Wprowadzenie do kalibracji jedno- i wieloparametrowej
|
|
- Bronisława Pietrzyk
- 6 lat temu
- Przeglądów:
Transkrypt
1 Wprowadzene do kalbracj jedno- weloparaetrowej Mchał Daszykowsk, Ivana Stanrova Instytut Che Unwersytet Śląsk w Katowcach Ul. Szkolna Katowce E-al: www: daszyk@us.edu.pl stan@us.edu.pl Badane zależnośc poędzy paraetra Czy dwa wektory są ze sobą skorelowane? Co to w praktyce oznacza? Kedy dwa wektory są zależne? M. Daszykowsk, I. Stanrova, Wprowadzene do statystyk dla cheków
2 Badane zależnośc poędzy paraetra Mg + Ca + Korelacja dodatna Badane zależnośc poędzy paraetra Mg + Ca + Korelacja ujena M. Daszykowsk, I. Stanrova, Wprowadzene do statystyk dla cheków
3 Badane zależnośc poędzy paraetra Mg + Ca + Brak korelacj Iloczyn skalarny cos( x, x ) = j x x x T j x j x x j 4 3 M. Daszykowsk, I. Stanrova, Wprowadzene do statystyk dla cheków 3
4 Współczynnk korelacj r= r = (x x)(y (x x) y) (y y) y r=- x r=0 Współczynnk korelacj Współczynnk korelacj Pearsona wskazuje na słę lnowej zależnośc poędzy paraetra. Poo to, współczynnk korelacj Pearsona ne zawsze w sposób wystarczający pozwala tą relacje ocenć. Ma to ejsce w szczególnośc, gdy ne są spełnone założena o noralnośc rozkładu reszt od odelu. M. Daszykowsk, I. Stanrova, Wprowadzene do statystyk dla cheków 4
5 Współczynnk korelacj Kwartet Anscobe a Wszystke y ają tą saą średną (7,5), to sao odchylene standardowe (4,), tą saą korelację (0,8) to sao równane regresj dane wzore y = 3 + 0,5x Współczynnk korelacj y 0 r=0,986 r=0 x M. Daszykowsk, I. Stanrova, Wprowadzene do statystyk dla cheków 5
6 Regresja lnowa y = f (x) y odpowedź, y reszta e ŷ dopasowana wartość yˆ = b x 0 + b e = y ŷ R = e = = (y ŷ ) = x Regresja lnowa yˆ = b x 0 + b b0 = y bx b (x = = = x)(y (x x) y) s e e = = n s e jest warancją reszt odelu jest zwązana z błęde eksperyentalny! reszty e ają rozkład noralny M. Daszykowsk, I. Stanrova, Wprowadzene do statystyk dla cheków 6
7 Regresja lnowa - przykład y ntensywność fluorescencj (jednostk arbtralne) x stężene zwązku x (µg / l) y (I) b =.98 b 0 =.9 ŷ = x nowa próbka x nowa Regresja lnowa - przykład x y e e ŷ s e = 8.94 e e = 0 = 0 M. Daszykowsk, I. Stanrova, Wprowadzene do statystyk dla cheków 7
8 Regresja lnowa - przykład Zerzono dwadześca wd UV-VIS roztworów zarejestrowanych w zakrese n co n (wartośc stężeń analtu w próbkach względe absorpcj odczytanej dla 58 n) absorbancja absorbancja długość fal [n] stężene Wykorzystane regresj do porównana dwóch etod etoda B etoda A etoda B etoda A etoda B etoda A etoda B etoda B etoda B etoda A etoda A etoda A M. Daszykowsk, I. Stanrova, Wprowadzene do statystyk dla cheków 8
9 Regresja lnowa - przykład e e 0 ŷ rozrzut reszt wzrasta precyzja etody zena sę z ŷ ŷ U-kształt rozkładu reszt - zależność ne jest lnowa Regresja ważona Warancja poarów wzrasta wraz ze stężene Dla każdego pozou stężeń przyjujey wag będące odwrotnoścą obserwowanych powtórzeń 6 4 Measured Standard M. Daszykowsk, I. Stanrova, Wprowadzene do statystyk dla cheków 9
10 Regresja ważona sygnał stężene w b b x y 0 w w = = = = s s = y w /n w x y nx b x w x w w x /n w y /n x w w y w Stablna regresja W przypadku obecnośc w danych obektów odległych, etoda najnejszych kwadratów zawodz. R = e = (y ŷ ) = = n Estyowane współczynnk regresj są obcążone tzn. równane regresj zerza do kopensacj efektu obektu odległego. M. Daszykowsk, I. Stanrova, Wprowadzene do statystyk dla cheków 0
11 Estyator stablny klasyczny (nestablny) Zadane estyatora jest generalzowane pewnej tendencj prawdzwej dla wększośc danych (5%) Stablny estyator to tak, który jest neczuły na obecność w danych obektów odległych. Przykład: edana średna. Punkt załaana estyatora Marą stablnośc estyatora jest jego punkt załaana (z ang. breakdown pont): Lczba lub proporcja obektów odległych, które należałoby wprowadzć do zboru by zaobserwować arbtralne wynk estyacj. Najlepsze stablne estyatory są w stane dzałać jeśl 5% danych jest poprawna. M. Daszykowsk, I. Stanrova, Wprowadzene do statystyk dla cheków
12 Sprawność estyatora Stablny estyator pownen cechować sę duży punkte załaana dużą sprawnoścą. Sprawność estyatora bada sę porównując jego dzałane z klasyczny jego odpowednke dla danych pozbawonych obektów odległych. Efekt obektu odległego Obekt odległy w kerunku y Obekt odległy w kerunku x ( leverage ) M. Daszykowsk, I. Stanrova, Wprowadzene do statystyk dla cheków
13 Stablne waranty regresj Wyana funkcj celu na jej stablny odpowednk: R = = e n R = = ρ ( e /σ) n σ - stablny estyator rozrzutu MAD: edan absolute devaton Skala Sn Skala Qn ( x ); c,486 σmad = c edan x edan j j = σ Sn = c edan { edan x x }; c =,96 j j σ Qn k = = c { x x j ; < j } ( k ) h n ( ) ( )/4 h = [n/]+ ; c =,9 M. Daszykowsk, et al., Robust statstcs n data analyss - a revew: basc concepts, Cheoetrcs and Intellgent Laboratory Systes. 85 (007) 03 9 M. Daszykowsk, I. Stanrova, Wprowadzene do statystyk dla cheków 3
14 LTS (Least Tred Squares) P.J. Rousseeuw (984) Metoda LTS nalzuje w sposób teracyjny suę kwadratów reszt od odelu dla podzboru k obektów. R k = = e n LMS (Least Medan of Squares) Hapel (975) Metoda LMS nalzuje w sposób teracyjny edanę kwadratów reszt od odelu. R = edan ( e ) n M. Daszykowsk, I. Stanrova, Wprowadzene do statystyk dla cheków 4
15 Przykłady różnych odel P.J. Rousseeuw, Least Medan of Squares Regresson, Journal of the Aercan Statstcal Assocaton 79 (984) Regresja weloraka Ne zawsze jedna zenna pozwala na konstrukcję zadowalającego odelu kalbracyjnego. j n (zenne) y = f (X) y X M. Daszykowsk, I. Stanrova, Wprowadzene do statystyk dla cheków 5
16 Efekt welu zennych K. Varuza, P. Fzoser, Instroducton to ultvarate statstcal analyss n cheoetrcs, CRC Press, 009 Regresja weloraka y y y 3 y 4 y 5 y 6 = x x x 3 x 4 b 0 x b x x 3 x 4 b x 3 x 3 x 33 x 34 b 3 x 4 x 4 x 43 x 44 b 4 x 5 x 5 x 53 x 54 x 6 x 6 x 63 x 64 y = b 0 + b x +b x + b 3 x 3 + b 4 x 4 M. Daszykowsk, I. Stanrova, Wprowadzene do statystyk dla cheków 6
17 Regresja weloraka y = b 0 + b x + b x + b 3 x 3 + b 4 x 4 y = Xb T X y = X ) b = yˆ = ) T Xb T T ( X X) X y T T Xb = X( X X) X y Grafczna prezentacja odelu MLR y przewdzane y obserwowane M. Daszykowsk, I. Stanrova, Wprowadzene do statystyk dla cheków 7
18 Efekt welu zennych Regresja weloraka - przykład Dane opsujące proces utlenana aonaku do kwasu azotowego. y (zenna zależna) opsuje straty aonaku w procese produkcj. Zenne objaśnające X to: pozo pracy fabryk, teperatura ceczy chłodzącej, stężene kwasu. M. Daszykowsk, I. Stanrova, Wprowadzene do statystyk dla cheków 8
19 Regresja weloraka - przykład y x x x3 x4 = b b b b Regresja weloraka - przykład b 0 b b b 3 = ŷ = 37,65 + 0,798x + 0,577x 0,067x3 M. Daszykowsk, I. Stanrova, Wprowadzene do statystyk dla cheków 9
20 Regresja weloraka - przykład Średn błąd kwadratowy: RMS = = ( y ŷ ) RMS =,095 Ocena dopasowana odelu RMS Współczynnk deternacj (porcja wyjaśnonej warancj przez odel) RMS = = ( y ŷ ) R = = = ( y ŷ ) SSres = ( y y) SStot M. Daszykowsk, I. Stanrova, Wprowadzene do statystyk dla cheków 0
21 Ocena dopasowana odelu RSD: współczynnk zennośc (z ang. coeffcent of varaton) lub względne odchylene standardowe (z ang. relatve standard devaton) RSD = 00 σ/x Ogranczena regresj welorakej Zenne X są skorelowane. Lczba zennych objaśnających jest wększa nż lczba próbek ( szeroka acerz) ne ożna wyznaczyć acerzy odwrotnej. W danych występują próbk odległe b = T T ( X X) X y X n X n M. Daszykowsk, I. Stanrova, Wprowadzene do statystyk dla cheków
22 Regresja krokowa Sposób na konstrukcję odelu MLR połączony z wybore optyalnych zennych. Model budowany jest w sposób teracyjny, tak aby uzyskać stotną w sense statystyczny redukcję błędu. Perwsza zenna do konstrukcj odelu zenna o najwększej korelacj ze zenną zależną. Regresja krokowa przykład Zbór danych: wda zarejestrowane w zakrese blskej podczerwen 69 próbek śruty rzepakowej; zależność całkowtego stężena tłuszczy w próbkach (wyrażonego w procentach w przelczenu na suchą asę próbk) od reflektancj, R, wyrażonej jako log(/r). 0 x log(/r) długość fal [n] M. Daszykowsk, I. Stanrova, Wprowadzene do statystyk dla cheków
23 Regresja krokowa - przykład Zależność całkowtego stężena tłuszczy w próbkach (wyrażonego w procentach w przelczenu na suchą asę próbk) od reflektancj, R, wyrażonej jako log(/r), zerzonej przy: 740 n 300 n stężene 7 6 stężene log(/r) x log(/r) x 0 6 Regresja krokowa - przykład Model MLR skonstruowany dla pęcu zennych (reflektancje zerzone przy 78, 74, 700, 4 oraz 704 n). 0 9 stężene przewdzane stężene obserwowane ŷ = b 0 +b log(/r 78 )+b log(/r 74 )+b 3 log(/r 700 )+b 4 log(/r 4 )+b 5 log(/r 704 ) M. Daszykowsk, I. Stanrova, Wprowadzene do statystyk dla cheków 3
24 Porównane odel o różnej lczbe zennych Skorygowany współczynnk deternacj. SS SS R res tot adj = = ( y ŷ ) = = SSres/ = SS ( n ) /( n ) tot ( y y) Regresja krokowa przykład Ustalono czasy retencj dla 90 peptydów o znanej kopozycj anokwasów w układze chroatografczny. Geoetra struktur peptydów - zoptyalzowana stosując oprograowane Hyperche 6.03 (Hypercube, Ganesvlle, Florda). Każdy peptyd opsano 76 deskryptora. Zbudowano odel QSRR. R. Put, M. Daszykowsk, T. Baczek, Y. Vander Heyden, Retenton predcton of peptdes based on unnforatve varable elnaton by partal least squares, Journal of Proteoe Research. 5 (006) M. Daszykowsk, I. Stanrova, Wprowadzene do statystyk dla cheków 4
25 Generacja deskryptorów Class Fales of descrptors Densonalty Nuber of descrptors Nuberng Consttutonal 0-D 3-3 Topologcal -D Walk and path counts -D Connectvty ndces -D Inforaton ndces -D D autocorrelatons -D Edge adjacency ndces -D BCUT -D Topologcal charge ndces -D Egenvalue-based ndces -D Randc olecular profles -D Geoetrcal descrptors 3-D RDF descrptors 3-D D-MoRSE 3-D WHIM 3-D GETAWAY 3-D Functonal group counts -D Ato-centered fragents -D Molecular propertes other Regresja krokowa retencja peptydów Zbór peptydów podzelono na dwa podzbory: odelowy (63) oraz testowy (7) wykorzystując algoryt Kennard a Ston a. zbór odelowy budowa odelu y = Xb RMS zbór testowy RMSEP X y testowane odelu M. Daszykowsk, I. Stanrova, Wprowadzene do statystyk dla cheków 5
26 Regresja krokowa retencja peptydów y predcted Model MLR dla 7 z 76 deskryptorów: RMS = 0,547 RMSEP = 0, y observed Regresja krokowa przykład 3 (NNRTI) Aktywność bologczna (pic 50 ) 3 nhbtorów RT. Oblczone oddzaływana Van der Waalsa Couloba poędzy fragenta anokwasów budujący RT nhbtore w oparcu o algoryt dokowana farakoforów. DATA 65 struktur DAPY 48 struktur M. Daszykowsk et al., Classfcaton and regresson trees-studes of HIV reverse transcrptase nhbtors, Journal of Checal Inforaton and Coputer Scences. 44 (004) M. Daszykowsk, I. Stanrova, Wprowadzene do statystyk dla cheków 6
27 Generowane deskryptorów dla NNRTI Regresja krokowa przykład 3 (NNRTI) DATA 8 RMS = 0,37 DAPY 8 RMS = 0,33 M. Daszykowsk, I. Stanrova, Wprowadzene do statystyk dla cheków 7
Markowa. ZałoŜenia schematu Gaussa-
ZałoŜena scheatu Gaussa- Markowa I. Model jest nezennczy ze względu na obserwacje: f f f3... fl f, czyl y f (x, ε) II. Model jest lnowy względe paraetrów. y βo + β x +ε Funkcja a być lnowa względe paraetrów
Metody badań kamienia naturalnego: Oznaczanie współczynnika nasiąkliwości kapilarnej
Metody badań kaena naturalnego: Oznaczane współczynnka nasąklwośc kaplarnej 1. Zasady etody Po wysuszenu do stałej asy, próbkę do badana zanurza sę w wodze jedną z powerzchn (ngdy powerzchną obrabaną)
ZAJĘCIA 3. Pozycyjne miary dyspersji, miary asymetrii, spłaszczenia i koncentracji
ZAJĘCIA Pozycyjne ary dyspersj, ary asyetr, spłaszczena koncentracj MIARY DYSPERSJI: POZYCYJNE, BEZWZGLĘDNE Rozstęp dwartkowy (ędzykwartylowy) Rozstęp dwartkowy określa rozpętośd tej częśc obszaru zennośc
KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1
KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej
Klasyfkator lnowy Wstęp Klasyfkator lnowy jest najprostszym możlwym klasyfkatorem. Zakłada on lnową separację lnowy podzał dwóch klas mędzy sobą. Przedstawa to ponższy rysunek: 5 4 3 1 0-1 - -3-4 -5-5
Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej
Rachunek prawdopodobeństwa statstka W 11: Analz zależnoścpomędz zmennm losowm Model regresj welokrotnej Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.pl Model regresj lnowej Model regresj lnowej prostej
Krzywa wieża w Pizie. SAS Data Step. Przykład (2) Wykład 13 Regresja liniowa
Bonformatyka - rozwój oferty edukacyjnej Unwersytetu Przyrodnczego we Wrocławu projekt realzowany w ramac Programu Operacyjnego Kaptał Ludzk współfnansowanego ze środków Europejskego Funduszu Społecznego
Dobór zmiennych objaśniających
Dobór zmennych objaśnających Metoda grafowa: Należy tak rozpąć graf na werzchołkach opsujących poszczególne zmenne, aby występowały w nm wyłączne łuk symbolzujące stotne korelacje pomędzy zmennym opsującym.
Badanie współzaleŝności dwóch cech ilościowych X i Y. Analiza korelacji prostej. Badanie zaleŝności dwóch cech ilościowych. Analiza regresji prostej
Badane współzaleŝnośc dwóch cech loścowych X Y. Analza korelacj prostej Badane zaleŝnośc dwóch cech loścowych. Analza regresj prostej Kody znaków: Ŝółte wyróŝnene nowe pojęce czerwony uwaga kursywa komentarz
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4
Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja
Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer
Statystyka Opsowa 2014 część 2 Katarzyna Lubnauer Lteratura: 1. Statystyka w Zarządzanu Admr D. Aczel 2. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucjan Kowalsk. 4. Statystyka opsowa,
Natalia Nehrebecka. Wykład 2
Natala Nehrebecka Wykład . Model lnowy Postad modelu lnowego Zaps macerzowy modelu lnowego. Estymacja modelu Wartośd teoretyczna (dopasowana) Reszty 3. MNK przypadek jednej zmennej . Model lnowy Postad
Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej
Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.
dy dx stąd w przybliżeniu: y
Przykłady do funkcj nelnowych funkcj Törnqusta Proszę sprawdzć uzasadnć, które z podanych zdań są prawdzwe, a które fałszywe: Przykład 1. Mesęczne wydatk na warzywa (y, w jednostkach penężnych, jp) w zależnośc
Natalia Nehrebecka. Zajęcia 3
St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 3 1. Dobroć dopasowana równana regresj. Współczynnk determnacj R Dk Dekompozycja warancj zmennej zależnej ż Współczynnk determnacj R. Zmenne cągłe a
( ) ( ) 2. Zadanie 1. są niezależnymi zmiennymi losowymi o. oraz. rozkładach normalnych, przy czym EX. i σ są nieznane. 1 Niech X
Prawdopodobeństwo statystyka.. r. Zadane. Zakładamy, że,,,,, 5 są nezależnym zmennym losowym o rozkładach normalnych, przy czym E = μ Var = σ dla =,,, oraz E = μ Var = 3σ dla =,, 5. Parametry μ, μ σ są
) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4
Zadane. Nech ( X, Y ),( X, Y ), K,( X, Y n n ) będą nezależnym zmennym losowym o tym samym rozkładze normalnym z następującym parametram: neznaną wartoścą oczekwaną EX = EY = m, warancją VarX = VarY =
Stanisław Cichocki. Natalia Nehrebecka. Wykład 7
Stansław Cchock Natala Nehrebecka Wykład 7 1 1. Interakcje 2. Przyblżane model nelnowych 3. Założena KMRL 1. Interakcje 2. Przyblżane model nelnowych 3. Założena KMRL W standardowym modelu lnowym zakładamy,
Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup
Jednoczynnkowa Analza Waranc (ANOVA) Wykład 11 Przypomnene: wykłady zadana kursu były zaczerpnęte z podręcznków: Statystyka dla studentów kerunków techncznych przyrodnczych, J. Koronack, J. Melnczuk, WNT
STATYSTYKA MATEMATYCZNA
STATYSTYKA MATEMATYCZNA. Wkład wstępn. Teora prawdopodobeństwa element kombnatork. Zmenne losowe ch rozkład 3. Populacje prób danch, estmacja parametrów 4. Testowane hpotez statstcznch 5. Test parametrczne
Analiza danych. Analiza danych wielowymiarowych. Regresja liniowa. Dyskryminacja liniowa. PARA ZMIENNYCH LOSOWYCH
Analza danych Analza danych welowymarowych. Regresja lnowa. Dyskrymnacja lnowa. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ PARA ZMIENNYCH LOSOWYCH Parę zmennych losowych X, Y możemy
Natalia Nehrebecka. Zajęcia 4
St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających
= σ σ. 5. CML Capital Market Line, Rynkowa Linia Kapitału
5 CML Catal Market Lne, ynkowa Lna Katału Zbór ortolo o nalny odchylenu standardowy zbór eektywny ozważy ortolo złożone ze wszystkch aktywów stnejących na rynku Załóży, że jest ch N A * P H P Q P 3 * B
W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.
Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas
Egzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010
Egzamn ze statystyk/ Studa Lcencjacke Stacjonarne/ Termn /czerwec 2010 Uwaga: Przy rozwązywanu zadań, jeśl to koneczne, naleŝy przyjąć pozom stotnośc 0,01 współczynnk ufnośc 0,99 Zadane 1 PonŜsze zestawene
Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane
KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. www.etrapez.pl Strona 1
KURS STATYSTYKA Lekcja 1 Statystyka opsowa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 W statystyce opsowej mamy pełne nformacje
Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński
Mkroekonometra 13 Mkołaj Czajkowsk Wktor Budzńsk Symulacje Analogczne jak w przypadku cągłej zmennej zależnej można wykorzystać metody Monte Carlo do analzy różnego rodzaju problemów w modelach gdze zmenna
Analiza niestacjonarności systemów WIM 1
Poary Autoatyka Kontrola nr 10bs/06 Potr BUROS, AGH AKADEMIA GÓRICZO-HUTICZA, KATEDRA METROLOGII ELEKTROIKI {burnos@agh.edu.pl} Analza nestacjonarnośc systeów WIM 1 Ten utwór jest dostępny na lcencj Creatve
Stanisław Cichocki. Natalia Nehrebecka. Wykład 11
Stansław Cchock Natala Nehrebecka Wykład 11 1 1. Testowane hpotez łącznych 2. Testy dagnostyczne Testowane prawdłowośc formy funkcyjnej: test RESET Testowane normalnośc składnków losowych: test Jarque-Berra
2012-10-11. Definicje ogólne
0-0- Defncje ogólne Logstyka nauka o przepływe surowców produktów gotowych rodowód wojskowy Utrzyywane zapasów koszty zwązane.n. z zarożene kaptału Brak w dostawach koszty zwązane.n. z przestoje w produkcj
Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ
WERYFIKACJA HIPOTEZY O ISTOTNOŚCI OCEN PARAMETRÓW STRUKTURALNYCH MODELU Hpoezy o sonośc oszacowao paramerów zmennych objaśnających Tesowane sonośc paramerów zmennych objaśnających sprowadza sę do nasępującego
Weryfikacja hipotez dla wielu populacji
Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w
ANALIZA KORELACJI WYDATKÓW NA KULTURĘ Z BUDŻETU GMIN ORAZ WYKSZTAŁCENIA RADNYCH
Potr Mchalsk Węzeł Centralny OŻK-SB 25.12.2013 rok ANALIZA KORELACJI WYDATKÓW NA KULTURĘ Z BUDŻETU GMIN ORAZ WYKSZTAŁCENIA RADNYCH Celem ponższej analzy jest odpowedź na pytane: czy wykształcene radnych
Metody predykcji analiza regresji
Metody predykcj analza regresj TPD 008/009 JERZY STEFANOWSKI Instytut Informatyk Poltechnka Poznańska Przebeg wykładu. Predykcja z wykorzystanem analzy regresj.. Przypomnene wadomośc z poprzednch przedmotów..
Metody uczenia z nadzorem kalibracja, dyskryminacja i klasyfikacja
Metody uczenia z nadzorem kalibracja, dyskryminacja i klasyfikacja I. Stanimirova, M. Daszykowski i B. Walczak Zakład Chemometrii, Instytut Chemii, Uniwersytet Śląski, ul. Szkolna 9, 40-006 Katowice http://www.chemometria.us.edu.pl.
I. Elementy analizy matematycznej
WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem
Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego
Portel nwestycyjny ćwczena Na podst. Wtold Jurek: Konstrukcja analza rozdzał 5 dr chał Konopczyńsk Portele zawerające walor pozbawony ryzyka. lementy teor rynku kaptałowego 1. Pożyczane penędzy amy dwa
Natalia Nehrebecka Stanisław Cichocki. Wykład 10
Natala Nehrebecka Stansław Cchock Wykład 10 1 1. Testy dagnostyczne 2. Testowane prawdłowośc formy funkcyjnej modelu 3. Testowane normalnośc składnków losowych 4. Testowane stablnośc parametrów 5. Testowane
Regresja liniowa i nieliniowa
Metody prognozowana: Regresja lnowa nelnowa Dr nż. Sebastan Skoczypec Zmenna losowa Zmenna losowa X zmenna, która w wynku pewnego dośwadczena przyjmuje z pewnym prawdopodobeństwem wartość z określonego
Badania sondażowe. Braki danych Konstrukcja wag. Agnieszka Zięba. Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa
Badana sondażowe Brak danych Konstrukcja wag Agneszka Zęba Zakład Badań Marketngowych Instytut Statystyk Demograf Szkoła Główna Handlowa 1 Błędy braku odpowedz Całkowty brak odpowedz (UNIT nonresponse)
Rozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany
Wykład II ELEKTROCHEMIA Wykład II b Nadnapęce Równane Buttlera-Volmera Równana Tafela Równowaga dynamczna prąd wymany Jeśl układ jest rozwarty przez elektrolzer ne płyne prąd, to ne oznacza wcale, że na
Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)
Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz
Fizyka 1- Mechanika. Wykład 7 16.XI Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów
zyka - Mechanka Wykład 7 6.XI.07 Zygunt Szeflńsk Środowskowe Laboratoru Cężkch Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Zasada zachowana pędu Układ zolowany Każde cało oże w dowolny sposób oddzaływać
Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.
Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można
System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ Autor: Joanna Wójcik
Opracowane w ramach projektu System Przecwdzałana Powstawanu Bezroboca na Terenach Słabo Zurbanzowanych ze środków Europejskego Funduszu Społecznego w ramach Incjatywy Wspólnotowej EQUAL PARTNERSTWO NA
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność
1.1. Uprość opis zdarzeń: 1.2. Uprościć opis zdarzeń: a) A B A Uprościć opis zdarzeń: 1.4. Uprościć opis zdarzeń:
.. Uprość ops zdarzeń: a) A B, A \ B b) ( A B) ( A' B).. Uproścć ops zdarzeń: a) A B A b) A B, ( A B) ( B C).. Uproścć ops zdarzeń: a) A B A B b) A B C ( A B) ( B C).4. Uproścć ops zdarzeń: a) A B, A B
Analiza korelacji i regresji
Analza korelacj regresj Zad. Pewen zakład produkcyjny zatrudna pracownków fzycznych. Ich wydajność pracy (Y w szt./h) oraz mesęczne wynagrodzene (X w tys. zł) przedstawa ponższa tabela: Pracownk y x A
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane
65120/ / / /200
. W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę
WYKORZYSTANIE WSPÓŁCZYNNIKA GINIEGO DO OCENY RYZYKA SYSTEMATYCZNEGO
METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH To XI/, 010, str. 01 10 WYKORZYSTANIE WSPÓŁCZYNNIKA GINIEGO DO OCENY RYZYKA SYSTEMATYCZNEGO Elżbeta Majewska Instytut Mateatyk, Unwersytet w Bałystoku e-al: ela@ath.uwb.edu.pl
Statystyka. Wykład 8. Magdalena Alama-Bućko. 10 kwietnia Magdalena Alama-Bućko Statystyka 10 kwietnia / 31
Statystyka Wykład 8 Magdalena Alama-Bućko 10 kwietnia 2017 Magdalena Alama-Bućko Statystyka 10 kwietnia 2017 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia
UOGÓLNIONA MIARA DOPASOWANIA W MODELU LINIOWYM
UOGÓLNIONA MIARA DOPASOWANIA W MODELU LINIOWYM Wojciech Zieliński Katedra Ekonoetrii i Statystyki, SGGW Nowoursynowska 159, PL-0-767 Warszawa wojtekzielinski@statystykainfo Streszczenie: W odelu regresji
Statystyczna analiza danych
Statystyczna analiza danych Korelacja i regresja Ewa Szczurek szczurek@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski 1/30 Ostrożnie z interpretacją p wartości p wartości zależą od dwóch rzeczy
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Interpretacja parametrów przy zmennych objaśnających cągłych Semelastyczność 2. Zastosowane modelu potęgowego Model potęgowy 3. Zmenne cągłe za zmenne dyskretne
ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012
ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW (88)/01 Hubert Sar, Potr Fundowcz 1 WYZNACZANIE ASOWEGO OENTU BEZWŁADNOŚCI WZGLĘDE OSI PIONOWEJ DLA SAOCHODU TYPU VAN NA PODSTAWIE WZORU EPIRYCZNEGO 1. Wstęp asowy moment
Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ
Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,
ZASTOSOWANIE UOGÓLNIONEGO WSPÓŁCZYNNIKA GINIEGO DO POMIARU RYZYKA SPÓŁEK WCHODZĄCYCH W SKŁAD INDEKSU WIG20
Elżbeta Majewska Robert Jankowsk Unwersytet w Bałystoku ZASTOSOWANIE UOGÓLNIONEGO WSPÓŁCZYNNIKA GINIEGO DO POMIARU RYZYKA SPÓŁEK WCHODZĄCYCH W SKŁAD INDEKSU WIG20 Wprowadzene Klasyczna analza portfel nwestycyjnych
2 PRAKTYCZNA REALIZACJA PRZEMIANY ADIABATYCZNEJ. 2.1 Wprowadzenie
RAKTYCZNA REALIZACJA RZEMIANY ADIABATYCZNEJ. Wprowadzene rzeana jest adabatyczna, jeśl dla każdych dwóch stanów l, leżących na tej przeane Q - 0. Z tej defncj wynka, że aby zrealzować wyżej wyenony proces,
STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH
STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj
Zestaw zadań 4: Przestrzenie wektorowe i podprzestrzenie. Liniowa niezależność. Sumy i sumy proste podprzestrzeni.
Zestaw zadań : Przestrzene wektorowe podprzestrzene. Lnowa nezależność. Sumy sumy proste podprzestrzen. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar :
Procedura normalizacji
Metody Badań w Geograf Społeczno Ekonomcznej Procedura normalzacj Budowane macerzy danych geografcznych mgr Marcn Semczuk Zakład Przedsęborczośc Gospodark Przestrzennej Instytut Geograf Unwersytet Pedagogczny
Pokazać, że wyżej zdefiniowana struktura algebraiczna jest przestrzenią wektorową nad ciałem
Zestaw zadań : Przestrzene wektorowe. () Wykazać, że V = C ze zwykłym dodawanem jako dodawanem wektorów operacją mnożena przez skalar : C C C, (z, v) z v := z v jest przestrzeną lnową nad całem lczb zespolonych
Analiza zależności zmiennych ilościowych korelacja i regresja
Analza zależnośc zmennych loścowych korelacja regresja JERZY STEFANOWSKI Instytut Informatyk Poltechnka Poznańska Plan wykładu 1. Lnowa zależność mędzy dwoma zmennym: Prosta regresja Metoda najmnejszych
0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4
Zad. 1. Dana jest unkcja prawdopodobeństwa zmennej losowej X -5-1 3 8 p 1 1 c 1 Wyznaczyć: a. stałą c b. wykres unkcj prawdopodobeństwa jej hstogram c. dystrybuantę jej wykres d. prawdopodobeństwa: P (
Analiza współzależności zjawisk
Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.
t t t t T 2 Interpretacja: Przeciętna wartość zmiennej objaśnianej różni się od wartości teoretycznej średnio o
Cele werfacj odelu Werfacja sasczna odelu polega na oblczenu szeregu ernów jaośc odelu oraz werfacj pewnch hpoez sascznch w celu sprawdzena cz na podsawe ego odelu ożna wcągać wnos doczące badanego zjawsa
Współczynnik korelacji liniowej oraz funkcja regresji liniowej dwóch zmiennych
Współcznnk korelacj lnowej oraz funkcja regresj lnowej dwóch zmennch S S r, cov współcznnk determnacj R r Współcznnk ndetermnacj ϕ r Zarówno współcznnk determnacj jak ndetermnacj po przemnożenu przez 00
XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne
XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca
Zadanie 2. Dany jest szereg rozdzielczy przedziałowy, wyznaczyć następujące miary: 0 5 5 wariancja, odchylenie standardowe
Zadane 1. Dany jet zereg przedzałowy, wyznaczyć natępujące mary: x n średna arytmetyczna 1 10 warancja, odchylene tandardowe 15 domnanta 3 0 medana 4 35 kurtoza 5 0 6 15 Zadane. Dany jet zereg rozdzelczy
Stanisław Cichocki. Natalia Nehrebecka. Wykład 6
Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Model potęgowy Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych
KORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI PRACY
STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36, T. 1 Barbara Batóg *, Jacek Batóg ** Unwersytet Szczecńsk ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI
TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE
POLITHNIKA RZSZOWSKA Katedra Podstaw lektronk Instrkcja Nr4 F 00/003 sem. letn TRANZYSTOR IPOLARNY HARAKTRYSTYKI STATYZN elem ćwczena jest pomar charakterystyk statycznych tranzystora bpolarnego npn lb
Funkcje i charakterystyki zmiennych losowych
Funkcje charakterystyk zmennych losowych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Funkcje zmennych losowych
Przypomnienie: wykłady i zadania kursu były zaczerpnięte z podręczników: Model statystyczny Format danych
Wkład 13: (prota) regreja lnowa Model tattczn Format danch Przedzał ufnośc tet totnośc dla parametrów modelu Przpomnene: wkład zadana kuru bł zaczerpnęte z podręcznków: Stattka dla tudentów kerunków techncznch
ZAŁĄCZNIKI ROZPORZĄDZENIA DELEGOWANEGO KOMISJI
KOMISJA EUROPEJSKA Bruksela, dna 27.4.2018 C(2018) 2460 fnal ANNEXES 1 to 2 ZAŁĄCZNIKI do ROZPORZĄDZENIA DELEGOWANEGO KOMISJI w sprawe zany sprostowana rozporządzena delegowanego (UE) 2017/655 uzupełnającego
ZJAZD 4. gdzie E(x) jest wartością oczekiwaną x
ZJAZD 4 KORELACJA, BADANIE NIEZALEŻNOŚCI, ANALIZA REGRESJI Analiza korelacji i regresji jest działem statystyki zajmującym się badaniem zależności i związków pomiędzy rozkładami dwu lub więcej badanych
Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA
Problemy jednoczesnego testowana welu hpotez statystycznych ch zastosowana w analze mkromacerzy DNA Konrad Furmańczyk Katedra Zastosowań Matematyk SGGW Plan referatu Testowane w analze mkromacerzy DNA
Stanisław Cichocki. Natalia Nehrebecka. Wykład 7
Stansław Cchock Natala Nehrebecka Wykład 7 . Zmenne dyskretne Kontrasty: efekty progowe, kontrasty w odchylenach Interakcje. Przyblżane model nelnowych Stosowane do zmennych dyskretnych o uporządkowanych
METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów.
Opracowane: Dorota Mszczyńska METODA UNITARYZACJI ZEROWANEJ Porównane obektów przy ocene welokryteralnej. Rankng obektów. Porównane wybranych obektów (warantów decyzyjnych) ze względu na różne cechy (krytera)
BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG20
Darusz Letkowsk Unwersytet Łódzk BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG0 Wprowadzene Teora wyboru efektywnego portfela nwestycyjnego zaproponowana przez H. Markowtza oraz jej rozwnęca
Natalia Nehrebecka. Dariusz Szymański
Natala Nehrebecka Darusz Szymańsk . Sprawy organzacyjne Zasady zalczena Ćwczena Lteratura. Czym zajmuje sę ekonometra? Model ekonometryczny 3. Model lnowy Postać modelu lnowego Zaps macerzowy modelu dl
Pattern Classification
attern Classfcaton All materals n these sldes were taken from attern Classfcaton nd ed by R. O. Duda,. E. Hart and D. G. Stork, John Wley & Sons, 000 wth the permsson of the authors and the publsher Chapter
WYBRANE STATYSTYKI ODPORNE
Grażyna Trzpot Unwersytet Ekonomczny w Katowcach WYBRANE STATYSTYKI ODPORNE Wprowadzene Obserwacje oddalone (outlers) są takm obserwacjam w próbe, które mogą powodować zakłócena w ocene relacj w próbe.
Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A
Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe
ANALIZA REGRESJI SPSS
NLIZ REGRESJI SPSS Metody badań geografii społeczno-ekonomicznej KORELCJ REGRESJ O ile celem korelacji jest zmierzenie siły związku liniowego między (najczęściej dwoma) zmiennymi, o tyle w regresji związek
Mikroekonometria 10. Mikołaj Czajkowski Wiktor Budziński
Mkroekonometra 10 Mkołaj Czajkowsk Wktor Budzńsk Wybór uporządkowany Wybór uporządkowany (ang. ordered choce) Wybór jednej z welkośc na podanej skal Skala wartośc są uporządkowane Przykłady: Oceny konsumencke
EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA
EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA Nekedy zachodz koneczność zany okesu kapt. z ównoczesny zachowane efektów opocentowane. Dzeje sę tak w nektóych zagadnenach ateatyk fnansowej np.
(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy
(MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek
Podstawy teorii falek (Wavelets)
Podstawy teor falek (Wavelets) Ψ(). Transformaca Haara (97).. Przykład pewne metody zapsu obrazu Transformaca Haara Przykład zapsu obrazu -D Podstawy matematyczne transformac Algorytmy rozkładana funkc
CZĘŚĆ 6. MODEL REGRESJI, TREND LINIOWY ESTYMACJA, WNIOSKOWANIE
CZĘŚĆ 6. MODEL REGRESJI, TREND LINIOWY ESTYMACJA, WNIOSKOWANIE Zadane 1. Na podstawe obserwacj dotczącch welkośc powerzchn ekspozcjnej (cecha X w m kw.) oraz welkośc dzennego obrotu punktu sprzedaż płtek
SZTUCZNA INTELIGENCJA
SZTUCZNA INTELIGENCJA WYKŁAD 18. ALGORYTMY EWOLUCYJNE - ZASTOSOWANIA Częstochowa 2014 Dr hab. nż. Grzegorz Dudek Wydzał Elektryczny Poltechnka Częstochowska ZADANIE ZAŁADUNKU Zadane załadunku plecakowe
SPRAWDZANIE PRAWA MALUSA
INSTYTUT ELEKTRONIKI I SYSTEMÓW STEROWANIA WYDZIAŁ ELEKTRYCZNY POLITECHNIKA CZĘSTOCHOWSKA LABORATORIUM FIZYKI ĆWICZENIE NR O- SPRAWDZANIE PRAWA MALUSA I. Zagadnena do przestudowana 1. Fala elektromagnetyczna,
Siła jest przyczyną przyspieszenia. Siła jest wektorem. Siła wypadkowa jest sumą wektorową działających sił.
1 Sła jest przyczyną przyspeszena. Sła jest wektorem. Sła wypadkowa jest sumą wektorową dzałających sł. Sr Isaac Newton (164-177) Jeśl na cało ne dzała żadna sła lub sły dzałające równoważą sę, to cało
Sztuczne sieci neuronowe. Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyki, p. 311
Sztuczne sec neuronowe Krzysztof A. Cyran POLITECHNIKA ŚLĄSKA Instytut Informatyk, p. 311 Wykład 6 PLAN: - Repetto (brevs) - Sec neuronowe z radalnym funkcjam bazowym Repetto W aspekce archtektury: zajmowalśmy
Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne
ś POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr nż. Łukasz Amanowcz Systemy Ochrony Powetrza Ćwczena Laboratoryjne 2 TEMAT ĆWICZENIA: Oznaczane lczbowego rozkładu lnowych projekcyjnych
Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak
Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Redakcja i korekta Bogdan Baran Projekt graficzny okładki Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2011 ISBN