Algorytmy i Struktury Danych.

Save this PDF as:

Wielkość: px
Rozpocząć pokaz od strony:

Download "Algorytmy i Struktury Danych."

Transkrypt

1 Algorytmy i Struktury Danych. Grafy dr hab. Bożena Woźna-Szcześniak Jan Długosz University, Poland Wykład 9 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 1 / 20

2 Plan wykładu Wyszukiwanie spójnych składowych grafu (ang. Connected components) Sortowanie topologiczne (ang. Topological sort) Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 2 / 20

3 Spójne składowe Definicja Każda spójna składowa grafu G = (V, E) jest maksymalnym podzbiorem wierzchołków U zbioru V takim, że dla dowolnych dwóch wierzchołków z U istnieje łacz aca je ścieżka w G. Jeżeli graf składa się z jednej spójnej składowej to mówimy, że jest spójny (ang. connected). Każdy graf nieskierowany można podzielić na jedna lub większa liczbę spójnych składowych (ang. connected components). Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 3 / 20

4 Spójne składowe Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 4 / 20

5 Spójne podgrafy Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 5 / 20

6 Spójne składowe - algorytm Wejście: G = (V, E) Wyjście: Spójne składowe grafu G 1 J. Hopcroft, R. Tarjan. Efficient algorithms for graph manipulation Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 6 / 20

7 Spójne składowe - algorytm Wejście: G = (V, E) Wyjście: Spójne składowe grafu G Algorytmy DFS oraz BFS wyznaczaja spójne składowe grafu G 1. 1 J. Hopcroft, R. Tarjan. Efficient algorithms for graph manipulation Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 6 / 20

8 Spójne składowe - algorytm Wejście: G = (V, E) Wyjście: Spójne składowe grafu G Algorytmy DFS oraz BFS wyznaczaja spójne składowe grafu G 1. Złożoność: O((m + n). 1 J. Hopcroft, R. Tarjan. Efficient algorithms for graph manipulation Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 6 / 20

9 Spójne składowe - algorytm DFS Require: Graf (V, E), tablica visited o rozmiarze V = n Algorytm DFS: 1: for all i := 1 to n do 2: visited[i] := 0; 3: end for 4: for all i := 1 to n do 5: if visited[i] = 0 then 6: visit(i, visited); 7: end if 8: end for Require: Graf (V, E), tablica visited o rozmiarze V = n Algorytm visit(i,visited): 1: print(i); 2: visited[i] := 1; 3: for each neighbor j of i do 4: if visited[j] = 0 then 5: visit(j); 6: end if 7: end for Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 7 / 20

10 Implementacja void Graph::dfs_rek(int a) { bool* visited = new (nothrow) bool[this->n]; for (int k = 0; k < this->n; ++k) visited[k] = false; for (int k = a; k < this->n; ++k) { if (visited[k] == false) this->visit(k,visited); delete[] visited; void Graph::visit(int a, bool* visited) { displayvertex(a); visited[a] = true; int c = this->getunvisitedvertex(a, visited); while (c!= -1){ if (visited [c] == false) visit(c,visited); c = this->getunvisitedvertex(a, visited); Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 8 / 20

11 Wykonanie Krawedzie grafu: A-B A-C B-A B-D C-A C-D D-B D-C DFS - odwiedzone wierzcholki: ABDC DFS rekurencyjny - odwiedzone wierzcholki: ABDC BFS - odwiedzone wierzcholki: ABCD Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 9 / 20

12 Spójne składowe Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 10 / 20

13 Sortowanie Topologiczne - sformułowanie problemu Wejście: Acykliczny graf skierowany G = (V, E). Wyjście: Liniowy porzadek wierzchołków z V taki, że jeśli graf G zawiera krawędź (u, v), to w tym porzadku wierzchołek u występuje przed wierzchołkiem v. Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 11 / 20

14 Sortowanie topologicznie - przykład Wierzchołki w każdym grafie acyklicznym skierowanym można posortować topologicznie na jeden lub więcej sposobów 7,5,3,11,8,2,9,10 7,5,11,2,3,10,8,9 3,7,8,5,11,10,9,2 5,7,11,2,3,8,9, Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 12 / 20

15 Sortowanie Topologiczne - algorytm bazujacy na DFS Wykonaj TopologicalDFS na wejściowym acyklicznym grafie skierowanym G = (V, E). Wypisz wierzchołki w porzadku malejacym ze względu na ich czas końcowy - umieszczony w tablicy final. Złożoność: O( V + E ) Wejście: Graf G, tablice visited oraz final o rozmiarze V = n Algorytm TopologicalDFS: 1: t := 0 2: for all i := 1 to n do 3: visited[i] := 0; final[i] := 0 4: end for 5: for all i := 1 to n do 6: if visited[i] = 0 then 7: visit(i, t, visited, final); 8: end if 9: end for Algorytm visit(i,t,visited,final): 1: visited[i] := 1; 2: for each outgoing edge j of i do 3: if visited[j] = 0 then 4: visit(j, t, visited, final); 5: end if 6: end for 7: t = t + 1; 8: final[i] = t; Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 13 / 20

16 Sortowanie Topologiczne - przykład Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 14 / 20

17 Implementacja Aby na postawie implementacji z poprzedniego wykładu wykonać implementację grafu skierowanego, wystarczy zmienić metodę addedge na następujac a void Graph::addEdge(int a, int b) { if (a >= 0 && a < this->n && b >= 0 && b < this->n) this->adj[a][b] = true; else { cout << "Niepoprawne dane\n\n"; Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 15 / 20

18 Implementacja void Graph::topological_visit(int a, int & t, bool* visited, int* fin) { visited[a] = true; int c = this->getunvisitedvertex(a, visited); while (c!= -1){ if (visited [c] == false) topological_visit(c,t,visited,fin); c = this->getunvisitedvertex(a, visited); t++; fin[a] = t; Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 16 / 20

19 Implementacja void Graph::topological_dfs() { bool* visited = new (nothrow) bool[this->n]; int* fin = new (nothrow) int[this->n]; int t = 0; for (int k = 0; k < this->n; ++k) { visited[k] = false; fin[k] = 0; for (int k = 0; k < this->n; ++k) { if (visited[k] == false) this->topological_visit(k,t,visited,fin); delete[] visited; for (int k = 0; k < this->n; ++k){ int idx = max(fin,this->n); displayvertex(idx); fin[idx] = -1; delete[] fin; Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 17 / 20

20 Sortowanie topologiczne - Algorytm 2 Metoda usuwania wierzchołków o stopniu wejściowym równym zero Wykorzystywana własność: jeśli graf jest acyklicznym grafem skierowanym, to posiada przynajmniej jeden wierzchołek o stopniu wejściowym równym zero. Idea: Dopóki graf posiada wierzchołki o stopniu wejściowym zero, znajdujemy taki wierzchołek, usuwamy go z grafu wraz ze wszystkimi wychodzacymi z niego krawędziami i umieszczamy go na liście wierzchołków posortowanych topologicznie. Jeśli w grafie pozostana jakieś wierzchołki, to graf posiada cykle i sortowania topologicznego nie można wykonać. Złożoność: O( V + E ) Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 18 / 20

21 Sortowanie topologiczne - Algorytm 2 Algorytm: G = (V, E) 1: Q - Zbiór wszystkich wierzchoków bez krawędzi wchodzacych; 2: while Q! = do 3: Usuń wierzchołek n z Q. 4: Wypisz n. 5: for all m V takiego, że (n, m) E do 6: E = E \ (n, m) 7: if m nie ma już więcej krawędzi wchodzacych then 8: Wstaw m do Q. 9: end if 10: end for 11: end while 12: if E! = then 13: Graf G ma cykl. 14: end if Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 19 / 20

22 Sortowanie topologiczne - Algorytm 2, przykład Usuwamy Usuwamy Usuwamy 3 5 Usuwamy 4 5 Usuwamy 5 Sortowanie topologiczne: 1, 2, 3, 4, 5 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 20 / 20

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Grafy Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 8 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 8 1 / 39 Plan wykładu

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Grafy dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 8 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 8 1 / 42

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Grafy Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 7 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 7 1 / 43 Grafy -

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych Algorytmy i Struktury Danych Drzewa poszukiwań binarnych dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 12 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych

Bardziej szczegółowo

Podstawowe algorytmy i ich implementacje w C. Wykład 9

Podstawowe algorytmy i ich implementacje w C. Wykład 9 Wstęp do programowania 1 Podstawowe algorytmy i ich implementacje w C Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Element minimalny i maksymalny zbioru Element minimalny

Bardziej szczegółowo

Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane:

Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, Grafy dzielimy na grafy skierowane i nieskierowane: Wykład 4 grafy Grafem nazywamy strukturę G = (V, E): V zbiór węzłów lub wierzchołków, E zbiór krawędzi, Grafy dzielimy na grafy skierowane i nieskierowane: Formalnie, w grafach skierowanych E jest podzbiorem

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Liniowe struktury danych - Lista Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych.

Bardziej szczegółowo

Algorytmy grafowe. Wykład 2 Przeszukiwanie grafów. Tomasz Tyksiński CDV

Algorytmy grafowe. Wykład 2 Przeszukiwanie grafów. Tomasz Tyksiński CDV Algorytmy grafowe Wykład 2 Przeszukiwanie grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów 3. Spójność grafu,

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 5. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład. Prof. dr hab. inż. Jan Magott Algorytmy grafowe: podstawowe pojęcia, reprezentacja grafów, metody przeszukiwania, minimalne drzewa rozpinające, problemy

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych Algorytmy i Struktury Danych Kopce Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 11 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 11 1 / 69 Plan wykładu

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Drzewa poszukiwań binarnych. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 10 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych.

Bardziej szczegółowo

Algorytmy Grafowe. dr hab. Bożena Woźna-Szcześniak, prof. UJD. Wykład 5 i 6. Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie

Algorytmy Grafowe. dr hab. Bożena Woźna-Szcześniak, prof. UJD. Wykład 5 i 6. Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie Algorytmy Grafowe dr hab. Bożena Woźna-Szcześniak, prof. UJD Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie b.wozna@ujd.edu.pl Wykład 5 i 6 B. Woźna-Szcześniak (UJD) Algorytmy

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Metoda Dziel i zwyciężaj. Problem Sortowania, cd. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 2 Bożena Woźna-Szcześniak (AJD) Algorytmy

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Organizacja wykładu. Problem Sortowania. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 1 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Liniowe struktury danych - Lista uporzadkowana. Wartownicy. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 6 Bożena Woźna-Szcześniak (AJD)

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych Algorytmy i Struktury Danych Drzewa poszukiwań binarnych dr hab. Bożena Woźna-Szcześniak Jan Długosz University, Poland Wykład 8 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 8 1 /

Bardziej szczegółowo

Wstęp do Programowania potok funkcyjny

Wstęp do Programowania potok funkcyjny Wstęp do Programowania potok funkcyjny Marcin Kubica 2010/2011 Outline 1 Podstawowe pojęcia Definition Graf = wierzchołki + krawędzie. Krawędzie muszą mieć różne końce. Między dwoma wierzchołkami może

Bardziej szczegółowo

Programowanie Proceduralne

Programowanie Proceduralne Programowanie Proceduralne Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 1 Bożena Woźna-Szcześniak (AJD) Programowanie Proceduralne Wykład 1 1 / 59 Cel wykładów z programowania

Bardziej szczegółowo

Algorytmy Grafowe. dr hab. Bożena Woźna-Szcześniak, prof. UJD. Wykład 1,2,3. Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie

Algorytmy Grafowe. dr hab. Bożena Woźna-Szcześniak, prof. UJD. Wykład 1,2,3. Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie Algorytmy Grafowe dr hab. Bożena Woźna-Szcześniak, prof. UJD Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie b.wozna@ujd.edu.pl Wykład 1,2,3 B. Woźna-Szcześniak (UJD) Algorytmy

Bardziej szczegółowo

Sortowanie topologiczne skierowanych grafów acyklicznych

Sortowanie topologiczne skierowanych grafów acyklicznych Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Grafy dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 9 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 9 1 / 53

Bardziej szczegółowo

Wstęp do Programowania potok funkcyjny

Wstęp do Programowania potok funkcyjny Wstęp do Programowania potok funkcyjny Marcin Kubica 2010/2011 Outline 1 BFS DFS Algorytm Dijkstry Algorytm Floyda-Warshalla Podstawowe pojęcia Definition Graf = wierzchołki + krawędzie. Krawędzie muszą

Bardziej szczegółowo

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.

Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych. Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf

Bardziej szczegółowo

Ogólne wiadomości o grafach

Ogólne wiadomości o grafach Ogólne wiadomości o grafach Algorytmy i struktury danych Wykład 5. Rok akademicki: / Pojęcie grafu Graf zbiór wierzchołków połączonych za pomocą krawędzi. Podstawowe rodzaje grafów: grafy nieskierowane,

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą

Bardziej szczegółowo

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY ERIAŁY DO WYKŁADU GRAFY Graf nieskierowany Grafem nieskierowanym nazywamy parę G = (V, E), gdzie V jest pewnym zbiorem skończonym (zwanym zbiorem wierzchołków grafu G), natomiast E jest zbiorem nieuporządkowanych

Bardziej szczegółowo

Podstawowe własności grafów. Wykład 3. Własności grafów

Podstawowe własności grafów. Wykład 3. Własności grafów Wykład 3. Własności grafów 1 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2). 2 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2).

Bardziej szczegółowo

Wstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel

Wstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel Wstęp do programowania Drzewa Piotr Chrząstowski-Wachtel Drzewa Drzewa definiują matematycy, jako spójne nieskierowane grafy bez cykli. Równoważne określenia: Spójne grafy o n wierzchołkach i n-1 krawędziach

Bardziej szczegółowo

Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1

Zofia Kruczkiewicz, Algorytmu i struktury danych, Wykład 14, 1 Wykład Algorytmy grafowe metoda zachłanna. Właściwości algorytmu zachłannego:. W przeciwieństwie do metody programowania dynamicznego nie występuje etap dzielenia na mniejsze realizacje z wykorzystaniem

Bardziej szczegółowo

Algorytmy z powracaniem

Algorytmy z powracaniem Algorytmy z powracaniem Materiały Grafem nazywamy zbiór G = (V, E), gdzie: V jest zbiorem wierzchołków (ang. vertex) E jest zbiorem krawędzi (E można też określić jako podzbiór zbioru nieuporządkowanych

Bardziej szczegółowo

Algorytmy Grafowe. dr hab. Bożena Woźna-Szcześniak, prof. UJD. Wykład 7,8,9. Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie

Algorytmy Grafowe. dr hab. Bożena Woźna-Szcześniak, prof. UJD. Wykład 7,8,9. Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie Algorytmy Grafowe dr hab. Bożena Woźna-Szcześniak, prof. UJD Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie b.wozna@ujd.edu.pl Wykład 7,8,9 B. Woźna-Szcześniak (UJD) Algorytmy

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Treści programowe. Złożoność obliczeniowa algorytmu na przykładach. dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 1 Bożena Woźna-Szcześniak

Bardziej szczegółowo

Spis treści. Przykład. Przykład 1 Przykład 2. Twórcy Informacje wstępne Pseudokod Przykład. 1 Grafy skierowane z wagami - przypomnienie

Spis treści. Przykład. Przykład 1 Przykład 2. Twórcy Informacje wstępne Pseudokod Przykład. 1 Grafy skierowane z wagami - przypomnienie Algorytmy Grafowe dr hab. Bożena Woźna-Szcześniak, prof. UJD Uniwersytet Humanistyczno-Przyrodniczy im. Jana Długosza w Częstochowie b.wozna@ujd.edu.pl Wykład 1,11,1 B. Woźna-Szcześniak (UJD) Algorytmy

Bardziej szczegółowo

Wstęp do Informatyki

Wstęp do Informatyki Wstęp do Informatyki dr hab. Bożena Woźna-Szcześniak, prof. AJD bwozna@gmail.com Jan Długosz University, Poland Wykład 8 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 8 1 / 32 Instrukcje iteracyjne

Bardziej szczegółowo

Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne

Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne Algorytmy i struktury danych Drzewa: BST, kopce Letnie Warsztaty Matematyczno-Informatyczne Drzewa: BST, kopce Definicja drzewa Drzewo (ang. tree) to nieskierowany, acykliczny, spójny graf. Drzewo może

Bardziej szczegółowo

Wstęp do Programowania 2

Wstęp do Programowania 2 Wstęp do Programowania 2 dr Bożena Woźna-Szcześniak bwozna@gmail.com Akademia im. Jana Długosza Wykład 5 W programowaniu obiektowym programista koncentruje się na obiektach. Zadaje sobie pytania typu:

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Podstawowe struktury danych, cd. Wykład na podstawie ksiażki Roberta Sedgewicka i Kevina Wayne: Algorithms. Furth Edition. Princeton University dr hab. Bożena Woźna-Szcześniak

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część V - Model PRAM II

Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/ kuszner/arir/ 2005/06

Bardziej szczegółowo

Wykład 7. Algorytmy grafowe

Wykład 7. Algorytmy grafowe Wykład Algorytmy grafowe Algorytmy grafowe i podstawowe algorytmy przeszukiwania Problem Definicje i własności Reprezentacja Przeszukiwanie wszerz (Breadthirst Search) Przeszukiwanie w głąb (Depthirst

Bardziej szczegółowo

a) 7 b) 19 c) 21 d) 34

a) 7 b) 19 c) 21 d) 34 Zadanie 1. Pytania testowe dotyczące podstawowych własności grafów. Zadanie 2. Przy każdym z zadań może się pojawić polecenie krótkiej charakterystyki algorytmu. Zadanie 3. W zadanym grafie sprawdzenie

Bardziej szczegółowo

Minimalne drzewa rozpinające

Minimalne drzewa rozpinające KNM UŚ 26-28 listopada 2010 Ostrzeżenie Wprowadzenie Motywacja Definicje Niektóre pojęcia pojawiające się podczas tego referatu są naszymi autorskimi tłumaczeniami z języka angielskiego. Nie udało nam

Bardziej szczegółowo

Wykład 8. Drzewo rozpinające (minimum spanning tree)

Wykład 8. Drzewo rozpinające (minimum spanning tree) Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova

Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa 2010-12-21 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3 Łańcuch Markova Definicja Własności Losowanie z rozkładu

Bardziej szczegółowo

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First

Bardziej szczegółowo

Wykład 10 Grafy, algorytmy grafowe

Wykład 10 Grafy, algorytmy grafowe . Typy złożoności obliczeniowej Wykład Grafy, algorytmy grafowe Typ złożoności oznaczenie n Jedna operacja trwa µs 5 logarytmiczna lgn. s. s.7 s liniowa n. s.5 s. s Logarytmicznoliniowa nlgn. s.8 s.4 s

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Problem Sortowania, cd. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 3 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład

Bardziej szczegółowo

Języki programowania, wtorek , 12:15-13:45 Zadanie 11 - ostatnie

Języki programowania, wtorek , 12:15-13:45 Zadanie 11 - ostatnie Języki programowania, wtorek 10.01.2017, 12:15-13:45 Zadanie 11 - ostatnie Dzisiaj wykorzystamy kolejną bardzo ważną rzecz języka C++ - szablony funkcji i szablony klas. Wstęp co to są klasy i funkcje

Bardziej szczegółowo

Kurs programowania. Wykład 9. Wojciech Macyna. 28 kwiecień 2016

Kurs programowania. Wykład 9. Wojciech Macyna. 28 kwiecień 2016 Wykład 9 28 kwiecień 2016 Java Collections Framework (w C++ Standard Template Library) Kolekcja (kontener) Obiekt grupujacy/przechowuj acy jakieś elementy (obiekty lub wartości). Przykładami kolekcji sa

Bardziej szczegółowo

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69

Bardziej szczegółowo

ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce.

ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 2014/2015. Drzewa BST c.d., równoważenie drzew, kopce. POLITECHNIKA WARSZAWSKA Instytut Automatyki i Robotyki ZASADY PROGRAMOWANIA KOMPUTERÓW ZAP zima 204/205 Język programowania: Środowisko programistyczne: C/C++ Qt Wykład 2 : Drzewa BST c.d., równoważenie

Bardziej szczegółowo

Programowanie Procedurale

Programowanie Procedurale Programowanie Procedurale Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 6 Bożena Woźna-Szcześniak (AJD) Programowanie Procedurale Wykład 6 1 / 27 Zbiór ctime zawiera deklarcję

Bardziej szczegółowo

Złożoność obliczeniowa klasycznych problemów grafowych

Złożoność obliczeniowa klasycznych problemów grafowych Złożoność obliczeniowa klasycznych problemów grafowych Oznaczenia: G graf, V liczba wierzchołków, E liczba krawędzi 1. Spójność grafu Graf jest spójny jeżeli istnieje ścieżka łącząca każdą parę jego wierzchołków.

Bardziej szczegółowo

Strategia "dziel i zwyciężaj"

Strategia dziel i zwyciężaj Strategia "dziel i zwyciężaj" W tej metodzie problem dzielony jest na kilka mniejszych podproblemów podobnych do początkowego problemu. Problemy te rozwiązywane są rekurencyjnie, a następnie rozwiązania

Bardziej szczegółowo

Sieć (graf skierowany)

Sieć (graf skierowany) Sieci Sieć (graf skierowany) Siecia (grafem skierowanym) G = (V, A) nazywamy zbiór wierzchołków V oraz zbiór łuków A V V. V = {A, B, C, D, E, F}, A = {(A, B), (A, D), (A, C), (B, C),..., } Ścieżki i cykle

Bardziej szczegółowo

Egzaminy i inne zadania. Semestr II.

Egzaminy i inne zadania. Semestr II. Egzaminy i inne zadania. Semestr II. Poniższe zadania są wyborem zadań ze Wstępu do Informatyki z egzaminów jakie przeprowadziłem w ciągu ostatnich lat. Ponadto dołączyłem szereg zadań, które pojawiały

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Problem Sortowania. Metoda Dziel i zwyciężaj. dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 4 Bożena Woźna-Szcześniak (AJD) Algorytmy

Bardziej szczegółowo

Digraf. 13 maja 2017

Digraf. 13 maja 2017 Digraf 13 maja 2017 Graf skierowany, digraf, digraf prosty Definicja 1 Digraf prosty G to (V, E), gdzie V jest zbiorem wierzchołków, E jest rodziną zorientowanych krawędzi, między różnymi wierzchołkami,

Bardziej szczegółowo

Teoria obliczeń i złożoność obliczeniowa

Teoria obliczeń i złożoność obliczeniowa Teoria obliczeń i złożoność obliczeniowa Kontakt: dr hab. inż. Adam Kasperski, prof. PWr. pokój 509 B4 adam.kasperski@pwr.wroc.pl materiały + informacje na stronie www. Zaliczenie: Egzamin Literatura Problemy

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Podstawowe struktury danych dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 6 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych.

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Abstrakcyjne struktury danych dr hab. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury

Bardziej szczegółowo

Znajdowanie skojarzeń na maszynie równoległej

Znajdowanie skojarzeń na maszynie równoległej 11 grudnia 2008 Spis treści 1 Skojarzenia w różnych klasach grafów Drzewa Grafy gęste Grafy regularne dwudzielne Claw-free graphs 2 Drzewa Skojarzenia w drzewach Fakt Wybierajac krawędź do skojarzenia

Bardziej szczegółowo

RKI Zajęcia 14 Przeszukiwanie grafu w głąb

RKI Zajęcia 14 Przeszukiwanie grafu w głąb RKI Zajęcia 14 Przeszukiwanie grafu w głąb Piersa Jarosław 2010-05-09 1 Wprowadzenie Natenczas Wojski chwycił na taśmie przypięty Swój róg bawoli, długi, cętkowany, kręty Jak wąż boa, oburącz do ust go

Bardziej szczegółowo

Wykład 6_1 Abstrakcyjne typy danych stos Realizacja tablicowa i za pomocą rekurencyjnych typów danych

Wykład 6_1 Abstrakcyjne typy danych stos Realizacja tablicowa i za pomocą rekurencyjnych typów danych Wykład 6_ Abstrakcyjne typy danych stos Realizacja tablicowa i za pomocą rekurencyjnych typów danych Abstrakcyjny typ danych Klient korzystający z abstrakcyjnego typu danych: o ma do dyspozycji jedynie

Bardziej szczegółowo

Programowanie dynamiczne i algorytmy zachłanne

Programowanie dynamiczne i algorytmy zachłanne Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii

Bardziej szczegółowo

Wykład X. Programowanie. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2016 Janusz Słupik

Wykład X. Programowanie. dr inż. Janusz Słupik. Gliwice, Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2016 Janusz Słupik Wykład X Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2016 c Copyright 2016 Janusz Słupik Drzewa binarne Drzewa binarne Drzewo binarne - to drzewo (graf spójny bez cykli) z korzeniem (wyróżnionym

Bardziej szczegółowo

Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie

Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Używane struktury danych: V - zbiór wierzchołków grafu, V = {1,2,3...,n} E - zbiór krawędzi grafu, E = {(i,j),...}, gdzie i, j Î V i istnieje

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Liniowe struktury danych. Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 4 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 2. Prof. dr hab. inż. Jan Magott Metody konstrukcji algorytmów: Siłowa (ang. brute force), Dziel i zwyciężaj (ang. divide-and-conquer), Zachłanna (ang.

Bardziej szczegółowo

Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe.

Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe. Temat: Struktury danych do reprezentacji grafów. Wybrane algorytmy grafowe. Oznaczenia G = V, E - graf bez wag, gdzie V - zbiór wierzchołków, E- zbiór krawdzi V = n - liczba wierzchołków grafu G E = m

Bardziej szczegółowo

Informatyka II. Laboratorium.

Informatyka II. Laboratorium. Informatyka II. Laboratorium. Ćwiczenie 13. Reprezentacja grafów w Java. Wyszukiwanie najkrótszej ścieżki w grafie. I. Wstęp. Grafy [1] są podstawową strukturą danych dla wielu algorytmów stosowanych w

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)

Bardziej szczegółowo

Siedem cudów informatyki czyli o algorytmach zdumiewajacych

Siedem cudów informatyki czyli o algorytmach zdumiewajacych Siedem cudów informatyki czyli o algorytmach zdumiewajacych Łukasz Kowalik kowalik@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski Łukasz Kowalik, Siedem cudów informatyki p. 1/25 Problem 1: mnożenie

Bardziej szczegółowo

Algorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne

Algorytmy i struktury danych. Co dziś? Tytułem przypomnienia metoda dziel i zwyciężaj. Wykład VIII Elementarne techniki algorytmiczne Algorytmy i struktury danych Wykład VIII Elementarne techniki algorytmiczne Co dziś? Algorytmy zachłanne (greedyalgorithms) 2 Tytułem przypomnienia metoda dziel i zwyciężaj. Problem można podzielić na

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający

Bardziej szczegółowo

Struktury danych i złozoność obliczeniowa. Prof. dr hab. inż. Jan Magott

Struktury danych i złozoność obliczeniowa. Prof. dr hab. inż. Jan Magott Struktury danych i złozoność obliczeniowa Prof. dr hab. inż. Jan Magott Formy zajęć: Wykład 1 godz., Ćwiczenia 1 godz., Projekt 2 godz.. Adres strony z materiałami do wykładu: http://www.zio.iiar.pwr.wroc.pl/sdizo.html

Bardziej szczegółowo

Podstawy algorytmiki i programowania - wykład 6 Sortowanie- algorytmy

Podstawy algorytmiki i programowania - wykład 6 Sortowanie- algorytmy 1 Podstawy algorytmiki i programowania - wykład 6 Sortowanie- algorytmy Treści prezentowane w wykładzie zostały oparte o: S. Prata, Język C++. Szkoła programowania. Wydanie VI, Helion, 2012 www.cplusplus.com

Bardziej szczegółowo

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325 PODSTAWY INFORMATYKI WYKŁAD 8. prowadzący dr ADRIAN HORZYK http://home home.agh.edu.pl/~ /~horzyk e-mail: horzyk@agh agh.edu.pl tel.: 012-617 617-4319 Konsultacje paw. D-13/325 DRZEWA Drzewa to rodzaj

Bardziej szczegółowo

Algorytm selekcji Hoare a. Łukasz Miemus

Algorytm selekcji Hoare a. Łukasz Miemus Algorytm selekcji Hoare a Łukasz Miemus 1 lutego 2006 Rozdział 1 O algorytmie 1.1 Problem Mamy tablicę A[N] różnych elementów i zmienną int K, takie że 1 K N. Oczekiwane rozwiązanie to określenie K-tego

Bardziej szczegółowo

Algorytmy i struktury danych

Algorytmy i struktury danych Algorytmy i struktury danych Wykład 11 - Grafy i podstawowe algorytmy grafowe (ciąg dalszy) Janusz Szwabiński Plan wykładu: Przeszukiwanie w głąb Studium przypadku - zagadnienie skoczka szachowego (ang.

Bardziej szczegółowo

. Podstawy Programowania 2. Algorytmy dfs i bfs. Arkadiusz Chrobot. 2 czerwca 2019

. Podstawy Programowania 2. Algorytmy dfs i bfs. Arkadiusz Chrobot. 2 czerwca 2019 Podstawy Programowania Algorytmy dfs i bfs Arkadiusz Chrobot Zakład Informatyki czerwca 09 / 70 Plan Wstęp Algorytm BFS Podsumowanie / 70 Wstęp Wstęp Istnieje wiele algorytmów związanych z grafami, które

Bardziej szczegółowo

RKI Zajęcia 13 Przeszukiwanie grafu wszerz

RKI Zajęcia 13 Przeszukiwanie grafu wszerz RKI Zajęcia 13 Przeszukiwanie grafu wszerz Piersa Jarosław 2010-04-25 1 Wprowadzenie Biega, krzyczy pan Hilary: Gdzie są moje okulary? Szuka w spodniach i w surducie, W prawym bucie, w lewym bucie. Julian

Bardziej szczegółowo

Programowanie w VB Proste algorytmy sortowania

Programowanie w VB Proste algorytmy sortowania Programowanie w VB Proste algorytmy sortowania Sortowanie bąbelkowe Algorytm sortowania bąbelkowego polega na porównywaniu par elementów leżących obok siebie i, jeśli jest to potrzebne, zmienianiu ich

Bardziej szczegółowo

Digraf o V wierzchołkach posiada V 2 krawędzi, zatem liczba różnych digrafów o V wierzchołkach wynosi 2 VxV

Digraf o V wierzchołkach posiada V 2 krawędzi, zatem liczba różnych digrafów o V wierzchołkach wynosi 2 VxV Graf skierowany (digraf) zbiór wierzchołków i zbiór krawędzi skierowanych łączących (co najwyżej jeden raz) uporządkowane pary wierzchołków. Mówimy wtedy, że krawędź łączy pierwszy wierzchołek z drugim

Bardziej szczegółowo

Algorytm DFS Wprowadzenie teoretyczne. Algorytm DFS Wprowadzenie teoretyczne. Algorytm DFS Animacja. Algorytm DFS Animacja. Notatki. Notatki.

Algorytm DFS Wprowadzenie teoretyczne. Algorytm DFS Wprowadzenie teoretyczne. Algorytm DFS Animacja. Algorytm DFS Animacja. Notatki. Notatki. Podstawy Programowania Algorytmy dfs i bfs Arkadiusz Chrobot Zakład Informatyki czerwca 09 / 70 Plan Wstęp Podsumowanie / 70 Wstęp Istnieje wiele algorytmów związanych z grafami, które w skrócie nazywane

Bardziej szczegółowo

Programowanie dynamiczne

Programowanie dynamiczne Programowanie dynamiczne Programowanie rekurencyjne: ZALETY: - prostota - naturalność sformułowania WADY: - trudność w oszacowaniu zasobów (czasu i pamięci) potrzebnych do realizacji Czy jest możliwe wykorzystanie

Bardziej szczegółowo

Grafy i Zastosowania. 5: Drzewa Rozpinające. c Marcin Sydow. Drzewa rozpinające. Cykle i rozcięcia fundamentalne. Zastosowania

Grafy i Zastosowania. 5: Drzewa Rozpinające. c Marcin Sydow. Drzewa rozpinające. Cykle i rozcięcia fundamentalne. Zastosowania Grafy i Grafy i 5: Rozpinające Spis zagadnień Grafy i i lasy cykle fundamentalne i własności cykli i rozcięć przestrzenie cykli i rozcięć* : zastosowanie w sieciach elektrycznych minimalne * algorytm Kruskala*

Bardziej szczegółowo

Wstęp do programowania. Listy. Piotr Chrząstowski-Wachtel

Wstęp do programowania. Listy. Piotr Chrząstowski-Wachtel Wstęp do programowania Listy Piotr Chrząstowski-Wachtel Do czego stosujemy listy? Listy stosuje się wszędzie tam, gdzie występuje duży rozrzut w możliwym rozmiarze danych, np. w reprezentacji grafów jeśli

Bardziej szczegółowo

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott

Struktury danych i złożoność obliczeniowa Wykład 7. Prof. dr hab. inż. Jan Magott Struktury danych i złożoność obliczeniowa Wykład 7 Prof. dr hab. inż. Jan Magott Problemy NP-zupełne Transformacją wielomianową problemu π 2 do problemu π 1 (π 2 π 1 ) jest funkcja f: D π2 D π1 spełniająca

Bardziej szczegółowo

Rozwiązywanie problemów metodą przeszukiwania

Rozwiązywanie problemów metodą przeszukiwania Rozwiązywanie problemów metodą przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Reprezentacja problemu w przestrzeni stanów Jedną z ważniejszych metod sztucznej

Bardziej szczegółowo

Drzewa poszukiwań binarnych

Drzewa poszukiwań binarnych 1 Drzewa poszukiwań binarnych Kacper Pawłowski Streszczenie W tej pracy przedstawię zagadnienia związane z drzewami poszukiwań binarnych. Przytoczę poszczególne operacje na tej strukturze danych oraz ich

Bardziej szczegółowo

Wstęp do programowania. Zastosowania stosów i kolejek. Piotr Chrząstowski-Wachtel

Wstęp do programowania. Zastosowania stosów i kolejek. Piotr Chrząstowski-Wachtel Wstęp do programowania Zastosowania stosów i kolejek Piotr Chrząstowski-Wachtel FIFO - LIFO Kolejki i stosy służą do przechowywania wartości zbiorów dynamicznych, czyli takich, które powstają przez dodawanie

Bardziej szczegółowo

Podejście zachłanne, a programowanie dynamiczne

Podejście zachłanne, a programowanie dynamiczne Podejście zachłanne, a programowanie dynamiczne Algorytm zachłanny pobiera po kolei elementy danych, za każdym razem wybierając taki, który wydaje się najlepszy w zakresie spełniania pewnych kryteriów

Bardziej szczegółowo

Indukowane Reguły Decyzyjne I. Wykład 3

Indukowane Reguły Decyzyjne I. Wykład 3 Indukowane Reguły Decyzyjne I Wykład 3 IRD Wykład 3 Plan Powtórka Grafy Drzewa klasyfikacyjne Testy wstęp Klasyfikacja obiektów z wykorzystaniem drzewa Reguły decyzyjne generowane przez drzewo 2 Powtórzenie

Bardziej szczegółowo

Programowanie i struktury danych

Programowanie i struktury danych Programowanie i struktury danych 1 / 30 STL Standard Template Library, STL (ang. = Standardowa Biblioteka Wzorców) biblioteka C++ zawierająca szablony (wzorce), które umożliwiają wielokrotne użycie. Główne

Bardziej szczegółowo

Problem 1 prec f max. Algorytm Lawlera dla problemu 1 prec f max. 1 procesor. n zadań T 1,..., T n (ich zbiór oznaczamy przez T )

Problem 1 prec f max. Algorytm Lawlera dla problemu 1 prec f max. 1 procesor. n zadań T 1,..., T n (ich zbiór oznaczamy przez T ) Joanna Berlińska Algorytmika w projektowaniu systemów - ćwiczenia 1 1 Problem 1 prec f max 1 procesor (ich zbiór oznaczamy przez T ) czas wykonania zadania T j wynosi p j z zadaniem T j związana jest niemalejąca

Bardziej szczegółowo

TEORIA GRAFÓW I SIECI

TEORIA GRAFÓW I SIECI TEORIA GRAFÓW I SIECI Temat nr : Grafy Berge a dr hab. inż. Zbigniew TARAPATA, prof. WAT e-mail: zbigniew.tarapata@wat.edu.pl http://tarapata.edu.pl tel.: 6-83-95-0, p.5/00 Zakład Badań Operacyjnych i

Bardziej szczegółowo

Grafy (3): drzewa. Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków. UTP Bydgoszcz

Grafy (3): drzewa. Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków. UTP Bydgoszcz Grafy (3): drzewa Wykłady z matematyki dyskretnej dla informatyków i teleinformatyków UTP Bydgoszcz 13 (Wykłady z matematyki dyskretnej) Grafy (3): drzewa 13 1 / 107 Drzewo Definicja. Drzewo to graf acykliczny

Bardziej szczegółowo