Znajdowanie maksymalnych skojarzeń przy pomocy eliminacji Gaussa

Save this PDF as:

Wielkość: px
Rozpocząć pokaz od strony:

Download "Znajdowanie maksymalnych skojarzeń przy pomocy eliminacji Gaussa"

Transkrypt

1 Znajdowanie maksymalnych skojarzeń przy pomocy eliminacji Gaussa Marcin Mucha, Piotr Sankowski Instytut Informatyki, Uniwersytet Warszawski - p. 1/55

2 Definicja problemu Skojarzeniem w grafie G = (V, E) nazywamy zbiór krawędzi M E taki, że żadne dwie krawędzie w M nie maja wspólnego końca. - p. 2/55

3 Definicja problemu Skojarzeniem w grafie G = (V, E) nazywamy zbiór krawędzi M E taki, że żadne dwie krawędzie w M nie maja wspólnego końca. Doskonałe skojarzenie to skojarzenie o liczności V /2. - p. 2/55

4 Definicja problemu Skojarzeniem w grafie G = (V, E) nazywamy zbiór krawędzi M E taki, że żadne dwie krawędzie w M nie maja wspólnego końca. Doskonałe skojarzenie to skojarzenie o liczności V /2. Chcemy znajdować doskonałe skojarzenia lub najliczniejsze skojarzenia w grafie. - p. 2/55

5 Poprzednie wyniki Najszybsze dotychczas znane algorytmy działaja w czasie: O(m n) dla grafów dwudzielnych Hopcroft, Karp, - p. 3/55

6 Poprzednie wyniki Najszybsze dotychczas znane algorytmy działaja w czasie: O(m n) dla grafów dwudzielnych Hopcroft, Karp, O(m n) dla dowolnych grafów Micali, Vazirani, - p. 3/55

7 Poprzednie wyniki Najszybsze dotychczas znane algorytmy działaja w czasie: O(m n) dla grafów dwudzielnych Hopcroft, Karp, O(m n) dla dowolnych grafów Micali, Vazirani, Dla grafów gęstych otrzymujemy czas O(n 2.5 ). - p. 3/55

8 Techniki algebraiczne Techniki algebraicznie: O(n ω ) = O(n 2.38 ) testowanie i wyznaczanie liczności Lovász, - p. 4/55

9 Techniki algebraiczne Techniki algebraicznie: O(n ω ) = O(n 2.38 ) testowanie i wyznaczanie liczności Lovász, O(n ω+1 ) = O(n 3.38 ) znajdowanie Rabin, Vazirani. - p. 4/55

10 Nasze wyniki Nowa metoda oparta na eliminacji Gaussa. - p. 5/55

11 Nasze wyniki Nowa metoda oparta na eliminacji Gaussa. Algebraicznie algorytmy znajduj ace najliczniejsze skojarzenie w grafach: - p. 5/55

12 Nasze wyniki Nowa metoda oparta na eliminacji Gaussa. Algebraicznie algorytmy znajdujace najliczniejsze skojarzenie w grafach: bardzo prosty algorytm O(n 3 ), - p. 5/55

13 Nasze wyniki Nowa metoda oparta na eliminacji Gaussa. Algebraicznie algorytmy znajdujace najliczniejsze skojarzenie w grafach: bardzo prosty algorytm O(n 3 ), algorytm O(n ω ) = O(n 2.38 ). - p. 5/55

14 Nasze wyniki Nowa metoda oparta na eliminacji Gaussa. Algebraicznie algorytmy znajdujace najliczniejsze skojarzenie w grafach: bardzo prosty algorytm O(n 3 ), algorytm O(n ω ) = O(n 2.38 ). Obydwa algorytmy sa randomizowane. - p. 5/55

15 Grafy Planarne Najszybsze dotychczas znane algorytmy działaja w czasie: O(n 4 3) dla dwudzielnych grafów planarnych Klein, Rao, Rauch, Subramanian, - p. 6/55

16 Grafy Planarne Najszybsze dotychczas znane algorytmy działaja w czasie: O(n 4 3) dla dwudzielnych grafów planarnych Klein, Rao, Rauch, Subramanian, O(n n) dla dowolnych grafów planarnych Micali, Vazirani, - p. 6/55

17 Grafy Planarne Najszybsze dotychczas znane algorytmy działaja w czasie: O(n 4 3) dla dwudzielnych grafów planarnych Klein, Rao, Rauch, Subramanian, O(n n) dla dowolnych grafów planarnych Micali, Vazirani, Nasze wyniki: prosty algorytm O(n 3 2), - p. 6/55

18 Grafy Planarne Najszybsze dotychczas znane algorytmy działaja w czasie: O(n 4 3) dla dwudzielnych grafów planarnych Klein, Rao, Rauch, Subramanian, O(n n) dla dowolnych grafów planarnych Micali, Vazirani, Nasze wyniki: prosty algorytm O(n 3 2), algorytm O(n ω 2 ) = O(n 1.19 ). - p. 6/55

19 Plan 1. Technika Lovásza, - p. 7/55

20 Plan 1. Technika Lovásza, 2. Maksymalne skojarzenia, - p. 7/55

21 Plan 1. Technika Lovásza, 2. Maksymalne skojarzenia, 3. Rabin and Vazirani, - p. 7/55

22 Plan 1. Technika Lovásza, 2. Maksymalne skojarzenia, 3. Rabin and Vazirani, 4. Eliminacja Gaussa, - p. 7/55

23 Plan 1. Technika Lovásza, 2. Maksymalne skojarzenia, 3. Rabin and Vazirani, 4. Eliminacja Gaussa, 5. Proste algorytmy O(n 3 ), - p. 7/55

24 Plan 1. Technika Lovásza, 2. Maksymalne skojarzenia, 3. Rabin and Vazirani, 4. Eliminacja Gaussa, 5. Proste algorytmy O(n 3 ), 6. Algorytm O(n ω ) dla grafów dwudzielnych, - p. 7/55

25 Plan 1. Technika Lovásza, 2. Maksymalne skojarzenia, 3. Rabin and Vazirani, 4. Eliminacja Gaussa, 5. Proste algorytmy O(n 3 ), 6. Algorytm O(n ω ) dla grafów dwudzielnych, 7. Algorytm O(n ω ) dla dowolnych grafów. - p. 7/55

26 Szybkie mnorzenie macierzy Niech ω oznacza wykładnik mnożenia macierzy rozmiaru n n. - p. 8/55

27 Szybkie mnorzenie macierzy Niech ω oznacza wykładnik mnożenia macierzy rozmiaru n n. Twierdzenie 1 (Coppersmith i Winograd 90) ω < p. 8/55

28 Szybkie mnorzenie macierzy Niech ω oznacza wykładnik mnożenia macierzy rozmiaru n n. Twierdzenie 1 (Coppersmith i Winograd 90) ω < Twierdzenie 2 (Bunch i Hopcroft 74) LU-faktoryzację macierzy można policzyć w czasie O(n ω ). - p. 8/55

29 Szybkie mnorzenie macierzy Niech ω oznacza wykładnik mnożenia macierzy rozmiaru n n. Twierdzenie 1 (Coppersmith i Winograd 90) ω < Twierdzenie 2 (Bunch i Hopcroft 74) LU-faktoryzację macierzy można policzyć w czasie O(n ω ). Twierdzenie 3 (Ibarra, Moran i Hui 82) Maksymalną nieosobliwą podmacierz mozna znaleźć w czaise O(n ω ). - p. 8/55

30 Symboliczna macierz sasiedztwa Symboliczna macierz sasiedztwa grafu dwudzielnego: G Ã(G) = x 11 0 x x 21 x x x x 42 x x x 54 x 55 x x p. 9/55

31 Symboliczna macierz sasiedztwa det x 11 0 x x 21 x x x x 42 x x x 54 x 55 x x 66 = x 13 x 21 x 34 x 42 x 55 x 66 x 11 x 22 x 34 x 43 x 55 x 66. = Jednomiany wyznacznika odpowiadaj a doskonałym skojarzeniom w G. - p. 10/55

32 Symboliczna macierz sasiedztwa Wyznacznik jest dany przez: det(a) = p Π n σ(p) n i=1 a i,pi. - p. 11/55

33 Symboliczna macierz sasiedztwa Wyznacznik jest dany przez: det(a) = p Π n σ(p) n i=1 a i,pi. Niezerowy składnik tej sumy dla każdego wierzchołka i zadaje inny wierzchołek p i. - p. 11/55

34 Symboliczna macierz sasiedztwa Wyznacznik jest dany przez: det(a) = p Π n σ(p) n i=1 a i,pi. Niezerowy składnik tej sumy dla każdego wierzchołka i zadaje inny wierzchołek p i. Składniki sumy odpowiadaj a doskonałym skojarzeniem w grafie. - p. 11/55

35 Symboliczna macierz sasiedztwa Symboliczna macierz sasiedztwa dla dowolnego grafu: G = Ã(G) 0 x 12 x 13 x 14 x 15 x 16 x 12 0 x x 26 x 13 x 23 0 x x 14 0 x 34 0 x 45 0 x x 45 0 x 56 x 16 x x p. 12/55

36 Symboliczna macierz sasiedztwa Twierdzenie 4 (Tutte (1947)) det Ã(G) = 0 wttw gdy G ma doskonałe skojarzenie. - p. 13/55

37 Symboliczna macierz sasiedztwa Twierdzenie 4 (Tutte (1947)) det Ã(G) = 0 wttw gdy G ma doskonałe skojarzenie. Wyznacznik jest dany przez: det(a) = p Π n σ(p) n i=1 a i,pi. - p. 13/55

38 Symboliczna macierz sasiedztwa Twierdzenie 4 (Tutte (1947)) det Ã(G) = 0 wttw gdy G ma doskonałe skojarzenie. Wyznacznik jest dany przez: det(a) = p Π n σ(p) n i=1 a i,pi. Niezerowy wyraz sumy odpowiada pokryciu G skierowanymi cyklami. - p. 13/55

39 Symboliczna macierz sasiedztwa Pokrycia cyklami parzystej długości zadaj a skojarzenia. - p. 14/55

40 Symboliczna macierz sasiedztwa Pokrycia cyklami parzystej długości zadaja skojarzenia. Rozważmy pokrycie p zawieraj ace cykl C nieparzystej długości. - p. 14/55

41 Symboliczna macierz sasiedztwa Pokrycia cyklami parzystej długości zadaja skojarzenia. Rozważmy pokrycie p zawierajace cykl C nieparzystej długości. Wkład p kasuje się z wkładem p, w którym C skierowany jest przeciwnie, bo p ma: - p. 14/55

42 Symboliczna macierz sasiedztwa Pokrycia cyklami parzystej długości zadaja skojarzenia. Rozważmy pokrycie p zawierajace cykl C nieparzystej długości. Wkład p kasuje się z wkładem p, w którym C skierowany jest przeciwnie, bo p ma: te same zmienne, - p. 14/55

43 Symboliczna macierz sasiedztwa Pokrycia cyklami parzystej długości zadaja skojarzenia. Rozważmy pokrycie p zawierajace cykl C nieparzystej długości. Wkład p kasuje się z wkładem p, w którym C skierowany jest przeciwnie, bo p ma: te same zmienne, ta sama parzystość, - p. 14/55

44 Symboliczna macierz sasiedztwa Pokrycia cyklami parzystej długości zadaja skojarzenia. Rozważmy pokrycie p zawierajace cykl C nieparzystej długości. Wkład p kasuje się z wkładem p, w którym C skierowany jest przeciwnie, bo p ma: te same zmienne, ta sama parzystość, przeciwne znaki w C. - p. 14/55

45 Symboliczna macierz sasiedztwa Wartość det Ã(G) to wielomian n 2 zmiennych stopnia n. Może mieć wykładniczo wiele składników. - p. 15/55

46 Symboliczna macierz sasiedztwa Wartość det Ã(G) to wielomian n 2 zmiennych stopnia n. Może mieć wykładniczo wiele składników. Nie można go szybko wyliczyć, ale można szybko przetestować czy jest niezerowy. - p. 15/55

47 Pomysł Lovásza Podstaw za zmienne w Ã(G) losowe wartości i policz wyznacznik otrzymanej w ten sposób macierzy A(G) losowej macierzy sąsiedztwa. Z dużym prawdopodobieństwem det A(G) = 0 wttw det Ã(G) = 0, bo wielomiany nie maja zbyt wielu zer. - p. 16/55

48 Pomysł Lovásza Lemat 5 (Zippel, Schwartz) Niech f(x 1,..., x k ) będzie wielomianem stopnia d nad ciałem F. Liczba zer f w F k jest nie większa niż d F F k. - p. 17/55

49 Pomysł Lovásza Lemat 5 (Zippel, Schwartz) Niech f(x 1,..., x k ) będzie wielomianem stopnia d nad ciałem F. Liczba zer f w F k jest nie większa niż d F F k. Niech F = Z p dla liczby pierwszej p = Θ(n 1+c ). Operacje w Z p wykonujemy w czasie stałym - p. 17/55

50 Pomysł Lovásza Lemat 5 (Zippel, Schwartz) Niech f(x 1,..., x k ) będzie wielomianem stopnia d nad ciałem F. Liczba zer f w F k jest nie większa niż d F F k. Niech F = Z p dla liczby pierwszej p = Θ(n 1+c ). Operacje w Z p wykonujemy w czasie stałym Prawdopodobieństwo otrzymania fałszywego zera jest O( 1 n c ). - p. 17/55

51 Pomysł Lovásza Algorytm O(n ω ) (Monte Carlo) testujacy, czy graf G ma doskonałe skojarzenie: podstaw pod zmienne w Ã(G) losowe elementy Z P niech A(G) będzie otrzymana macierza if det A(G) <> 0 then return TAK else return NIE - p. 18/55

52 Pomysł Lovásza Algorytm O(n ω+2 ) (Monte Carlo) znajdujacy w G doskonałe skojarzenie: M := for e E do if G e ma doskonałe skojarzenie then usuń e wraz z końcami z G dodaj e do M - p. 19/55

53 Maksymalne skojarzenia Twierdzenie 6 (Lovász (79)) Niech m będzie rozmiarem najliczniejszego skojarzenia w G, wtedy rank(ã(g)) = 2m. - p. 20/55

54 Maksymalne skojarzenia Twierdzenie 6 (Lovász (79)) Niech m będzie rozmiarem najliczniejszego skojarzenia w G, wtedy rank(ã(g)) = 2m. Rangę Ã(G) można policzyć w czasie O(n ω ). - p. 20/55

55 Maksymalne skojarzenia Twierdzenie 6 (Lovász (79)) Niech m będzie rozmiarem najliczniejszego skojarzenia w G, wtedy rank(ã(g)) = 2m. Rangę Ã(G) można policzyć w czasie O(n ω ). Niech M będzie skojarzeniem wtedy z twierdzenia Tutte à V(M),V(M) (G) jest nieosobliwa rank(ã(g)) 2m. - p. 20/55

56 Maksymalne skojarzenia Niech à X,Y (G) będzie maksymalna nieosobliwa podmacierza Ã(G). - p. 21/55

57 Maksymalne skojarzenia Niech à X,Y (G) będzie maksymalna nieosobliwa podmacierza Ã(G). Niech p to niezerowy wyraz w det(ã X,Y (G)). - p. 21/55

58 Maksymalne skojarzenia Niech à X,Y (G) będzie maksymalna nieosobliwa podmacierza Ã(G). Niech p to niezerowy wyraz w det(ã X,Y (G)). Niech p to niezerowy wyraz w det(ã Y,X (G)) antysymetria. - p. 21/55

59 Maksymalne skojarzenia Niech à X,Y (G) będzie maksymalna nieosobliwa podmacierza Ã(G). Niech p to niezerowy wyraz w det(ã X,Y (G)). Niech p to niezerowy wyraz w det(ã Y,X (G)) antysymetria. Suma p p to pokrycie conajmniej X wierzchołków w G cyklami parzystej długości rank(ã(g)) 2m - p. 21/55

60 Algorytm Rabina i Vaziraniego A 1 i,j = ( 1) i+j det A j,i / det A, gdzie A j,i to A z usuniętym j-tym wierszem i i-ta kolumna. - p. 22/55

61 Algorytm Rabina i Vaziraniego A 1 i,j = ( 1) i+j det A j,i / det A, gdzie A j,i to A z usuniętym j-tym wierszem i i-ta kolumna. Jeżeli G to graf dwudzielny to, wtedy A j,i = A(G {u j, v i }). - p. 22/55

62 Algorytm Rabina i Vaziraniego A 1 i,j = ( 1) i+j det A j,i / det A, gdzie A j,i to A z usuniętym j-tym wierszem i i-ta kolumna. Jeżeli G to graf dwudzielny to, wtedy A j,i = A(G {u j, v i }). Macierz A(G) 1 koduje które krawędzie w G s a dozwolone, tj. zawarte w pewnym doskonałym skojarzeniu. - p. 22/55

63 Algorytm Rabina i Vaziraniego A 1 i,j = ( 1) i+j det A j,i / det A, gdzie A j,i to A z usuniętym j-tym wierszem i i-ta kolumna. Jeżeli G to graf dwudzielny to, wtedy A j,i = A(G {u j, v i }). Macierz A(G) 1 koduje które krawędzie w G sa dozwolone, tj. zawarte w pewnym doskonałym skojarzeniu. Podobnie jest dla dowolnych grafów. - p. 22/55

64 Algorytm Rabina i Vaziraniego Algorytm O(n ω+1 ) = O(n 3.38 ) (Monte Carlo) na znajdowanie doskonałego skojarzenia w G: M := while G niepusty do policz A 1 (G) znajdź dozwolona krawędź e E usuń e wraz z końcami z G dodaj e do M - p. 23/55

65 Eliminacja Gaussa Twierdzenie 7 (Twierdzenie o eliminacji) Niech ( ) ( ) a1,1 v A = T, A 1 â1,1 ˆv = T u B û ˆB, gdzie â 1,1 = 0. Wtedy B 1 = ˆB û ˆv T /â 1,1. Jest to pojedynczy krok algorytmu eliminacji Gaussa. - p. 24/55

66 Algorytm O(n 3 ) Algorytm Monte Carlo znajdujacy doskonałe skojarzenie w danym grafie G w czasie O(n 3 ): M := oblicz A 1 (G) while G non-empty do znajdź dozwolona krawędź e E usuń e wraz z końcami z G dodaj e do M uaktualnij A 1 (G) używajac eliminacji Gaussa - p. 25/55

67 Leniwe obliczenia u 1 v T u k v T k = u 1... u k v T 1. v T k - p. 26/55

68 Eliminacja bez zamian Algorytm wykonujacy eliminację Gaussa bez zamian wierszy ani kolumn w czasie O(n ω ). for i := 1 to n do leniwie eliminuj i-ty wiersz i i-ta kolumnę niech k będzie takie, że 2 k i, ale 2 k+1 i uaktualnij wiersze i kolumny o numerach i + 1,..., i + 2 k - p. 27/55

69 Eliminacja bez zamian W każdym kroku wykonujemy mnożenie macierzy n 2 k przez macierz 2 k 2 k w czasie (n/2 k )(2 k ) ω = n2 k(ω 1). - p. 28/55

70 Eliminacja bez zamian W każdym kroku wykonujemy mnożenie macierzy n 2 k przez macierz 2 k 2 k w czasie (n/2 k )(2 k ) ω = n2 k(ω 1). Konkretna wartość k pojawia się n/2 k razy, a zatem obliczenia dla ustalonego k wymagaja czasu n 2 2 k(ω 2) = n 2 (2 ω 2 ) k. - p. 28/55

71 Eliminacja bez zamian W każdym kroku wykonujemy mnożenie macierzy n 2 k przez macierz 2 k 2 k w czasie (n/2 k )(2 k ) ω = n2 k(ω 1). Konkretna wartość k pojawia się n/2 k razy, a zatem obliczenia dla ustalonego k wymagaja czasu n 2 2 k(ω 2) = n 2 (2 ω 2 ) k. log n k=0 n 2 (2 ω 2 ) k Cn 2 (2 ω 2 ) log n = Cn 2 n ω 2 = Cn ω. - p. 28/55

72 Weryfikacja skojarzenia Twierdzenie 8 Maksymalne w sensie zawierania dozwolone podskojarzenie M danego skojarzenia M w G można znaleźć w czasie O(n ω ) (Monte Carlo). - p. 29/55

73 Weryfikacja skojarzenia Twierdzenie 8 Maksymalne w sensie zawierania dozwolone podskojarzenie M danego skojarzenia M w G można znaleźć w czasie O(n ω ) (Monte Carlo). v 2 v 1 v 1 v 2 v 3 v 4... v n 1 v n v 4 v 3... v n 1 v n... - p. 29/55

74 Eliminacja bez zamian kolumn Algorytm Hopcrofta-Buncha wykonujacy eliminację Gaussa bez zamian kolumn w czasie O(n ω ). for i := 1 to n do znajdź wiersz j taki, że A i,j = 0 leniwie eliminuj j-ty wiersz i i-ta kolumnę niech k będzie takie, że 2 k i, ale 2 k+1 i uaktualnij kolumny i + 1,..., i + 2 k - p. 30/55

75 Eliminacja bez zamian kolumn? A B C - p. 31/55

76 Przypadek dwudzielny Twierdzenie 9 Doskonałe skojarzenie w grafie dwudzielnym można znaleźć w czasie O(n ω ) przy pomocy zmodyfikowanego algorytmu Hopcrofta-Buncha. - p. 32/55

77 Dowolne grafy grafy dwudzielne dowolne grafy?? W przypadku ogólnym efektywne opóźnianie obliczeń wydaje się niemożliwe. - p. 33/55

78 Dowolne grafy Algorytm znajdujacy doskonałe skojarzenia w dowolnych grafach: znajdź skojarzenie zachłanne M w G wybierz z M maksymalne dozwolone podskojarzenie M skojarz wierzchołki M i usuń je z G if M n/8 then znajdź doskonałe skojarzenie w G else podziel G na mniejsze grafy znajdź w nich doskonałe skojarzenia - p. 34/55

79 Rozklad kanoniczny Graf elementarny to taki graf majacy doskonałe skojarzenie, w którym dozwolone krawędzie tworza podgraf spójny. - p. 35/55

80 Rozklad kanoniczny Graf elementarny to taki graf majacy doskonałe skojarzenie, w którym dozwolone krawędzie tworza podgraf spójny. Wystarczy rozpatrywać grafy elementarne. - p. 35/55

81 Rozklad kanoniczny Graf elementarny to taki graf majacy doskonałe skojarzenie, w którym dozwolone krawędzie tworza podgraf spójny. Wystarczy rozpatrywać grafy elementarne. Dla G elementarnego, niech G będzie następujac a relacja: u G v wtw G {u, v} nie ma doskonałego skojarzenia. - p. 35/55

82 Rozklad kanoniczny Graf elementarny to taki graf majacy doskonałe skojarzenie, w którym dozwolone krawędzie tworza podgraf spójny. Wystarczy rozpatrywać grafy elementarne. Dla G elementarnego, niech G będzie następujac a relacja: u G v wtw G {u, v} nie ma doskonałego skojarzenia. Relację G można odczytać z macierzy A(G) 1. - p. 35/55

83 Rozklad kanoniczny Twierdzenie 10 G jest relacją równoważności. Rozkladem kanonicznym G, ozn. P(G), nazywamy zbiór V(G)/ G. - p. 36/55

84 Rozklad kanoniczny Twierdzenie 11 (Twierdzenie o rozkładzie) Niech G będzie elementarny, S P(G), S 2, i niech C będzie spójną składową G S. Wtedy: 1. Graf dwudzielny G S otrzymany z G przez ściągnięcie każdej ze składowych G S do pojedynczego wierzchołka i usunięcie krawędzi w S, jest elementarny; 2. Składowa C jest factor-critical; 3. Graf C otrzymany z G[V(C) S] przez ściągnięcie zbioru S do pojedynczego wierzchołka v c, jest elementarny; 4. P(C ) = {{v c }} {T V(C) T P(G)}. - p. 37/55

85 Rozklad kanoniczny - p. 38/55

86 Rozklad kanoniczny - p. 39/55

87 Rozklad kanoniczny - p. 40/55

88 Rozklad kanoniczny - p. 41/55

89 Rozklad kanoniczny - p. 42/55

90 Rozklad kanoniczny - p. 43/55

91 Rozklad kanoniczny - p. 44/55

92 Rozklad kanoniczny - p. 45/55

93 Rozklad kanoniczny - p. 46/55

94 Rozklad kanoniczny - p. 47/55

95 Rozklad kanoniczny - p. 48/55

96 Rozklad kanoniczny - p. 49/55

97 Rozklad kanoniczny - p. 50/55

98 Rozklad kanoniczny - p. 51/55

99 Rozklad kanoniczny - p. 52/55

100 Podsumowanie Pokazaliśmy następuj ace algorytmy dla problemu maksymalnego skojarzenia: - p. 53/55

101 Podsumowanie Pokazaliśmy następujace algorytmy dla problemu maksymalnego skojarzenia: 1. Bardzo prosty algorytm o złożoności O(n 3 ); - p. 53/55

102 Podsumowanie Pokazaliśmy następujace algorytmy dla problemu maksymalnego skojarzenia: 1. Bardzo prosty algorytm o złożoności O(n 3 ); 2. Prosty algorytm dla grafów dwudzielnych o złożoności O(n ω ); - p. 53/55

103 Podsumowanie Pokazaliśmy następujace algorytmy dla problemu maksymalnego skojarzenia: 1. Bardzo prosty algorytm o złożoności O(n 3 ); 2. Prosty algorytm dla grafów dwudzielnych o złożoności O(n ω ); 3. Algorytm dla dowolnych grafów o złożoności O(n ω ). - p. 53/55

104 Inne zastosowania Fakt 12 (*) Przy pomocy eliminacji Gaussa można znajdować doskonałe skojarzenia w grafach planarnych w czasie O(n ω/2 ) = O(n 1.19 ). (*) Maximum matchings in Planar Graphs via Gaussian Elimination M. Mucha, P. Sankowski, ESA p. 54/55

105 Znajdowanie maksymalnych skojarzeń przy pomocy eliminacji Gaussa Marcin Mucha, Piotr Sankowski Instytut Informatyki, Uniwersytet Warszawski - p. 55/55

Maksymalne skojarzenia przy pomocy eliminacji Gaussa

Maksymalne skojarzenia przy pomocy eliminacji Gaussa Maksymalne skojarzenia przy pomocy eliminacji Gaussa Piotr Sankowski Instytut Informatyki, Uniwersytet Warszawski - p. 1/60 Poprzednie wyniki Dotychczas usłyszeliśmy o algorytmie działajacym w czasie:

Bardziej szczegółowo

Znajdowanie skojarzeń na maszynie równoległej

Znajdowanie skojarzeń na maszynie równoległej 11 grudnia 2008 Spis treści 1 Skojarzenia w różnych klasach grafów Drzewa Grafy gęste Grafy regularne dwudzielne Claw-free graphs 2 Drzewa Skojarzenia w drzewach Fakt Wybierajac krawędź do skojarzenia

Bardziej szczegółowo

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Macierze

Analiza matematyczna i algebra liniowa Macierze Analiza matematyczna i algebra liniowa Macierze Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: poniedziałek

Bardziej szczegółowo

Podstawowe własności grafów. Wykład 3. Własności grafów

Podstawowe własności grafów. Wykład 3. Własności grafów Wykład 3. Własności grafów 1 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2). 2 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2).

Bardziej szczegółowo

Algorytmy dynamiczne. Piotr Sankowski. - p. 1/14

Algorytmy dynamiczne. Piotr Sankowski. - p. 1/14 Algorytmy dynamiczne Piotr Sankowski - p. 1/14 Dynamiczne: drzewa wyszukiwanie wzorca w tekście spójność grafu problemy algebraiczne (FFT i inne) domknięcie przechodnie oraz dynamiczne macierze najkrótsze

Bardziej szczegółowo

Sortowanie topologiczne skierowanych grafów acyklicznych

Sortowanie topologiczne skierowanych grafów acyklicznych Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)

Bardziej szczegółowo

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY ERIAŁY DO WYKŁADU GRAFY Graf nieskierowany Grafem nieskierowanym nazywamy parę G = (V, E), gdzie V jest pewnym zbiorem skończonym (zwanym zbiorem wierzchołków grafu G), natomiast E jest zbiorem nieuporządkowanych

Bardziej szczegółowo

Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane:

Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane: Wykład 4 grafy Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, E zbiór krawędzi, Grafy dzielimy na grafy skierowane i nieskierowane: Formalnie, w grafach skierowanych E jest podzbiorem

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający

Bardziej szczegółowo

Macierze. Rozdział Działania na macierzach

Macierze. Rozdział Działania na macierzach Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i, j) (i 1,..., n; j 1,..., m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F R lub F C, nazywamy macierzą (rzeczywistą, gdy

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /14

Matematyka dyskretna. Andrzej Łachwa, UJ, /14 Matematyka dyskretna Andrzej Łachwa, UJ, 2012 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

Siedem cudów informatyki czyli o algorytmach zdumiewajacych

Siedem cudów informatyki czyli o algorytmach zdumiewajacych Siedem cudów informatyki czyli o algorytmach zdumiewajacych Łukasz Kowalik kowalik@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski Łukasz Kowalik, Siedem cudów informatyki p. 1/25 Problem 1: mnożenie

Bardziej szczegółowo

Skojarzenia w grafach

Skojarzenia w grafach Wydział Matematyki i Informatyki Uniwersytetu im. Adama Mickiewicza w Poznaniu Środowiskowe Studia Doktoranckie z Nauk Matematycznych Skojarzenia w grafach Wykłady 1 4 Piotr Sankowski Wydział Matematyki,

Bardziej szczegółowo

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Matematyka dyskretna. Andrzej Łachwa, UJ, /15 Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 14/15 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami

Bardziej szczegółowo

SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Skojarzeniem w grafie G nazywamy dowolny podzbiór krawędzi parami niezależnych.

SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Skojarzeniem w grafie G nazywamy dowolny podzbiór krawędzi parami niezależnych. SKOJARZENIA i ZBIORY WEWN. STABILNE WIERZCH. Rozważamy graf G = (V, E) Dwie krawędzie e, e E nazywamy niezależnymi, jeśli nie są incydentne ze wspólnym wierzchołkiem. Skojarzeniem w grafie G nazywamy dowolny

Bardziej szczegółowo

Kolorowanie wierzchołków grafu

Kolorowanie wierzchołków grafu Kolorowanie wierzchołków grafu Niech G będzie grafem prostym. Przez k-kolorowanie właściwe wierzchołków grafu G rozumiemy takie przyporządkowanie wierzchołkom grafu liczb naturalnych ze zbioru {1,...,

Bardziej szczegółowo

1 Macierz odwrotna metoda operacji elementarnych

1 Macierz odwrotna metoda operacji elementarnych W tej części skupimy się na macierzach kwadratowych. Zakładać będziemy, że A M(n, n) dla pewnego n N. Definicja 1. Niech A M(n, n). Wtedy macierzą odwrotną macierzy A (ozn. A 1 ) nazywamy taką macierz

Bardziej szczegółowo

Wykład 5. Metoda eliminacji Gaussa

Wykład 5. Metoda eliminacji Gaussa 1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład IV: dla łańcuchów Markowa 14 marca 2017 Wykład IV: Klasyfikacja stanów Kiedy rozkład stacjonarny jest jedyny? Przykład Macierz jednostkowa I wymiaru #E jest macierzą stochastyczną. Dla tej macierzy

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr 7: Przydziały w grafach i sieciach dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 26-83-95-04, p.225/00 Zakład

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 13: Teoria Grafów Gniewomir Sarbicki Literatura R.J. Wilson Wprowadzenie do teorii grafów Definicja: Grafem (skończonym, nieskierowanym) G nazywamy parę zbiorów (V (G), E(G)),

Bardziej szczegółowo

1 Macierze i wyznaczniki

1 Macierze i wyznaczniki 1 Macierze i wyznaczniki 11 Definicje, twierdzenia, wzory 1 Macierzą rzeczywistą (zespoloną) wymiaru m n, gdzie m N oraz n N, nazywamy prostokątną tablicę złożoną z mn liczb rzeczywistych (zespolonych)

Bardziej szczegółowo

Problem skoczka szachowego i inne cykle Hamiltona na szachownicy n x n

Problem skoczka szachowego i inne cykle Hamiltona na szachownicy n x n i inne cykle Hamiltona na szachownicy n x n Uniwersytet Warszawski 15 marca 2007 Agenda 1 2 naiwne Prosty algorytm liniowy 3 Problem znany był już od bardzo dawna, jako łamigłówka logiczna. Był też stosowany

Bardziej szczegółowo

Kolorowanie wierzchołków

Kolorowanie wierzchołków Kolorowanie wierzchołków Mając dany graf, pokolorować jego wierzchołki w taki sposób, aby każde dwa wierzchołki sąsiednie miały inny kolor. Każda krawędź łączy wierzchołki różnych kolorów. Takie pokolorowanie

Bardziej szczegółowo

Wykład 8. Drzewo rozpinające (minimum spanning tree)

Wykład 8. Drzewo rozpinające (minimum spanning tree) Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,

Bardziej szczegółowo

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych. Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf

Bardziej szczegółowo

13 Układy równań liniowych

13 Układy równań liniowych 13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...

Bardziej szczegółowo

Metoda eliminacji Gaussa. Autorzy: Michał Góra

Metoda eliminacji Gaussa. Autorzy: Michał Góra Metoda eliminacji Gaussa Autorzy: Michał Góra 9 Metoda eliminacji Gaussa Autor: Michał Góra Przedstawiony poniżej sposób rozwiązywania układów równań liniowych jest pewnym uproszczeniem algorytmu zwanego

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

Algorytmy aproksymacyjne i parametryzowane

Algorytmy aproksymacyjne i parametryzowane Algorytmy aproksymacyjne i parametryzowane Marek Cygan Uniwersytet Warszawski 18 października 2012 Marek Cygan Algorytmy aproksymacyjne i parametryzowane 1/22 Wstęp W algorytmice problemy dzielimy na obliczeniowo

Bardziej szczegółowo

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV Algorytmy grafowe Wykład 1 Podstawy teorii grafów Reprezentacje grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów

Bardziej szczegółowo

Teoria obliczeń i złożoność obliczeniowa

Teoria obliczeń i złożoność obliczeniowa Teoria obliczeń i złożoność obliczeniowa Kontakt: dr hab. inż. Adam Kasperski, prof. PWr. pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + informacje na stronie www. Zaliczenie: Egzamin Literatura Problemy

Bardziej szczegółowo

Zastosowania wyznaczników

Zastosowania wyznaczników Zastosowania wyznaczników Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 7.wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa, listopad 2012 1 / 17

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova

Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa 2010-12-21 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3 Łańcuch Markova Definicja Własności Losowanie z rozkładu

Bardziej szczegółowo

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera Wyk lad 4 Macierz odwrotna i twierdzenie Cramera 1 Odwracanie macierzy I n jest elementem neutralnym mnożenia macierzy w zbiorze M n (R) tzn A I n I n A A dla dowolnej macierzy A M n (R) Ponadto z twierdzenia

Bardziej szczegółowo

Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz?

Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? DROGI i CYKLE EULERA w grafach Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? Czy można narysować podaną figurę nie odrywając ołówka od papieru

Bardziej szczegółowo

MACIERZE I WYZNACZNIKI

MACIERZE I WYZNACZNIKI Wykłady z matematyki inżynierskiej IMiF UTP 07 MACIERZ DEFINICJA. Macierza o m wierszach i n kolumnach nazywamy przyporza dkowanie każdej uporza dkowanej parze liczb naturalnych (i, j), gdzie 1 i m, 1

Bardziej szczegółowo

Metody uporządkowania

Metody uporządkowania Metody uporządkowania W trakcie faktoryzacji macierzy rzadkiej ilość zapełnień istotnie zależy od sposobu numeracji równań. Powstaje problem odnalezienia takiej numeracji, przy której ilość zapełnień będzie

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój

Bardziej szczegółowo

Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.

Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy bez pamięci w których czas i stany są zbiorami dyskretnymi. Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. 2 Łańcuchem Markowa nazywamy proces będący ciągiem zmiennych

Bardziej szczegółowo

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II

Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie

Kolorowanie wierzchołków Kolorowanie krawędzi Kolorowanie regionów i map. Wykład 8. Kolorowanie Wykład 8. Kolorowanie 1 / 62 Kolorowanie wierzchołków - definicja Zbiory niezależne Niech G będzie grafem bez pętli. Definicja Mówimy, że G jest grafem k kolorowalnym, jeśli każdemu wierzchołkowi możemy

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Układy równań liniowych i metody ich rozwiązywania

Układy równań liniowych i metody ich rozwiązywania Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +

Bardziej szczegółowo

Graf. Definicja marca / 1

Graf. Definicja marca / 1 Graf 25 marca 2018 Graf Definicja 1 Graf ogólny to para G = (V, E), gdzie V jest zbiorem wierzchołków (węzłów, punktów grafu), E jest rodziną krawędzi, które mogą być wielokrotne, dokładniej jednoelementowych

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DRZEWA i LASY Drzewem nazywamy graf spójny nie zawierający cykli elementarnych. Lasem nazywamy graf nie zawierający cykli elementarnych. Przykłady drzew i lasów takie krawędzie są wykluczone drzewo las

Bardziej szczegółowo

Macierz o wymiarach m n. a 21. a 22. A =

Macierz o wymiarach m n. a 21. a 22. A = Macierze 1 Macierz o wymiarach m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Mat m n (R) zbiór macierzy m n o współczynnikach rzeczywistych Analogicznie określamy Mat m n (Z), Mat m n (Q) itp 2

Bardziej szczegółowo

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2017

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2017 Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 14. wykład z algebry liniowej Warszawa, styczeń 2017 Mirosław Sobolewski (UW) Warszawa, 2017 1 / 10 Definicja Funkcja

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca

Bardziej szczegółowo

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA

Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 Zad. 2 Zad. 3 Zad. 4 Zad. 5 SUMA Zad. 1 (12p.)Niech n 3k > 0. Zbadać jaka jest najmniejsza możliwa liczba krawędzi w grafie, który ma dokładnie n wierzchołków oraz dokładnie k składowych, z których

Bardziej szczegółowo

Metody uporządkowania

Metody uporządkowania Metody uporządkowania W trakcie faktoryzacji macierzy rzadkiej ilość zapełnień istotnie zależy od sposobu numeracji równań. Powstaje problem odnalezienia takiej numeracji, przy której: o ilość zapełnień

Bardziej szczegółowo

Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY

Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy funkcję

Bardziej szczegółowo

2. Układy równań liniowych

2. Układy równań liniowych 2. Układy równań liniowych Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2017/2018 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 2. Układy równań liniowych zima 2017/2018 1 /

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 8

Obliczenia naukowe Wykład nr 8 Obliczenia naukowe Wykład nr 8 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [] D. Kincaid, W. Cheney, Analiza numeryczna,

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Grafy dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 1 / 20

Bardziej szczegółowo

Własności wyznacznika

Własności wyznacznika Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Podstawowe pojęcia i klasy grafów Wykład 1 Grafy nieskierowane Definicja Graf nieskierowany (graf) G = (V,E) jest to uporządkowana para składająca się z niepustego skończonego zbioru wierzchołków V oraz

Bardziej szczegółowo

det[a 1,..., A i,..., A j,..., A n ] + det[a 1,..., ka j,..., A j,..., A n ] Dowód Udowodniliśmy, że: det[a 1,..., A i + ka j,..., A j,...

det[a 1,..., A i,..., A j,..., A n ] + det[a 1,..., ka j,..., A j,..., A n ] Dowód Udowodniliśmy, że: det[a 1,..., A i + ka j,..., A j,... Wykład 14 Wyznacznik macierzy cd Twierdzenie 1 Niech A będzie macierzą kwadratową i niech A i, A j będą dwiema różnymi jej kolumnami, wtedy dla dowolnego k K: det[a 1,, A i,, A j,, A n ] det[a 1,, A i

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr 3: Marszruty, łańcuchy, drogi w grafach dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 261-83-95-04, p.225/100

Bardziej szczegółowo

Wyk lad 9 Baza i wymiar przestrzeni liniowej

Wyk lad 9 Baza i wymiar przestrzeni liniowej Wyk lad 9 Baza i wymiar liniowej Baza liniowej Niech V bedzie nad cia lem K Powiemy, że zbiór wektorów {α,, α n } jest baza V, jeżeli wektory α,, α n sa liniowo niezależne oraz generuja V tzn V = L(α,,

Bardziej szczegółowo

Wykład 6. Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym

Wykład 6. Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym 1 Wykład 6 Metoda eliminacji Gaussa: Eliminacja z wyborem częściowym Eliminacja z wyborem pełnym ELIMINACJA GAUSSA Z WYBOREM CZĘŚCIOWYM ELEMENTÓW PODSTAWOWYCH 2 Przy pomocy klasycznego algorytmu eliminacji

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część V - Model PRAM II

Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/ kuszner/arir/ 2005/06

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Teoria grafów podstawy. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Teoria grafów podstawy. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Teoria grafów podstawy Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Grafy zorientowane i niezorientowane Przykład 1 Dwa pociągi i jeden most problem wzajemnego wykluczania się Dwa

Bardziej szczegółowo

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele

Bardziej szczegółowo

Układy równań liniowych. Krzysztof Patan

Układy równań liniowych. Krzysztof Patan Układy równań liniowych Krzysztof Patan Motywacje Zagadnienie kluczowe dla przetwarzania numerycznego Wiele innych zadań redukuje się do problemu rozwiązania układu równań liniowych, często o bardzo dużych

Bardziej szczegółowo

Drzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew

Drzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew Drzewa Las - graf, który nie zawiera cykli Drzewo - las spójny Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew Niech T graf o n wierzchołkach będący

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 1. wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 1

Bardziej szczegółowo

E ' E G nazywamy krawędziowym zbiorem

E ' E G nazywamy krawędziowym zbiorem Niech G będzie grafem spójnym. Wierzchołek x nazywamy rozcinającym, jeśli G\{x} jest niespójny. Niech G będzie grafem spójnym. V ' V G nazywamy zbiorem rozcinającym jeśli G\V' jest niespójny Niech G będzie

Bardziej szczegółowo

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B 1. Dla macierzy a) A = b) A = c) A = d) A = 3 1 + i 1 i i i 0 i i 0 1 + i 1 i 0 0 0 0 1 0 1 0 1 + i 1 i Wyznaczyć macierze spełniające własność komutacji: A, X = B. Obliczyć pierwiaski z macierzy: A =

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

AiSD zadanie trzecie

AiSD zadanie trzecie AiSD zadanie trzecie Gliwiński Jarosław Marek Kruczyński Konrad Marek Grupa dziekańska I5 5 czerwca 2008 1 Wstęp Celem postawionym przez zadanie trzecie było tzw. sortowanie topologiczne. Jest to typ sortowania

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

Ścieżki w grafach. Grafy acykliczne i spójne

Ścieżki w grafach. Grafy acykliczne i spójne TEORIA GRAFÓW I SIECI - ROZDZIAL II Ścieżki w grafach. Grafy acykliczne i spójne Ścieżka lub droga w grafie [digrafie] G nazywamy dowolny ciag d = (a 0, k 1, a 1,..., k n, a n ), gdzie n N {0}, a i V G,

Bardziej szczegółowo

RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska

RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska RACHUNEK MACIERZOWY METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego

Bardziej szczegółowo

1 Układy równań liniowych

1 Układy równań liniowych II Metoda Gaussa-Jordana Na wykładzie zajmujemy się układami równań liniowych, pojawi się też po raz pierwszy macierz Formalną (i porządną) teorią macierzy zajmiemy się na kolejnych wykładach Na razie

Bardziej szczegółowo

Wyznaczniki. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 6. Wykład z algebry liniowej Warszawa, listopad 2013

Wyznaczniki. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 6. Wykład z algebry liniowej Warszawa, listopad 2013 Wyznaczniki Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 6. Wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa, listopad 2013 1 / 13 Terminologia

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ... Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x

Bardziej szczegółowo

Ataki na RSA. Andrzej Chmielowiec. Centrum Modelowania Matematycznego Sigma. Ataki na RSA p. 1

Ataki na RSA. Andrzej Chmielowiec. Centrum Modelowania Matematycznego Sigma. Ataki na RSA p. 1 Ataki na RSA Andrzej Chmielowiec andrzej.chmielowiec@cmmsigma.eu Centrum Modelowania Matematycznego Sigma Ataki na RSA p. 1 Plan prezentacji Wprowadzenie Ataki algebraiczne Ataki z kanałem pobocznym Podsumowanie

Bardziej szczegółowo

Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami

Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami dr inż. Mariusz Uchroński Wrocławskie Centrum Sieciowo-Superkomputerowe Agenda Cykliczny problem przepływowy

Bardziej szczegółowo

Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem

Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem Rozdział 6 Równania liniowe 6 Przekształcenia liniowe Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem F Definicja 6 Funkcję f : X Y spełniającą warunki: a) dla dowolnych x,

Bardziej szczegółowo

III TUTORIAL Z METOD OBLICZENIOWYCH

III TUTORIAL Z METOD OBLICZENIOWYCH III TUTORIAL Z METOD OBLICZENIOWYCH ALGORYTMY ROZWIĄZYWANIA UKŁADÓW RÓWNAŃ LINIOWYCH Opracowanie: Agata Smokowska Marcin Zmuda Trzebiatowski Koło Naukowe Mechaniki Budowli KOMBO Spis treści: 1. Wstęp do

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych

Bardziej szczegółowo

Kodowanie i kompresja Streszczenie Studia dzienne Wykład 6

Kodowanie i kompresja Streszczenie Studia dzienne Wykład 6 Kodowanie i kompresja Streszczenie Studia dzienne Wykład 6 1 Kody cykliczne: dekodowanie Definicja 1 (Syndrom) Niech K będzie kodem cyklicznym z wielomianem generuja- cym g(x). Resztę z dzielenia słowa

Bardziej szczegółowo

Rachunek różniczkowy i całkowy w przestrzeniach R n

Rachunek różniczkowy i całkowy w przestrzeniach R n Rachunek różniczkowy i całkowy w przestrzeniach R n Na dzisiejszym wykładzie rozważać będziemy funkcje f : R m R n Każda taka funkcję f można przedstawić jako wektor funkcji (f 1, f 2,, f n ), gdzie każda

Bardziej szczegółowo

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej 15. Macierze Definicja Macierzy. Dla danego ciała F i dla danych m, n IN funkcję A : {1,...,m} {1,...,n} F nazywamy macierzą m n ( macierzą o m wierszach i n kolumnach) o wyrazach z F. Wartość A(i, j)

Bardziej szczegółowo

W. Krysicki, L.Włodarski, Analiza matematyczna w zadaniach cz. 1 i cz. 2. Pomocnicze symbole. Spójniki logiczne: Symbole kwantyfikatorów:

W. Krysicki, L.Włodarski, Analiza matematyczna w zadaniach cz. 1 i cz. 2. Pomocnicze symbole. Spójniki logiczne: Symbole kwantyfikatorów: dr Urszula Konieczna-Spychała Instytut Matematyki i Fizyki UTP imif.utp.edu.pl Literatura: M. Lassak, Matematyka dla studiów technicznych. M. Gewert, Z. Skoczylas, Analiza matematyczna 1. M. Gewert, Z.

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą

Bardziej szczegółowo

Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2

Metody teorii gier. ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier ALP520 - Wykład z Algorytmów Probabilistycznych p.2 Metody teorii gier Cel: Wyprowadzenie oszacowania dolnego na oczekiwany czas działania dowolnego algorytmu losowego dla danego problemu.

Bardziej szczegółowo

Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze

Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści Spis treści 1 Wektory

Bardziej szczegółowo

Wyk lad 11 1 Wektory i wartości w lasne

Wyk lad 11 1 Wektory i wartości w lasne Wyk lad 11 Wektory i wartości w lasne 1 Wektory i wartości w lasne Niech V bedzie przestrzenia liniowa nad cia lem K Każde przekszta lcenie liniowe f : V V nazywamy endomorfizmem liniowym przestrzeni V

Bardziej szczegółowo

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First

Bardziej szczegółowo