 1-2 prof. dr hab. inż. Mieczysław A. Brdyś mgr inż. Tomasz Zubowicz Politechnika Gdańska, Wydział Elektortechniki i Automatyki 2013-10-09, Gdańsk Założenia

Bardziej szczegółowo

Elektrotechnika II stopień ogólnoakademicki. stacjonarne. przedmiot specjalnościowy. obowiązkowy polski semestr II semestr letni. tak. Laborat. 30 g.

Elektrotechnika II stopień ogólnoakademicki. stacjonarne. przedmiot specjalnościowy. obowiązkowy polski semestr II semestr letni. tak. Laborat. 30 g. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Metody estymacji parametrów i sygnałów Estimation methods of parameters

Bardziej szczegółowo

1. Regulatory ciągłe liniowe.

1. Regulatory ciągłe liniowe. Laboratorium Podstaw Inżynierii Sterowania Ćwiczenie: Regulacja ciągła PID 1. Regulatory ciągłe liniowe. Zadaniem regulatora w układzie regulacji automatycznej jest wytworzenie sygnału sterującego u(t),

Bardziej szczegółowo

Prowadzący(a) Grupa Zespół data ćwiczenia Lp. Nazwisko i imię Ocena LABORATORIUM 4. PODSTAW 5. AUTOMATYKI

Prowadzący(a) Grupa Zespół data ćwiczenia Lp. Nazwisko i imię Ocena LABORATORIUM 4. PODSTAW 5. AUTOMATYKI Instytut Automatyki i Robotyki Prowadzący(a) Grupa Zespół data ćwiczenia Lp. Nazwisko i imię Ocena 1. 2. 3. LABORATORIUM 4. PODSTAW 5. AUTOMATYKI Ćwiczenie PA7b 1 Badanie jednoobwodowego układu regulacji

Bardziej szczegółowo

ALGORYTMY EWOLUCYJNE W ZASTOSOWANIU DO ROZWIĄZYWANIA WYBRANYCH ZADAŃ OPTYMALIZACJI1

ALGORYTMY EWOLUCYJNE W ZASTOSOWANIU DO ROZWIĄZYWANIA WYBRANYCH ZADAŃ OPTYMALIZACJI1 Acta Sci. Pol., Geodesia et Descriptio Terrarum 12 (2) 2013, 21-28 ISSN 1644 0668 (print) ISSN 2083 8662 (on-line) ALGORYTMY EWOLUCYJNE W ZASTOSOWANIU DO ROZWIĄZYWANIA WYBRANYCH ZADAŃ OPTYMALIZACJI1 Józef

Bardziej szczegółowo

11. Dobór rodzaju, algorytmu i nastaw regulatora

11. Dobór rodzaju, algorytmu i nastaw regulatora 205 11. Dobór rodzaju, algorytmu i nastaw regulatora 11.1 Wybór rodzaju i algorytmu regulatora Poprawny wybór rodzaju regulatora i jego algorytmu uzależniony jest od znajomości (choćby przybliżonej) właściwości

Bardziej szczegółowo

Algorytm genetyczny (genetic algorithm)-

Algorytm genetyczny (genetic algorithm)- Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 207/208

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki http://www.ipbm.simr.pw.edu.pl/ Teoria maszyn i podstawy automatyki semestr zimowy 207/208

Bardziej szczegółowo

Metody Rozmyte i Algorytmy Ewolucyjne

Metody Rozmyte i Algorytmy Ewolucyjne mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb

Bardziej szczegółowo

6. Zagadnienie parkowania ciężarówki.

6. Zagadnienie parkowania ciężarówki. 6. Zagadnienie parkowania ciężarówki. Sterowniki rozmyte Aby móc sterować przebiegiem pewnych procesów lub też pracą urządzeń niezbędne jest stworzenie odpowiedniego modelu, na podstawie którego można

Bardziej szczegółowo

TOZ -Techniki optymalizacji w zarządzaniu

TOZ -Techniki optymalizacji w zarządzaniu TOZ -Techniki optymalizacji w zarządzaniu Wykład dla studentów II roku studiów II stopnia na kierunku Zarządzanie Semestr zimowy 2009/2010 Wykładowca: prof. dr hab. inż. Michał Inkielman Wykład 2 Optymalizacja

Bardziej szczegółowo

Sterowanie napędów maszyn i robotów

Sterowanie napędów maszyn i robotów Wykład 8 - zaawansowane układy sterowania Instytut Automatyki i Robotyki Warszawa, 2014 adaptacyjne (ang. adaptive control) z dostosowaniem się do aktualnych warunków pracy napędu - koncepcje: ze wstępnie

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo

Obliczenia ewolucyjne - plan wykładu

Obliczenia ewolucyjne - plan wykładu Obliczenia ewolucyjne - plan wykładu Wprowadzenie Algorytmy genetyczne Programowanie genetyczne Programowanie ewolucyjne Strategie ewolucyjne Inne modele obliczeń ewolucyjnych Podsumowanie Ewolucja Ewolucja

Bardziej szczegółowo

Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009

Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009 Algorytmy genetyczne Paweł Cieśla 8 stycznia 2009 Genetyka - nauka o dziedziczeniu cech pomiędzy pokoleniami. Geny są czynnikami, które decydują o wyglądzie, zachowaniu, rozmnażaniu każdego żywego organizmu.

Bardziej szczegółowo

Agnieszka Nowak Brzezińska

Agnieszka Nowak Brzezińska Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia

Bardziej szczegółowo

E2_PA Podstawy automatyki Bases of automatic. Elektrotechnika II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny)

E2_PA Podstawy automatyki Bases of automatic. Elektrotechnika II stopień (I stopień / II stopień) Ogólnoakademicki (ogólno akademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. P KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

Spis treści 377 379 WSTĘP... 9

Spis treści 377 379 WSTĘP... 9 Spis treści 377 379 Spis treści WSTĘP... 9 ZADANIE OPTYMALIZACJI... 9 PRZYKŁAD 1... 9 Założenia... 10 Model matematyczny zadania... 10 PRZYKŁAD 2... 10 PRZYKŁAD 3... 11 OPTYMALIZACJA A POLIOPTYMALIZACJA...

Bardziej szczegółowo

1. Podstawowe pojęcia

1. Podstawowe pojęcia 1. Podstawowe pojęcia Sterowanie optymalne obiektu polega na znajdowaniu najkorzystniejszej decyzji dotyczącej zamierzonego wpływu na obiekt przy zadanych ograniczeniach. Niech dany jest obiekt opisany

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Automatyka zastosowania, metody i narzędzia, perspektywy Synteza systemów sterowania z wykorzystaniem regulatorów

Bardziej szczegółowo

Układ regulacji ze sprzężeniem zwrotnym: - układ regulacji kaskadowej - układ regulacji stosunku

Układ regulacji ze sprzężeniem zwrotnym: - układ regulacji kaskadowej - układ regulacji stosunku Układ regulacji ze sprzężeniem zwrotnym: - układ regulacji kaskadowej - układ regulacji stosunku Przemysłowe Układy Sterowania PID Opracowanie: dr inż. Tomasz Rutkowski Katedra Inżynierii Systemów Sterowania

Bardziej szczegółowo

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia VI Dobór nastaw regulatora typu PID metodą Zieglera-Nicholsa.

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia VI Dobór nastaw regulatora typu PID metodą Zieglera-Nicholsa. Automatyka i pomiary wielkości fizykochemicznych Instrukcja do ćwiczenia VI Dobór nastaw regulatora typu PID metodą Zieglera-Nicholsa. 1. Wprowadzenie Regulator PID (regulator proporcjonalno-całkująco-różniczkujący,

Bardziej szczegółowo

Kompensacja wyprzedzająca i opóźniająca fazę. dr hab. inż. Krzysztof Patan, prof. PWSZ

Kompensacja wyprzedzająca i opóźniająca fazę. dr hab. inż. Krzysztof Patan, prof. PWSZ Kompensacja wyprzedzająca i opóźniająca fazę dr hab. inż. Krzysztof Patan, prof. PWSZ Kształtowanie charakterystyki częstotliwościowej Kształtujemy charakterystykę układu otwartego aby uzyskać: pożądane

Bardziej szczegółowo

PAiTM. materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż.

PAiTM. materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. PAiTM materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż. Sebastian Korczak Poniższe materiały tylko dla studentów uczęszczających na zajęcia.

Bardziej szczegółowo

Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa

Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa Jacek Skorupski pok. 251 tel. 234-7339 jsk@wt.pw.edu.pl http://skorupski.waw.pl/mmt prezentacje ogłoszenia konsultacje: poniedziałek 16 15-18, sobota zjazdowa 9 40-10 25 Udział w zajęciach Kontrola wyników

Bardziej szczegółowo

Automatyka i sterowanie w gazownictwie. Regulatory w układach regulacji

Automatyka i sterowanie w gazownictwie. Regulatory w układach regulacji Automatyka i sterowanie w gazownictwie Regulatory w układach regulacji Wykładowca : dr inż. Iwona Oprzędkiewicz Nazwa wydziału: WIMiR Nazwa katedry: Katedra Automatyzacji Procesów AGH Ogólne zasady projektowania

Bardziej szczegółowo

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji

Bardziej szczegółowo

Algorytmy metaheurystyczne podsumowanie

Algorytmy metaheurystyczne podsumowanie dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem

Bardziej szczegółowo

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM Aademia GórniczoHutnicza im. St. Staszica w Kraowie Wydział Inżynierii Mechanicznej i Robotyi Katedra Automatyzacji Procesów Podstawy Automatyi Zbiór zadań dla studentów II rou AiR oraz MiBM Tomasz Łuomsi

Bardziej szczegółowo

AUTOMATYZACJA PROCESÓW CIĄGŁYCH I WSADOWYCH

AUTOMATYZACJA PROCESÓW CIĄGŁYCH I WSADOWYCH AUTOMATYZACJA PROCESÓW CIĄGŁYCH I WSADOWYCH kierunek Automatyka i Robotyka Studia II stopnia specjalności Automatyka Dr inż. Zbigniew Ogonowski Instytut Automatyki, Politechnika Śląska Plan wykładu pojęcia

Bardziej szczegółowo

Wyznaczanie optymalnej trasy problem komiwojażera

Wyznaczanie optymalnej trasy problem komiwojażera Wyznaczanie optymalnej trasy problem komiwojażera Optymalizacja w podejmowaniu decyzji Opracowała: mgr inż. Natalia Malinowska Wrocław, dn. 28.03.2017 Wydział Elektroniki Politechnika Wrocławska Plan prezentacji

Bardziej szczegółowo

Sterowanie optymalne

Sterowanie optymalne Sterowanie optymalne Sterowanie Procesami Ciągłymi 2017 Optymalizacja statyczna funkcji Funkcja celu/kryterialna/kosztów Ograniczenie Q(x) min x x = arg min Q(x) x x X, gdzie X zbiór rozwiązań dopuszczalnych

Bardziej szczegółowo

Sterowanie układem zawieszenia magnetycznego

Sterowanie układem zawieszenia magnetycznego Politechnika Śląska w Gliwicach Wydział: Automatyki, Elektroniki i Informatyki Kierunek: Automatyka i Robotyka Specjalność: Komputerowe systemy sterowania Sterowanie układem zawieszenia magnetycznego Maciej

Bardziej szczegółowo

Algorytmy metaheurystyczne Wykład 11. Piotr Syga

Algorytmy metaheurystyczne Wykład 11. Piotr Syga Algorytmy metaheurystyczne Wykład 11 Piotr Syga 22.05.2017 Drzewa decyzyjne Idea Cel Na podstawie przesłanek (typowo zbiory rozmyte) oraz zbioru wartości w danych testowych, w oparciu o wybrane miary,

Bardziej szczegółowo

Regulator PID w sterownikach programowalnych GE Fanuc

Regulator PID w sterownikach programowalnych GE Fanuc Regulator PID w sterownikach programowalnych GE Fanuc Wykład w ramach przedmiotu: Sterowniki programowalne Opracował na podstawie dokumentacji GE Fanuc dr inż. Jarosław Tarnawski Cel wykładu Przypomnienie

Bardziej szczegółowo

Wielokryteriowa optymalizacja liniowa

Wielokryteriowa optymalizacja liniowa Wielokryteriowa optymalizacja liniowa 1. Przy decyzjach złożonych kierujemy się zwykle więcej niż jednym kryterium. Postępowanie w takich sytuacjach nie jest jednoznaczne. Pojawiło się wiele sposobów dochodzenia

Bardziej szczegółowo

Wykład nr 1 Podstawowe pojęcia automatyki

Wykład nr 1 Podstawowe pojęcia automatyki Wykład nr 1 Podstawowe pojęcia automatyki Podstawowe definicje i określenia wykorzystywane w automatyce Omówienie podstawowych elementów w układzie automatycznej regulacji Omówienie podstawowych działów

Bardziej szczegółowo

ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ

ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ Zalety: nie wprowadzają żadnych ograniczeń na sformułowanie problemu optymalizacyjnego. Funkcja celu może być wielowartościowa i nieciągła, obszar

Bardziej szczegółowo

Tabela odniesień efektów kierunkowych do efektów obszarowych

Tabela odniesień efektów kierunkowych do efektów obszarowych Umiejscowienie kierunku w obszarze kształcenia Kierunek studiów automatyka i robotyka należy do obszaru kształcenia w zakresie nauk technicznych i jest powiązany z takimi kierunkami studiów jak: mechanika

Bardziej szczegółowo

Teoria sterowania Control theory. Elektrotechnika I stopień ogólnoakademicki. niestacjonarne. przedmiot kierunkowy

Teoria sterowania Control theory. Elektrotechnika I stopień ogólnoakademicki. niestacjonarne. przedmiot kierunkowy KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Teoria sterowania Control theory A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

Automatyka i Regulacja Automatyczna SEIwE- sem.4

Automatyka i Regulacja Automatyczna SEIwE- sem.4 Automatyka i Regulacja Automatyczna SEIwE- sem.4 Wykład 30/24h ( Lab.15/12h ) dr inż. Jan Deskur tel. 061665-2735(PP), 061 8776135 (dom) Jan.Deskur@put.poznan.pl (www.put.poznan.pl\~jan.deskur) Zakład

Bardziej szczegółowo

Diagnostyka procesów przemysłowych Kod przedmiotu

Diagnostyka procesów przemysłowych Kod przedmiotu Diagnostyka procesów przemysłowych - opis przedmiotu Informacje ogólne Nazwa przedmiotu Diagnostyka procesów przemysłowych Kod przedmiotu 06.0-WE-AiRP-DPP Wydział Kierunek Wydział Informatyki, Elektrotechniki

Bardziej szczegółowo

Pattern Classification

Pattern Classification Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors

Bardziej szczegółowo

Podstawy inżynierii sterowania Ćwiczenia laboratoryjne

Podstawy inżynierii sterowania Ćwiczenia laboratoryjne Podstawy inżynierii sterowania Ćwiczenia laboratoryjne Laboratorium nr 4: Układ sterowania silnika obcowzbudnego prądu stałego z regulatorem PID 1. Wprowadzenie Przedmiotem rozważań jest układ automatycznej

Bardziej szczegółowo

Optymalizacja. Wybrane algorytmy

Optymalizacja. Wybrane algorytmy dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Ćwiczenia lista zadań nr 3 autorzy: A. Gonczarek, J.M. Tomczak Zbiory i funkcje wypukłe Zad. 1 Pokazać, że następujące zbiory są wypukłe: a) płaszczyzna S = {x

Bardziej szczegółowo

Zagadnienia egzaminacyjne AUTOMATYKA I ROBOTYKA. Stacjonarne I-go stopnia TYP STUDIÓW STOPIEŃ STUDIÓW SPECJALNOŚĆ

Zagadnienia egzaminacyjne AUTOMATYKA I ROBOTYKA. Stacjonarne I-go stopnia TYP STUDIÓW STOPIEŃ STUDIÓW SPECJALNOŚĆ (ARK) Komputerowe sieci sterowania 1.Badania symulacyjne modeli obiektów 2.Pomiary i akwizycja danych pomiarowych 3.Protokoły transmisji danych w systemach automatyki 4.Regulator PID struktury, parametry,

Bardziej szczegółowo

Modelowanie, sterowanie i symulacja manipulatora o odkształcalnych ramionach. Krzysztof Żurek Gdańsk,

Modelowanie, sterowanie i symulacja manipulatora o odkształcalnych ramionach. Krzysztof Żurek Gdańsk, Modelowanie, sterowanie i symulacja manipulatora o odkształcalnych ramionach Krzysztof Żurek Gdańsk, 2015-06-10 Plan Prezentacji 1. Manipulatory. 2. Wprowadzenie do Metody Elementów Skończonych (MES).

Bardziej szczegółowo

Laboratorium z podstaw automatyki

Laboratorium z podstaw automatyki Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Dobór parametrów układu regulacji, Identyfikacja parametrów obiektów dynamicznych Kierunek studiów: Transport, Stacjonarne

Bardziej szczegółowo

SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska.

SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW. Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska. SYSTEMY UCZĄCE SIĘ WYKŁAD 10. PRZEKSZTAŁCANIE ATRYBUTÓW Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska INFORMACJE WSTĘPNE Hipotezy do uczenia się lub tworzenia

Bardziej szczegółowo

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe

Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Inteligentne systemy decyzyjne: Uczenie maszynowe sztuczne sieci neuronowe Trening jednokierunkowych sieci neuronowych wykład 2. dr inż. PawełŻwan Katedra Systemów Multimedialnych Politechnika Gdańska

Bardziej szczegółowo

Tomasz Pawlak. Zastosowania Metod Inteligencji Obliczeniowej

Tomasz Pawlak. Zastosowania Metod Inteligencji Obliczeniowej 1 Zastosowania Metod Inteligencji Obliczeniowej Tomasz Pawlak 2 Plan prezentacji Sprawy organizacyjne Wprowadzenie do metod inteligencji obliczeniowej Studium wybranych przypadków zastosowań IO 3 Dane

Bardziej szczegółowo

Zespół Placówek Kształcenia Zawodowego w Nowym Sączu

Zespół Placówek Kształcenia Zawodowego w Nowym Sączu Zespół Placówek Kształcenia Zawodowego w Nowym Sączu Laboratorium układów automatyki Temat ćwiczenia: Optymalizacja regulatora na podstawie krytycznego nastawienia regulatora wg Zieglera i Nicholsa. Symbol

Bardziej szczegółowo

Podstawy Automatyzacji Okrętu

Podstawy Automatyzacji Okrętu Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa St. inż. I stopnia, sem. IV, specjalności okrętowe Podstawy Automatyzacji Okrętu 1 WPROWADZENIE M. H. Ghaemi Luty 2018 Podstawy automatyzacji

Bardziej szczegółowo

Regulator PID w sterownikach programowalnych GE Fanuc

Regulator PID w sterownikach programowalnych GE Fanuc Regulator PID w sterownikach programowalnych GE Fanuc Wykład w ramach przedmiotu: Sterowniki programowalne Opracował na podstawie dokumentacji GE Fanuc dr inż. Jarosław Tarnawski Cel wykładu Przypomnienie

Bardziej szczegółowo