Algorytmy ewolucyjne optymalizacji wielokryterialnej sterowane preferencjami decydenta

Wielkość: px
Rozpocząć pokaz od strony:

Download "Algorytmy ewolucyjne optymalizacji wielokryterialnej sterowane preferencjami decydenta"

Transkrypt

1 Algorytmy ewolucyjne optymalizacji wielokryterialnej sterowane preferencjami decydenta Dr Janusz Miroforidis MGI Metro Group Information Technology Polska Sp. z o.o. listopad 2010

2 Wprowadzenie Plan prezentacji Wielokryterialne Podejmowanie Decyzji Oszacowania parametryczne Wyznaczanie wariantów efektywnych Zmodyfikowane oszacowania parametryczne Algorytmy ewolucyjne dla wyznaczania oszacowań parametrycznych Przykłady obliczeń Zastosowanie metody w WPD Podsumowanie 2

3 Wprowadzenie Problemy decyzyjne w działalności człowieka Zarządzanie zasobami leśnymi i wodnymi. Planowanie zagospodarowania terenów. Zagadnienia logistyczne i transportowe. Konstruowanie maszyn i urządzeń. Planowanie terapii nowotworowej. Handel i marketing. 3

4 Wielokryterialne Podejmowanie Decyzji Wielokryterialne zadanie decyzyjne Przy ustalonym zadaniu optymalizacji wielokryterialnej: n vmax f ( x), xx R, f ( x) f ( x), f ( x),, f ( x), k gdzie vmax jest operatorem wyznaczania zbioru wariantów efektywnych, decydent ma wskazać wariant najbardziej preferowany w tym zbiorze. 4

5 Wielokryterialne Podejmowanie Decyzji Metody interaktywne WPD Istotą tych metod jest interaktywny, sterowany przez decydenta przegląd zbioru ocen efektywnych. f 2 (x) f(e(x 0 )) - zbiór ocen efektywnych f(x 0 ) Preferencje określane np. przez współczynniki wagowe, punkty referencyjne. f 1 (x) 5

6 f 2 (x) Skalaryzacja zadania optymalizacji f(x 0 ) wielokryterialnej Wyznaczanie ocen (słabo) efektywnych z wykorzystaniem ważonej metryki Czebyszewa. * y y t y * Wielokryterialne Podejmowanie Decyzji x y f x * ( ) arg min max i i i( ), xx i gdzie * i y f ( X ) i i i 0 0 y max y e, e 0, i 1,, k, 1, 0, 1,,. i i i i k f 1 (x) Zalety takiej skalaryzacji: warunki konieczne i dostateczne istnienia ocen (słabo) efektywnych bez dodatkowych założeń o cechach zbioru f(x 0 ) (np. wypukłość); nie wprowadza dodatkowych nieliniowości do zadania optymalizacji. 6

7 Wielokryterialne Podejmowanie Decyzji Określanie preferencji decydenta za pomocą kierunków ustępstw f 2 (x) y * f(x 0 ) * y y t f ( x( )) f ( ) τ f 1 (x) Wektor τ określa proporcje ustępstw przy odejściu od punktu y *. 7

8 Oszacowania parametryczne Oszacowania parametryczne współrzędnych ocen elementy zbioru f(s); S szkielet, podzbiór E(X 0 ) f 2 (x) U 2 y * ocena niejawna zadana przez wektor τ f(τ) L (, S) f ( ) U (, S), i 1,..., k. i i i L 2 L 1 U 1 półprosta kompromisu zadana przez τ f 1 (x) Koszt wyznaczenia oszacowań L(τ,S) i U(τ,S) zaniedbywalnie mały formuły dane w postaci analitycznej. Wyznaczenie S wymaga dokładnych obliczeń optymalizacyjnych. 8

9 Oszacowania parametryczne Dynamika oszacowań parametrycznych oceny wariantów efektywnych dodanych do szkieletu S f 2 (x) y * f(τ) Uzupełnianie szkieletu o kolejne warianty efektywne nie pogarsza oszacowań, może zaś je polepszać. f 1 (x) 9

10 Wyznaczanie wariantów efektywnych Algorytmy ewolucyjne dla wyznaczania aproksymacji zbioru wariantów efektywnych Algorytmy ewolucyjnej optymalizacji wielokryterialnej: NSGA-II, SPEA-2. f 2 (x) iteracja imax - 2 iteracja imax - 1 iteracja imax f(x 0 ) Zastosowanie w metodach a posteriori WPD. f 1 (x) 10

11 Wyznaczanie wariantów efektywnych Algorytmy ewolucyjne dla skalarnych zadań optymalizacji Algorytmy GENOCOP II i III. f 2 (x) * y y t y * iteracja imax f(x 0 ) Zastosowanie w metodach a priori i metodach interaktywnych WPD. f 1 (x) 11

12 Zmodyfikowane oszacowania parametryczne Oszacowania parametryczne a algorytmy ewolucyjne obrazy elementów szkieletu dolnego S D wyznaczane przez istniejące algorytmy ewolucyjne (NSGA-II, SPEA-2) obrazy elementów szkieletu górnego S G, wymagane dla poprawności oszacowań od góry f 2 (x) f(τ) y * Zmodyfikowane oszacowania parametryczne: f(x 0 ) L (, S ) f ( ) U (, S ), i 1,..., k. i D i i G Formuły L i (τ,s D ) i U i (τ,s G ) jak dla oszacowań ze szkieletem S. f 1 (x) 12

13 Zmodyfikowane oszacowania parametryczne Szkielet dolny S D S,, D X0 SD x S x ' S x' x. D D 13

14 Zmodyfikowane oszacowania parametryczne Szkielet górny S G nad y ( S ) min f ( x), i 1,..., k. i D xs i n S R \ X, S, G D 0 G x x xs x' S G x S x ' E ( X ) x' x, G nad f ( x) y ( S ), i 1,..., k. xs i i D G G 0 ', 14

15 Zmodyfikowane oszacowania parametryczne Aproksymacja górna A G n A R \ X, A, G 0 G nad y ( S ) min f ( x), i 1,..., k. i D xs i D xa x' A x x G x A x ' S x' x, G G D ', Nie mamy zbioru E(X 0 )! 3. nad f ( x) y ( S ), i 1,..., k. xa i i D G A G jest aproksymacją zbioru S G. 15

16 Zmodyfikowane oszacowania parametryczne Wykorzystanie par (S D, A G ) do wyznaczania wartości oszacowań Oszacowania od góry wykorzystanie aproksymacji górnej U i (, A ) G zamiast U (, S ), i 1,..., k. i G Miary dokładności oszacowań Bezwzględna dokładność oszacowania oceny f(τ): (, S, A ) max U (, A ) L (, S ). D G i G i D 1 i k Względna dokładność oszacowania oceny f(τ): Ui (, AG ) Li (, S ) D (, SD, AG) max, 1 i k max min fi ( SD) fi ( SD) gdzie f max ( S ) max f ( x), i D i xs D f min ( S ) min f ( x). i D i xs D 16

17 Zmodyfikowane oszacowania parametryczne Aproksymacja górna A G i zjawisko błędnych oszacowań od góry f ( ) U(, A ), dla pewnego i {1,2,, k}. i G f2 U2 A G ( ) (, ) f 2 (x) f(τ) y * Ograniczanie zjawiska przez wyznaczanie lepszych S D lub stosowanie operacji filtracji na A G. f(x 0 ) f 1 (x) 17

18 Algorytmy ewolucyjne dla wyznaczania oszacowań parametrycznych Przestrzeń decyzyjna dla algorytmów ewolucyjnych x 2 X X X DEC 0 DEC X 0 Funkcje kryterialne f i określone na zbiorze X DEC. x 1 18

19 Algorytmy ewolucyjne dla wyznaczania oszacowań parametrycznych Wyznaczanie par (S D, A G ) algorytm PDAE Jednoczesne wyznaczanie par (S D, A G ) poprzez eksplorację zbioru dopuszczalnego i jego dopełnienia. Kryterium zatrzymania określone maksymalną liczbą iteracji. Eksploracja przestrzeni poszukiwań realizowana operatorem mutacji o zasięgu będącym malejącą funkcją numeru iteracji. Algorytm PDAE w każdej iteracji mutacji podlega losowo wybrany element bieżącego szkieletu dolnego S D. Możliwe modyfikacje schematu mutacji. 19

20 Algorytmy ewolucyjne dla wyznaczania oszacowań parametrycznych Lokalne poprawianie par (S D, A G ) algorytm EPO Próbuje wyznaczyć taką parę (S D, A G ), która zapewnia założoną dokładność oszacowania oceny f(τ). Eksploruje przestrzeń decyzji w otoczeniu (i tylko w otoczeniu) elementów determinujących wartość oszacowania oceny f(τ) odpowiednio od dołu i od góry. Zasięg mutacji jest zależny od osiągniętej dokładności oszacowania oceny f(τ) na danym etapie obliczeń. 20

21 Przykłady obliczeń Algorytmy PDAE i EPO Testowe zadanie dwukryterialne (Kita) Wynik działania algorytmu PDAE, wyznaczenie wyjściowego szkieletu dolnego i wyjściowej aproksymacji górnej. Wynik działania algorytmu EPO dla ε z =0,01. 21

22 Przykłady obliczeń Algorytm PDAE i jego modyfikacje Ograniczanie losowości w algorytmie PDAE Wynik działania algorytmu PDAE, w którym mutacji podlega każdy element szkieletu dolnego. Wynik działania algorytmu PDAE, w którym mutacji podlega element szkieletu dolnego, najbardziej odległy od pozostałych. 22

23 Przykłady obliczeń Trudne zadania optymalizacji wielokryterialnej Zadanie testowe OKA2 (Okabe) oceny efektywne PDAE Algorytm NSGA-II wyznacza rozwiązania o podobnym rozkładzie jak algorytm PDAE! 23

24 Zastosowanie metody w WPD Schemat metody rozwiązania wielokryterialnego zadania decyzyjnego START Sformułowanie zadania optymalizacji wielokryterialnej dla zadania decyzyjnego Wybór najlepszej pary Algorytmy PDAE i EPO Algorytm GENOCOP III Faza ujawniania preferencji (τ) Faza identyfikacji rozwiązania (x(τ)) Repozytorium par (S D, A G ) STOP Wybór populacji wyjściowej dla algorytmu GENOCOP III 24

25 Zasoby Zastosowanie metody w WPD Wskaźniki Model zarządzania sklepem wielkopowierzchniowym Decydent Moduł Wspomagania Decyzyjnego JD 1 JD 2 JD 3 JD n SWD 1 SWD 2 SWD 3 SWD n 25

26 Model sklepu wielkopowierzchniowego Model sklepu z trzema jednostkami decyzyjnymi: Zastosowanie metody w WPD Marketing (SWD 1 ) Logistyka (SWD 2 ) Obsługa Nabywcy (SWD 3 ) 0, v q ( x ) 200 x, v /700 2 v q ( x, v ) 0,1e x, v /500 3 v q ( x, v ) 0,3e x. 1 1 Zbiór dopuszczalny: X 0 3 l1 l x x l 120, 20, l 2,3, 1 x 27. (zysk) (zadowolenie) (sprzedaż) Odwzorowanie redukujące: s v v x x x ( ) 0,2 ( ), s v v v ( ) 2 3, 2 s v ( ) v 1. 3 Ocena wariantów decyzyjnych za pomocą funkcji f 0 f ( x) s q( x), x X. 26

27 Zastosowanie metody w WPD Rozwiązanie zadania decyzyjnego Wyznaczono punkt referencyjny * y (67,22, 6,58, 911,07). Po zakończeniu hipotetycznej fazy ujawniania preferencji preferencje decydenta najpełniej opisuje wektor (5, 1, 60). Wektory oszacowań oraz względna dokładność oszacowania oceny f(τ) e L(, S D ) (50,33, 3,21, 708,40), e U(, A G ) (51,34, 3,30, 713,90), e e (, S, A ) 0,02. D G W fazie identyfikacji rozwiązania algorytm GENOCOP III rozwiązał zadanie optymalizacyjne 1 min max y f ( x),, i 1,2,3, xx wyznaczając wariant decyzyjny 0 1 i 3 * i i i i i x (37,18, 20,03, 34,22), f( x) (50,37, 3, 21, 709,00). 27

28 Podsumowanie Podsumowanie Metoda rozwiązania zadania decyzyjnego Wykorzystanie oszacowań ocen efektywnych w procesie decyzyjnym. Mechanizm kontroli dokładności oszacowań. Redukcja obliczeń w procesie decyzyjnym. Połączenie metod analitycznych z metodami heurystycznymi. Wykorzystanie zbioru niedopuszczalnego zadania optymalizacji wielokryterialnej nowatorska modyfikacja idei algorytmów ewolucyjnych. 28

29 Podsumowanie Podsumowanie Potencjalne kierunki dalszych badań Modyfikacja wiodących algorytmów heurystycznych optymalizacji wielokryterialnej dla potrzeb wyznaczania szkieletów dolnych i aproksymacji górnych. Przyjęcie i zbadanie własności alternatywnych definicji zbiorów aproksymujących zbiór wariantów efektywnych od dołu i od góry. Zbadanie skłonności decydentów do podejmowania decyzji w oparciu o oszacowania wartości współrzędnych ocen. Hybrydyzacja ze względu na trudne zadania optymalizacji wielokryterialnej. 29

30 DZIĘKUJĘ ZA UWAGĘ Janusz Miroforidis 30

31 Wzory dla oszacowań parametrycznych max{max y i ( ) L (, S) ( y i max 1 ( y )), * * y f ( S ) i i j j j i j y L } y i ( ) U (, S) * min{min yf ( S ){min li ( )( yl l ( y))}, Ui} gdzie I(τ) to podzbiór I={1,,k}, trzeba wyznaczyć. i I(τ) oraz l ( y) 31

32 Warunki osiągnięcia dowolnie bliskich aproksymacji zbioru wariantów efektywnych. Warunek 1 dla szkieletu górnego S G : xe( X ) N( x) x \ X : x x, gdzie N( x) to otoczenie x. n 0 0 Warunek 2 dla szkieletu górnego S G : xe( X ) N( x) x X : x x

MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH

MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH MATEMATYCZNE METODY WSPOMAGANIA PROCESÓW DECYZYJNYCH 1. Przedmiot nie wymaga przedmiotów poprzedzających 2. Treść przedmiotu Proces i cykl decyzyjny. Rola modelowania matematycznego w procesach decyzyjnych.

Bardziej szczegółowo

ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ

ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ ALGORYTMY EWOLUCYJNE W OPTYMALIZACJI JEDNOKRYTERIALNEJ Zalety: nie wprowadzają żadnych ograniczeń na sformułowanie problemu optymalizacyjnego. Funkcja celu może być wielowartościowa i nieciągła, obszar

Bardziej szczegółowo

Analiza wielokryterialna

Analiza wielokryterialna Analiza wielokryterialna dr hab. inż. Krzysztof Patan, prof. PWSZ Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa w Głogowie k.patan@issi.uz.zgora.pl Wprowadzenie Wielokryterialny wybór wariantu

Bardziej szczegółowo

Metody ilościowe w badaniach ekonomicznych

Metody ilościowe w badaniach ekonomicznych prof. dr hab. Tadeusz Trzaskalik dr hab. Maciej Nowak, prof. UE Wybór portfela projektów z wykorzystaniem wielokryterialnego programowania dynamicznego Metody ilościowe w badaniach ekonomicznych 19-06-2017

Bardziej szczegółowo

Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa

Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa Jacek Skorupski pok. 251 tel. 234-7339 jsk@wt.pw.edu.pl http://skorupski.waw.pl/mmt prezentacje ogłoszenia konsultacje: poniedziałek 16 15-18, sobota zjazdowa 9 40-10 25 Udział w zajęciach Kontrola wyników

Bardziej szczegółowo

Wielokryteriowa optymalizacja liniowa cz.2

Wielokryteriowa optymalizacja liniowa cz.2 Wielokryteriowa optymalizacja liniowa cz.2 Metody poszukiwania końcowych rozwiązań sprawnych: 1. Metoda satysfakcjonujących poziomów kryteriów dokonuje się wyboru jednego z kryteriów zadania wielokryterialnego

Bardziej szczegółowo

Numeryczne metody optymalizacji Optymalizacja w kierunku. informacje dodatkowe

Numeryczne metody optymalizacji Optymalizacja w kierunku. informacje dodatkowe Numeryczne metody optymalizacji Optymalizacja w kierunku informacje dodatkowe Numeryczne metody optymalizacji x F x = min x D x F(x) Problemy analityczne: 1. Nieliniowa złożona funkcja celu F i ograniczeń

Bardziej szczegółowo

Część 2. Teoretyczne i praktyczne aspekty wybranych metod analiz ilościowych w ekonomii i zarządzaniu

Część 2. Teoretyczne i praktyczne aspekty wybranych metod analiz ilościowych w ekonomii i zarządzaniu Spis treści Część 1 Analiza procedur wyznaczania i wykorzystania rozwiązań uogólnionych wybranej klasy nieliniowych modeli optymalizacyjnych we wspomaganiu procesów decyzyjnych (Jerzy Mika) Wprowadzenie.

Bardziej szczegółowo

Aproksymacja funkcji a regresja symboliczna

Aproksymacja funkcji a regresja symboliczna Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(x), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(x), zwaną funkcją aproksymującą

Bardziej szczegółowo

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505.

doc. dr Beata Pułska-Turyna Zarządzanie B506 mail: mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. doc. dr Beata Pułska-Turyna Zakład Badań Operacyjnych Zarządzanie B506 mail: turynab@wz.uw.edu.pl mgr Piotr J. Gadecki Zakład Badań Operacyjnych Zarządzania B 505. Tel.: (22)55 34 144 Mail: student@pgadecki.pl

Bardziej szczegółowo

O WYKŁADZIE TEORIA PODEJMOWANIA DECYZJI. Ignacy Kaliszewski i Dmitry Podkopaev

O WYKŁADZIE TEORIA PODEJMOWANIA DECYZJI. Ignacy Kaliszewski i Dmitry Podkopaev Zeszyty Naukowe Wydziału Informatycznych Technik Zarządzania Wyższej Szkoły Informatyki Stosowanej i Zarządzania Współczesne Problemy Zarządzania Nr 1/2009 O WYKŁADZIE TEORIA PODEJMOWANIA DECYZJI Ignacy

Bardziej szczegółowo

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania

Bardziej szczegółowo

Wielokryterialne wspomaganie decyzji Redakcja naukowa Tadeusz Trzaskalik

Wielokryterialne wspomaganie decyzji Redakcja naukowa Tadeusz Trzaskalik Wielokryterialne wspomaganie decyzji Redakcja naukowa Tadeusz Trzaskalik W książce autorzy przedstawiają dyskretne problemy wielokryterialne, w których liczba rozpatrywanych przez decydenta wariantów decyzyjnych

Bardziej szczegółowo

WYKŁAD 9 METODY ZMIENNEJ METRYKI

WYKŁAD 9 METODY ZMIENNEJ METRYKI WYKŁAD 9 METODY ZMIENNEJ METRYKI Kierunki sprzężone. Metoda Newtona Raphsona daje dobre przybliżenie najlepszego kierunku poszukiwań, lecz jest to okupione znacznym kosztem obliczeniowym zwykle postać

Bardziej szczegółowo

Algorytm genetyczny (genetic algorithm)-

Algorytm genetyczny (genetic algorithm)- Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie

Bardziej szczegółowo

Przegląd metod optymalizacji wielowymiarowej. Funkcja testowa. Funkcja testowa. Notes. Notes. Notes. Notes. Tomasz M. Gwizdałła

Przegląd metod optymalizacji wielowymiarowej. Funkcja testowa. Funkcja testowa. Notes. Notes. Notes. Notes. Tomasz M. Gwizdałła Przegląd metod optymalizacji wielowymiarowej Tomasz M. Gwizdałła 2012.12.06 Funkcja testowa Funkcją testową dla zagadnień rozpatrywanych w ramach tego wykładu będzie funkcja postaci f (x) = (x 1 1) 4 +

Bardziej szczegółowo

Wielokryterialne wspomaganie podejmowania decyzji

Wielokryterialne wspomaganie podejmowania decyzji Wielokryterialne wspomaganie podejmowania decyzji Wykład ZARZĄDZANIE I st. Maciej Wolny Wielokryterialne wspomaganie podejmowania decyzji Temat : Metoda Electre III Temat 2: Agregacja (podejście I) Maciej

Bardziej szczegółowo

Metody wielokryterialne. Tadeusz Trzaskalik

Metody wielokryterialne. Tadeusz Trzaskalik Metody wielokryterialne Tadeusz Trzaskalik 4.1. Wprowadzenie Słowa kluczowe Zadanie wielokryterialne Zadanie wielokryterialne programowania liniowego Przestrzeń decyzyjna Zbiór rozwiązań za dopuszczalnych

Bardziej szczegółowo

Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek

Strefa pokrycia radiowego wokół stacji bazowych. Zasięg stacji bazowych Zazębianie się komórek Problem zapożyczania kanałów z wykorzystaniem narzędzi optymalizacji Wprowadzenie Rozwiązanie problemu przydziału częstotliwości prowadzi do stanu, w którym każdej stacji bazowej przydzielono żądaną liczbę

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Modelowanie algorytmów klasyfikujących. Podejście probabilistyczne. Naiwny klasyfikator bayesowski. Modelowanie danych metodą najbliższych sąsiadów. Jakub Wróblewski

Bardziej szczegółowo

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu

1 Metody rozwiązywania równań nieliniowych. Postawienie problemu 1 Metody rozwiązywania równań nieliniowych. Postawienie problemu Dla danej funkcji ciągłej f znaleźć wartości x, dla których f(x) = 0. (1) 2 Przedział izolacji pierwiastka Będziemy zakładać, że równanie

Bardziej szczegółowo

Wielokryterialne harmonogramowanie portfela projektów. Bogumiła Krzeszowska Katedra Badań Operacyjnych

Wielokryterialne harmonogramowanie portfela projektów. Bogumiła Krzeszowska Katedra Badań Operacyjnych Wielokryterialne harmonogramowanie portfela projektów Bogumiła Krzeszowska Katedra Badań Operacyjnych Problem Należy utworzyć harmonogram portfela projektów. Poprzez harmonogram portfela projektów będziemy

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Metody optymalizacji Metody bezgradientowe optymalizacji bez ograniczeń Materiały pomocnicze do ćwiczeń

Bardziej szczegółowo

Spis treści 377 379 WSTĘP... 9

Spis treści 377 379 WSTĘP... 9 Spis treści 377 379 Spis treści WSTĘP... 9 ZADANIE OPTYMALIZACJI... 9 PRZYKŁAD 1... 9 Założenia... 10 Model matematyczny zadania... 10 PRZYKŁAD 2... 10 PRZYKŁAD 3... 11 OPTYMALIZACJA A POLIOPTYMALIZACJA...

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZNA INTELIGENCJA WYKŁAD 13. PROBLEMY OPTYMALIZACYJNE Częstochowa 2014 Dr hab. inż. Grzegorz Dudek Wydział Elektryczny Politechnika Częstochowska PROBLEMY OPTYMALIZACYJNE Optymalizacja poszukiwanie

Bardziej szczegółowo

Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009

Algorytmy genetyczne. Paweł Cieśla. 8 stycznia 2009 Algorytmy genetyczne Paweł Cieśla 8 stycznia 2009 Genetyka - nauka o dziedziczeniu cech pomiędzy pokoleniami. Geny są czynnikami, które decydują o wyglądzie, zachowaniu, rozmnażaniu każdego żywego organizmu.

Bardziej szczegółowo

Analiza wielokryterialna wstęp do zagadnienia

Analiza wielokryterialna wstęp do zagadnienia Organizacja, przebieg i zarządzanie inwestycją budowlaną Analiza wielokryterialna wstęp do zagadnienia dr hab. Mieczysław Połoński prof. SGGW 1 Wprowadzenie Jednym z podstawowych, a równocześnie najważniejszym

Bardziej szczegółowo

Optymalizacja. Algorytmy dokładne

Optymalizacja. Algorytmy dokładne dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Organizacja zbioru rozwiązań w problemie SAT Wielokrotny podział na dwia podzbiory: x 1 = T, x 1

Bardziej szczegółowo

Plan. Struktura czynności myślenia (materiał, operacje reguły)

Plan. Struktura czynności myślenia (materiał, operacje reguły) Myślenie Pojęcie myślenia Plan Struktura czynności myślenia (materiał, operacje reguły) Funkcje myślenia Rola myślenia w rozwiązywaniu problemów (pojęcie problemu i jego rodzaje, fazy rozwiązywania, przeszkody)

Bardziej szczegółowo

Metody Rozmyte i Algorytmy Ewolucyjne

Metody Rozmyte i Algorytmy Ewolucyjne mgr inż. Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Uniwersytet Kardynała Stefana Wyszyńskiego Podstawowe operatory genetyczne Plan wykładu Przypomnienie 1 Przypomnienie Metody generacji liczb

Bardziej szczegółowo

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji

Bardziej szczegółowo

Algorytmy genetyczne w optymalizacji

Algorytmy genetyczne w optymalizacji Algorytmy genetyczne w optymalizacji Literatura 1. David E. Goldberg, Algorytmy genetyczne i ich zastosowania, WNT, Warszawa 1998; 2. Zbigniew Michalewicz, Algorytmy genetyczne + struktury danych = programy

Bardziej szczegółowo

Programowanie liniowe całkowitoliczbowe. Tadeusz Trzaskalik

Programowanie liniowe całkowitoliczbowe. Tadeusz Trzaskalik Programowanie liniowe całkowitoliczbowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Rozwiązanie całkowitoliczbowe Założenie podzielności Warunki całkowitoliczbowości Czyste zadanie programowania

Bardziej szczegółowo

Etapy życia oprogramowania

Etapy życia oprogramowania Modele cyklu życia projektu informatycznego Organizacja i Zarządzanie Projektem Informatycznym Jarosław Francik marzec 23 w prezentacji wykorzystano również materiały przygotowane przez Michała Kolano

Bardziej szczegółowo

Wykład na Politechnice Krakowskiej w dniu 18 stycznia 2012 r. ZADAŃ I ALGORYTMÓW W OPTYMALIZACJI DYSKRETNEJ

Wykład na Politechnice Krakowskiej w dniu 18 stycznia 2012 r. ZADAŃ I ALGORYTMÓW W OPTYMALIZACJI DYSKRETNEJ Wykład na Politechnice Krakowskiej w dniu 18 stycznia 2012 r. ZŁOŻONOŚĆ OBLICZENIOWA ZADAŃ I ALGORYTMÓW W OPTYMALIZACJI DYSKRETNEJ dr hab. Krzysztof SZKATUŁA, prof. PAN Instytut Badań Systemowych PAN Uniwersytet

Bardziej szczegółowo

MODELOWANIE PREFERENCJI UŻYTKOWNIKA W SYSTEMIE WSPOMAGANIA DECYZJI

MODELOWANIE PREFERENCJI UŻYTKOWNIKA W SYSTEMIE WSPOMAGANIA DECYZJI Scientific Bulletin of Che lm Section of Mathematics and Computer Science No. 1/2008 MODELOWANIE PREFERENCJI UŻYTKOWNIKA W SYSTEMIE WSPOMAGANIA DECYZJI ANDRZEJ ŁODZIŃSKI Wydział Zastosowań Informatyki

Bardziej szczegółowo

Optymalizacja wielokryterialna

Optymalizacja wielokryterialna Optymalizacja wielokryterialna Optymalizacja wielokryterialna Dział badań operacyjnych zajmujący się wyznaczaniem optymalnej decyzji w przypadku, gdy występuje więcej niż jedno kryterium Problem wielokryterialny

Bardziej szczegółowo

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA OPERATOR KRZYŻOWANIA ETAPY KRZYŻOWANIA

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA OPERATOR KRZYŻOWANIA ETAPY KRZYŻOWANIA PLAN WYKŁADU Operator krzyżowania Operator mutacji Operator inwersji Sukcesja Przykłady symulacji AG Kodowanie - rodzaje OPTYMALIZACJA GLOBALNA Wykład 3 dr inż. Agnieszka Bołtuć OPERATOR KRZYŻOWANIA Wymiana

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych

Bardziej szczegółowo

w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych.

w analizie wyników badań eksperymentalnych, w problemach modelowania zjawisk fizycznych, w analizie obserwacji statystycznych. Aproksymacja funkcji a regresja symboliczna Problem aproksymacji funkcji polega na tym, że funkcję F(), znaną lub określoną tablicą wartości, należy zastąpić inną funkcją, f(), zwaną funkcją aproksymującą

Bardziej szczegółowo

Programowanie liniowe. Tadeusz Trzaskalik

Programowanie liniowe. Tadeusz Trzaskalik Programowanie liniowe Tadeusz Trzaskalik .. Wprowadzenie Słowa kluczowe Model matematyczny Cel, środki, ograniczenia Funkcja celu funkcja kryterium Zmienne decyzyjne Model optymalizacyjny Układ warunków

Bardziej szczegółowo

budowlanymi - WAP Aleksandra Radziejowska

budowlanymi - WAP Aleksandra Radziejowska budowlanymi - WAP Aleksandra Radziejowska Co to jest optymalizacja wielokryterialna? ustalenie kryterium poszukiwania i oceny optymalnego. Co to jest optymalizacja wielokryterialna? pod zakup maszyny budowlanej

Bardziej szczegółowo

Optymalizacja. Algorytmy dokładne

Optymalizacja. Algorytmy dokładne dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Organizacja zbioru rozwiązań w problemie SAT Wielokrotny podział na dwia podzbiory: x 1 = T, x 1

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.

Bardziej szczegółowo

Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w

Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w Metoda Simpleks Jak wiadomo, problem PL z dowolną liczbą zmiennych można rozwiązać wyznaczając wszystkie wierzchołkowe punkty wielościanu wypukłego, a następnie porównując wartości funkcji celu w tych

Bardziej szczegółowo

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L,

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L, Klasyfikator Jedną z najistotniejszych nieparametrycznych metod klasyfikacji jest metoda K-najbliższych sąsiadów, oznaczana przez K-NN. W metodzie tej zaliczamy rozpoznawany obiekt do tej klasy, do której

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Wykład 7

Stanisław Cichocki Natalia Nehrebecka. Wykład 7 Stanisław Cichocki Natalia Nehrebecka Wykład 7 1 1. Metoda Największej Wiarygodności MNW 2. Założenia MNW 3. Własności estymatorów MNW 4. Testowanie hipotez w MNW 2 1. Metoda Największej Wiarygodności

Bardziej szczegółowo

Dobór parametrów algorytmu ewolucyjnego

Dobór parametrów algorytmu ewolucyjnego Dobór parametrów algorytmu ewolucyjnego 1 2 Wstęp Algorytm ewolucyjny posiada wiele parametrów. Przykładowo dla algorytmu genetycznego są to: prawdopodobieństwa stosowania operatorów mutacji i krzyżowania.

Bardziej szczegółowo

Algorytmy metaheurystyczne Wykład 6. Piotr Syga

Algorytmy metaheurystyczne Wykład 6. Piotr Syga Algorytmy metaheurystyczne Wykład 6 Piotr Syga 10.04.2017 Wprowadzenie Inspiracje Wprowadzenie ACS idea 1 Zaczynamy z pustym rozwiązaniem początkowym 2 Dzielimy problem na komponenty (przedmiot do zabrania,

Bardziej szczegółowo

Metody numeryczne I Równania nieliniowe

Metody numeryczne I Równania nieliniowe Metody numeryczne I Równania nieliniowe Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/66 Równania nieliniowe 1. Równania nieliniowe z pojedynczym pierwiastkiem

Bardziej szczegółowo

MODEL OPTYMALIZACYJNY SYNCHRONIZACJI LINII TRAMWAJOWYCH

MODEL OPTYMALIZACYJNY SYNCHRONIZACJI LINII TRAMWAJOWYCH Poznań - Rosnówko, 17-19.06.2015 r. Politechnika Poznańska Wydział Maszyn Roboczych i Transportu Zakład Systemów Transportowych MODEL OPTYMALIZACYJNY SYNCHRONIZACJI LINII TRAMWAJOWYCH mgr inż. Kamil Musialski

Bardziej szczegółowo

Wykład z Technologii Informacyjnych. Piotr Mika

Wykład z Technologii Informacyjnych. Piotr Mika Wykład z Technologii Informacyjnych Piotr Mika Uniwersalna forma graficznego zapisu algorytmów Schemat blokowy zbiór bloków, powiązanych ze sobą liniami zorientowanymi. Jest to rodzaj grafu, którego węzły

Bardziej szczegółowo

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ

ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ ZADANIA OPTYMALIZCJI BEZ OGRANICZEŃ Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie minimalizacji bez ograniczeń f(ˆx) = min x R nf(x) f : R n R funkcja ograniczona z dołu Algorytm rozwiazywania Rekurencyjny

Bardziej szczegółowo

Egzamin z Metod Numerycznych ZSI, Grupa: A

Egzamin z Metod Numerycznych ZSI, Grupa: A Egzamin z Metod Numerycznych ZSI, 06.2005. Grupa: A Nazwisko: Imię: Numer indeksu: Ćwiczenia z: Data: Część 1. Test wyboru, max 36 pkt Zaznacz prawidziwe odpowiedzi literą T, a fałszywe N. Każda prawidłowa

Bardziej szczegółowo

Etapy życia oprogramowania. Modele cyklu życia projektu. Etapy życia oprogramowania. Etapy życia oprogramowania

Etapy życia oprogramowania. Modele cyklu życia projektu. Etapy życia oprogramowania. Etapy życia oprogramowania Etapy życia oprogramowania Modele cyklu życia projektu informatycznego Organizacja i Zarządzanie Projektem Informatycznym Jarosław Francik marzec 23 Określenie wymagań Testowanie Pielęgnacja Faza strategiczna

Bardziej szczegółowo

Algorytmy analizy skupień / Sławomir Wierzchoń, Mieczysław Kłopotek. wyd. 1, 1. dodr. (PWN). Warszawa, Spis treści

Algorytmy analizy skupień / Sławomir Wierzchoń, Mieczysław Kłopotek. wyd. 1, 1. dodr. (PWN). Warszawa, Spis treści Algorytmy analizy skupień / Sławomir Wierzchoń, Mieczysław Kłopotek. wyd. 1, 1. dodr. (PWN). Warszawa, 2017 Spis treści Lista ważniejszych oznaczeń 5 Przedmowa 7 1. Analiza skupień 19 1.1. Formalizacja

Bardziej szczegółowo

Wybrane podstawowe rodzaje algorytmów

Wybrane podstawowe rodzaje algorytmów Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych

Bardziej szczegółowo

INTERAKTYWNE WSPOMAGANIE WYBORU DECYZJI W WARUNKACH RYZYKA

INTERAKTYWNE WSPOMAGANIE WYBORU DECYZJI W WARUNKACH RYZYKA Scientific Bulletin of Chełm Section of Mathematics and Computer Science No. 1/2009 INTERAKTYWNE WSPOMAGANIE WYBORU DECYZJI W WARUNKACH RYZYKA ANDRZEJ ŁODZIŃSKI Szkoła Główna Gospodarstwa Wiejskiego Streszczenie.

Bardziej szczegółowo

DEKLARACJA WYBORU PRZEDMIOTÓW NA STUDIACH II STOPNIA STACJONARNYCH CYWILNYCH (nabór 2009) II semestr

DEKLARACJA WYBORU PRZEDMIOTÓW NA STUDIACH II STOPNIA STACJONARNYCH CYWILNYCH (nabór 2009) II semestr WOJSKOWA AKADEMIA TECHNICZNA WYDZIAŁ MECHANICZNY STUDENT..................................................................................................................... ( imię i nazwisko) (grupa szkolna)

Bardziej szczegółowo

TOZ -Techniki optymalizacji w zarządzaniu

TOZ -Techniki optymalizacji w zarządzaniu TOZ -Techniki optymalizacji w zarządzaniu Wykład dla studentów II roku studiów II stopnia na kierunku Zarządzanie Semestr zimowy 2009/2010 Wykładowca: prof. dr hab. inż. Michał Inkielman Literatura Literatura

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca

Bardziej szczegółowo

Wprowadzenie do teorii prognozowania

Wprowadzenie do teorii prognozowania Wprowadzenie do teorii prognozowania I Pojęcia: 1. Prognoza i zmienna prognozowana (przedmiot prognozy). Prognoza punktowa i przedziałowa. 2. Okres prognozy i horyzont prognozy. Prognozy krótkoterminowe

Bardziej szczegółowo

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w

Bardziej szczegółowo

System bonus-malus z mechanizmem korekty składki

System bonus-malus z mechanizmem korekty składki System bonus-malus z mechanizmem korekty składki mgr Kamil Gala Ubezpieczeniowy Fundusz Gwarancyjny dr hab. Wojciech Bijak, prof. SGH Ubezpieczeniowy Fundusz Gwarancyjny, Szkoła Główna Handlowa Zagadnienia

Bardziej szczegółowo

Metody systemowe i decyzyjne w informatyce

Metody systemowe i decyzyjne w informatyce Metody systemowe i decyzyjne w informatyce Laboratorium Zadanie nr 3 Osada autor: A Gonczarek Celem poniższego zadania jest zrealizowanie fragmentu komputerowego przeciwnika w grze strategiczno-ekonomicznej

Bardziej szczegółowo

METODY WSPOMAGANIA DECYZJI MENEDŻERSKICH

METODY WSPOMAGANIA DECYZJI MENEDŻERSKICH PREZENTACJA SEPCJALNOŚCI: METODY WSPOMAGANIA DECYZJI MENEDŻERSKICH WYDZIAŁ INFORMATYKI I KOMUNIKACJI KIERUNEK INFORMATYKA I EKONOMETRIA SEKRETARIAT KATEDRY BADAŃ OPERACYJNYCH Budynek D, pok. 621 e-mail

Bardziej szczegółowo

komputery? Andrzej Skowron, Hung Son Nguyen Instytut Matematyki, Wydział MIM, UW

komputery? Andrzej Skowron, Hung Son Nguyen  Instytut Matematyki, Wydział MIM, UW Czego moga się nauczyć komputery? Andrzej Skowron, Hung Son Nguyen son@mimuw.edu.pl; skowron@mimuw.edu.pl Instytut Matematyki, Wydział MIM, UW colt.tex Czego mogą się nauczyć komputery? Andrzej Skowron,

Bardziej szczegółowo

Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1

Metody iteracyjne rozwiązywania układów równań liniowych (5.3) Normy wektorów i macierzy (5.3.1) Niech. x i. i =1 Normy wektorów i macierzy (5.3.1) Niech 1 X =[x x Y y =[y1 x n], oznaczają wektory przestrzeni R n, a yn] niech oznacza liczbę rzeczywistą. Wyrażenie x i p 5.3.1.a X p = p n i =1 nosi nazwę p-tej normy

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 5 Prof. dr hab. inż. Jan Magott DMT rozwiązuje problem decyzyjny π przy kodowaniu e w co najwyżej wielomianowym czasie, jeśli dla wszystkich łańcuchów wejściowych

Bardziej szczegółowo

Technologia informacyjna Algorytm Janusz Uriasz

Technologia informacyjna Algorytm Janusz Uriasz Technologia informacyjna Algorytm Janusz Uriasz Algorytm Algorytm - (łac. algorithmus); ścisły przepis realizacji działań w określonym porządku, system operacji, reguła komponowania operacji, sposób postępowania.

Bardziej szczegółowo

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU I. KARTA PRZEDMIOTU 1. Nazwa przedmiotu: SYSTEMY WSPOMAGANIA DECYZJI. Kod przedmiotu: Ecs 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny. Kierunek: Mechatronika 5. Specjalność: Techniki Komputerowe

Bardziej szczegółowo

Modele optymalizacyjne wspomagania decyzji wytwórców na rynku energii elektrycznej

Modele optymalizacyjne wspomagania decyzji wytwórców na rynku energii elektrycznej Modele optymalizacyjne wspomagania decyzji wytwórców na rynku energii elektrycznej mgr inż. Izabela Żółtowska Promotor: prof. dr hab. inż. Eugeniusz Toczyłowski Obrona rozprawy doktorskiej 5 grudnia 2006

Bardziej szczegółowo

S1A_W06 makroekonomii niezbędną do rozumienia podstawowych procesów

S1A_W06 makroekonomii niezbędną do rozumienia podstawowych procesów Kierunkowe efekty kształcenia Kierunek: zarządzanie i inŝynieria produkcji Obszar kształcenia: nauki rolnicze, leśne i weterynaryjne, nauki techniczne oraz społeczne Poziom kształcenia: studia pierwszego

Bardziej szczegółowo

Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I

Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Techniki Optymalizacji: Stochastyczny spadek wzdłuż gradientu I Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:

Bardziej szczegółowo

8. PODSTAWY ANALIZY NIELINIOWEJ

8. PODSTAWY ANALIZY NIELINIOWEJ 8. PODSTAWY ANALIZY NIELINIOWEJ 1 8. 8. PODSTAWY ANALIZY NIELINIOWEJ 8.1. Wprowadzenie Zadania nieliniowe mają swoje zastosowanie na przykład w rozwiązywaniu cięgien. Przyczyny nieliniowości: 1) geometryczne:

Bardziej szczegółowo

Metody optymalizacji dyskretnej

Metody optymalizacji dyskretnej Metody optymalizacji dyskretnej Spis treści Spis treści Metody optymalizacji dyskretnej...1 1 Wstęp...5 2 Metody optymalizacji dyskretnej...6 2.1 Metody dokładne...6 2.2 Metody przybliżone...6 2.2.1 Poszukiwanie

Bardziej szczegółowo

Analiza stateczności zbocza

Analiza stateczności zbocza Przewodnik Inżyniera Nr 25 Aktualizacja: 06/2017 Analiza stateczności zbocza Program: MES Plik powiązany: Demo_manual_25.gmk Celem niniejszego przewodnika jest analiza stateczności zbocza (wyznaczenie

Bardziej szczegółowo

METODY OPTYMALIZACJI. Tomasz M. Gwizdałła 2018/19

METODY OPTYMALIZACJI. Tomasz M. Gwizdałła 2018/19 METODY OPTYMALIZACJI Tomasz M. Gwizdałła 2018/19 Informacje wstępne Tomasz Gwizdałła Katedra Fizyki Ciała Stałego UŁ Pomorska 149/153, p.524b tel. 6355709 tomgwizd@uni.lodz.pl http://www.wfis.uni.lodz.pl/staff/tgwizdalla

Bardziej szczegółowo

O ALGORYTMACH I MASZYNACH TURINGA

O ALGORYTMACH I MASZYNACH TURINGA O ALGORYTMACH I MASZYNACH TURINGA ALGORYTM (objaśnienie ogólne) Algorytm Pojęcie o rodowodzie matematycznym, oznaczające współcześnie precyzyjny schemat mechanicznej lub maszynowej realizacji zadań określonego

Bardziej szczegółowo

IVV GmbH Oddział w Polsce

IVV GmbH Oddział w Polsce IVV GmbH Oddział w Polsce OD KONCEPCJI DO PROJEKTU TECHNICZNEGO ROLA DOKUMENTACJI PRZEDPROJEKTOWEJ W PROCESIE INWESTYCYJNYM Mgr inż. Anna Dąbrowska Mgr inż. Iwona Wacławiak Kościelisko, 18-20 czerwiec

Bardziej szczegółowo

Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1

Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1 Weryfikacja hipotez statystycznych KG (CC) Statystyka 26 V 2009 1 / 1 Sformułowanie problemu Weryfikacja hipotez statystycznych jest drugą (po estymacji) metodą uogólniania wyników uzyskanych w próbie

Bardziej szczegółowo

LOGISTYKA. Zapas: definicja. Zapasy: podział

LOGISTYKA. Zapas: definicja. Zapasy: podział LOGISTYKA Zapasy Zapas: definicja Zapas to określona ilość dóbr znajdująca się w rozpatrywanym systemie logistycznym, bieżąco nie wykorzystywana, a przeznaczona do późniejszego przetworzenia lub sprzedaży.

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

KOMPUTEROWE WSPOMAGANIE PODEJMOWANIA DECYZJI: UJĘCIE WIELOKRYTERIALNE, NA PRZYKŁADZIE WYBORU PRZEBIEGU DROGI EKSPRESOWEJ VIA BALTICA

KOMPUTEROWE WSPOMAGANIE PODEJMOWANIA DECYZJI: UJĘCIE WIELOKRYTERIALNE, NA PRZYKŁADZIE WYBORU PRZEBIEGU DROGI EKSPRESOWEJ VIA BALTICA Zeszyty Naukowe Wydziału Informatycznych Technik Zarządzania Wyższej Szkoły Informatyki Stosowanej i Zarządzania Współczesne Problemy Zarządzania Nr 1/2011 KOMPUTEROWE WSPOMAGANIE PODEJMOWANIA DECYZJI:

Bardziej szczegółowo

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym

Bardziej szczegółowo

OCENA EFEKTYWNOŚCI INWESTYCJI. Jerzy T. Skrzypek

OCENA EFEKTYWNOŚCI INWESTYCJI. Jerzy T. Skrzypek OCENA EFEKTYWNOŚCI INWESTYCJI Jerzy T. Skrzypek 1 2 3 4 5 6 7 8 Analiza płynności Analiza rentowności Analiza zadłużenia Analiza sprawności działania Analiza majątku i źródeł finansowania Ocena efektywności

Bardziej szczegółowo

RÓWNANIA NIELINIOWE Maciej Patan

RÓWNANIA NIELINIOWE Maciej Patan RÓWNANIA NIELINIOWE Maciej Patan Uniwersytet Zielonogórski Przykład 1 Prędkość v spadającego spadochroniarza wyraża się zależnością v = mg ( 1 e c t) m c gdzie g = 9.81 m/s 2. Dla współczynnika oporu c

Bardziej szczegółowo

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74 3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15

Bardziej szczegółowo

Tomasz M. Gwizdałła 2012/13

Tomasz M. Gwizdałła 2012/13 METODY METODY OPTYMALIZACJI OPTYMALIZACJI Tomasz M. Gwizdałła 2012/13 Informacje wstępne Tomasz Gwizdałła Katedra Fizyki Ciała Stałego UŁ Pomorska 149/153, p.523b tel. 6355709 tomgwizd@uni.lodz.pl http://www.wfis.uni.lodz.pl/staff/tgwizdalla

Bardziej szczegółowo

II. Równania autonomiczne. 1. Podstawowe pojęcia.

II. Równania autonomiczne. 1. Podstawowe pojęcia. II. Równania autonomiczne. 1. Podstawowe pojęcia. Definicja 1.1. Niech Q R n, n 1, będzie danym zbiorem i niech f : Q R n będzie daną funkcją określoną na Q. Równanie różniczkowe postaci (1.1) x = f(x),

Bardziej szczegółowo

Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2017/2018

Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2017/2018 Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2017/2018 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu

Bardziej szczegółowo

Zad. 3: Układ równań liniowych

Zad. 3: Układ równań liniowych 1 Cel ćwiczenia Zad. 3: Układ równań liniowych Wykształcenie umiejętności modelowania kluczowych dla danego problemu pojęć. Definiowanie właściwego interfejsu klasy. Zwrócenie uwagi na dobór odpowiednich

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład XII: Zagadnienia redukcji wymiaru danych 12 maja 2014 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ). Definicja

Bardziej szczegółowo

przetworzonego sygnału

przetworzonego sygnału Synteza falek ortogonalnych na podstawie oceny przetworzonego sygnału Instytut Informatyki Politechnika Łódzka 28 lutego 2012 Plan prezentacji 1 Sformułowanie problemu 2 3 4 Historia przekształcenia falkowego

Bardziej szczegółowo

Wielokryterialne wspomaganie

Wielokryterialne wspomaganie Wielokryterialne wspomaganie podejmowania decyzji Wykład ZARZĄDZANIE, I st. Maciej Wolny Wielokryterialne wspomaganie podejmowania decyzji Tytuł: Wprowadzenie do wielokryterialnego wspomagania decyzji

Bardziej szczegółowo

Obliczenia równoległe i rozproszone. Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz

Obliczenia równoległe i rozproszone. Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz Obliczenia równoległe i rozproszone Praca zbiorowa pod redakcją Andrzeja Karbowskiego i Ewy Niewiadomskiej-Szynkiewicz 15 czerwca 2001 Spis treści Przedmowa............................................

Bardziej szczegółowo

Laboratorium 5 Przybliżone metody rozwiązywania równań nieliniowych

Laboratorium 5 Przybliżone metody rozwiązywania równań nieliniowych Uniwersytet Zielonogórski Wydział Informatyki, Elektrotechniki i Telekomunikacji Instytut Sterowania i Systemów Informatycznych Elektrotechnika niestacjonarne-zaoczne pierwszego stopnia z tyt. inżyniera

Bardziej szczegółowo

Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych

Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych inż. Marek Duczkowski Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych słowa kluczowe: algorytm gradientowy, optymalizacja, określanie wodnicy W artykule

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo