Kalibracja robotów przemysłowych
|
|
- Eugeniusz Jasiński
- 7 lat temu
- Przeglądów:
Transkrypt
1 Kalibracja robotów przemysłowych Rzeszów
2 Kalibracja robotów przemysłowych 1. Układy współrzędnych w robotyce Deklaracja globalnego układu współrzędnych Deklaracja układu współrzędnych obiektu lub użytkownika Deklaracja narzędzia pracy Transformatory położenia kątowego (ang. resolver ) Napędy elektryczne robotów przemysłowych Aktualizacja liczników transformatorów położenia kątowego (resolverów) 16 8 Aktualizacja wartości kąta położenia zerowego silnika Kalibracja robotów przy użyciu panelu operatorskiego Aktualizacja liczników obrotu Kalibracja siatki podstawy Kalibracja robotów za pomocą RobotStudio Online Proces pobierania systemu z kontrolera Kalibracja robotów poprzez edycję plików Podsumowanie Literatura
3 Kalibracja robotów przemysłowych Poniżej zaprezentowano opis stosowanych w robotyce układów odniesienia, podano sposoby ich kalibracji, omówiono podstawy teoretyczne układów sensorycznych i wykonawczych bezpośrednio związanych z kalibracją robotów ponadto podano w formie instrukcji w jaki sposób należy przeprowadzić kalibrację robotów z wykorzystaniem panelu operatorskiego (FlexPendant) oraz oprogramowania RobotStudio. Przeprowadzone prace symulacyjne i testowe odniesiono do robotów IRB 140 oraz IRB 1600 sterowanych za pomocą kontrolera IRC5. 1. Układy współrzędnych w robotyce Robot, urządzenie mechaniczne wykorzystuje do orientacji w przestrzeni informację o kontach w swoich złączach oraz wiedzę dostarczoną przez operatora. Programista powinien niekiedy przeanalizować i mieć świadomość, że robot czy manipulator nie posiada rozbudowanego systemu wizyjnego jak człowiek, który jest w stanie na bieżąco wprowadzać korekty i reagować na zmiany otoczenia. Widzi czy mówiąc inaczej wie o otaczającym świecie tylko tyle ile mu powiemy. Dlatego aby mógł wykonywać prace musimy podać do systemu zrobotyzowanego informacja gdzie jest robot i gdzie są przedmioty wokół niego z którymi będzie wchodził w interakcje. W pierwszym kroku musimy określić punkt odniesienia i przyjąć globalny układ współrzędnych (tzw. ang base frame). Najczęściej przyjmujemy kartezjański układ odniesienia. W porównaniu z układem współrzędnych biegunowych, współrzędne kartezjańskie dają bardziej naturalną oraz łatwiejszą w zastosowaniu praktycznym informację o położeniu ramienia manipulatora w przestrzeni roboczej. W kolejnym kroku należy w zdefiniowanym globalnym układzie odniesienia umieścić robota lub roboty. Kartezjański układ współrzędnych związany z robotem jest układ bazowy, zaczepiony w podstawie robota. Ponadto w praktyce przydatne jest posługiwanie się układem współrzędnych obiektu roboczego, narzędzia oraz użytkownika. System układów charakteryzuje się hierarchicznością, co oznacza, że definiowanie układu odbywa się w odniesieniu do innego układu współrzędnych. Globalny układ współrzędnych ma szczególne znaczenie w systemach składających się z wielu często współpracujących ze sobą robotów lub poruszających się na zainstalowanych dodatkowych osiach. 1 - globalny układ współrzędnych 2,3 bazowe układy Rys. 1. Globalny układ współrzędnych (1) dla dwóch robotów pracujących we wspólnej przestrzeni roboczej [ABB1]. 3
4 Pozwala na określenie wspólnej przestrzeni roboczej, przy czym układy bazowe mogą mieć całkowicie różną orientację względem siebie. Wówczas układy bazowe poszczególnych manipulatorów są odniesione względem układu globalnego (rys.1). Bazowy układ współrzędnych jest podstawowym układem określającym położenie ramienia w przestrzeni, przypisany do konkretnej jednostki mechanicznej, a w przypadku systemu składającego się z pojedynczego robota jest często układem globalnym (rys.2). Rys.2. Bazowy układ współrzędnych (XYZ) umieszczony w podstawie robota. Układ współrzędnych użytkownika definiowany jest w układzie globalnym. Związany jest najczęściej z zamocowaniem przedmiotu obrabianego (stoły warsztatowe, przenośniki, przyrządy obróbkowe, pozycjonery) (rys.3). Pozycje zapisane w układzie współrzędnych użytkownika są w odniesieniu do niego niezmienne. Sam układ użytkownika może się przemieszczać fakt ten w ułatwia programowanie. Informacja na temat przemieszczenia układu musi być uwzględniona w systemie sterującym jako zmiana położenia układu użytkownika względem układu globalnego. W przypadku, gdy w jednym zamocowaniu znajduje się kilka obiektów roboczych wygodnie jest użyć oddzielnego układu współrzędnych dla każdego z nich. Układ współrzędnych obiektu roboczego jest najwygodniejszy dla programowania trajektorii ruchu, dlatego to właśnie w nim określa się punkty docelowe i przebieg ścieżki punktu roboczego narzędzia. W związku z tym, że układ ten bezpośrednio związany jest z obiektem roboczym wygodnym sposobem programowania jest umiejscowienie go w bazie wymiarowej rysunku technicznego (rys.3). Układ współrzędnych obiektu roboczego może być ruchomy względem podstawy robota, a także układu globalnego, czy też użytkownika. W przypadku, gdy obiekt zmienia położenie, zmieni również położenie układ współrzędnych z nim związany. 1- Bazowy układ współrzędnych. 2 - Układ współrzędnych użytkownika. 3,4 - Układ współrzędnych obiektu. Rys.3. Układy współrzędnych obiektu przy dwóch różnych zamocowaniach. 4
5 Szczególne znaczenie ma to, gdy obiekt przemieszcza się np. za pomocą przenośnika lub, gdy po zaprogramowaniu trajektorii ze względów technologicznych musi nastąpić zmiana jego położenia. W niektórych przypadkach, kiedy zaprogramowane wcześniej pozycje nie możliwe są do osiągnięcia przy zapisanych wcześniej konfiguracjach osi robota, może być wymagana rekonfiguracja całej ścieżki lub jej części. Układ współrzędnych narzędzia definiowany jest na podstawie niezmiennego układu współrzędnych przegubu osi 6, którego początek znajduje się w środku kołnierza montażowego końcówki roboczej (narzędzia) (rys.4). Układem współrzędnych narzędzia jest przesunięcie układu współrzędnych ostatniego przegubu wzdłuż jego osi obrotu, a jego środek nazywany jest punktem środkowym narzędzia TCP (Tool Center Point). Jest to punkt roboczy przemieszczający się podczas pracy po zaprogramowanej trajektorii. Wykorzystanie tego układu szczególne znaczenie ma podczas impulsowania robota w celu odjazdu od obrabianego przedmiotu wzdłuż jednej z osi tego układu. Rys.4. Układ współrzędnych narzędzia wraz z centralnym punktem narzędzia (TCP). Poza wymienionymi wyżej głównymi układami współrzędnych wykorzystywanych podczas programowania robotów definiuje się również pochodne układy współrzędnych nazywane układami współrzędnych przeniesienia. Są to transformacje układu współrzędnych obiektu roboczego stosowane w celu uniknięcia wielokrotnego programowania tej samej trajektorii w różnych miejscach przestrzeni roboczej. Układ współrzędnych obiektu roboczego zostaje skopiowany w nowym miejscu wraz z zaprogramowanymi punktami. Nie zawsze wykorzystywanie wszystkich zaprezentowanych układów współrzędnych jest konieczne. Jeśli przyjrzymy się powyższym definicjom widzimy, że stosując jedynie bazowy układ współrzędnych możemy definiować położenie TCP w dowolnym miejscu przestrzeni roboczej. Jednak byłaby to praca bardzo mozolna i często trudna do zrealizowania w przypadkach, gdy na przykład wykonujemy pracę dla obiektów których krawędzie są zorientowane inaczej niż bazowy układ współrzędnych. Wykorzystanie w takim przypadku układów odniesienia powiązanych z obiektami oczywiście zwiększa dokładność i zmniejsza pracochłonność, a przez to czas pisania programu dedykowane dla robota. 2 Deklaracja globalnego układu współrzędnych W większości przypadków do programowania zadań dla pojedynczego robota można używać głównie układu współrzędnych podstawowych, związanego z podstawą robota. Gdy jednak stacja robocza składa się z dwóch lub więcej robotów, które korzystają z tej samej przestrzeni roboczej, lub będą ze sobą współpracować (tryb MultiMove ) to należy zadeklarować globalny układ współrzędnych (rys. 5a). 5
6 Zadanie to sprowadza się do ustawienia pozycji i orientacji układu współrzędnych podstawowych każdego z robotów w pożądanym układzie współrzędnych globalnych. Pomiar tych wartości konwencjonalnymi metodami i wpisanie otrzymanych wartości mogłoby nie być wystarczająco dokładne. Do realizacji tego zadania wykorzystuje się specjalną funkcję kontrolera, która pozwala na dokładne określenie parametrów przesunięcia tych układów współrzędnych. Jest ona dostępna w zakładce Base Frame w menu kalibracji (rys. 5b) pod nazwą 4 points XZ. a) b) z p y p x p z g y g x g Rys. 5.a) Robot i jego układ współrzędnych podstawowych x p y p z p w globalnym układzie współrzędnych x g y g z g, b) zakładka ustawień pozycji bazowego układu współrzędnych. Metoda ta polega na czterokrotnym ustawianiu końcówki roboczej (punktu charakterystycznego narzędzia) w ustalonym punkcie globalnego układu współrzędnych (W - Reference point ), przy czym za każdym razem robot powinien być ustawiony pod innym kątem tak jak na rys. 6a. Po każdym ustawieniu należy zaakceptować pozycję naciskając Modify Position (rys. 6b). a) b) ( x, y z ) W, w w w z p y p x p z g y g x g Rys. 6a). Przykładowy sposób ustawień końcówki roboczej w punkcie referencyjnym W, b) menu konfiguracji położenia bazowego układu współrzędnych. 6
7 Pomiar wartości kątowych wszystkich osi robota i dane geometryczne narzędzia pozwolą w ten sposób określić wartości Δx 1, Δy 1, Δz 1 określające przesunięcie bazowego układu współrzędnych względem globalnego układu. Aby zmienić dodatkowo orientację układu bazowego należy podać punkty na przedłużeniu osi x ( Elongator point X rys. 6b) oraz osi z ( Elongator point Z rys. 6b) globalnego układu współrzędnych. Przedstawiony wcześniej proces należy powtórzyć dla wszystkich współpracujących robotów. Jednocześnie należy dołożyć wszelkich starań, aby czynności te były wykonywane jak najdokładniej, ponieważ od nich zależy późniejsza dokładność pracy. 3 Deklaracja układu współrzędnych obiektu lub użytkownika Układ współrzędnych użytkownika jak i obiektu są przydatne w sytuacjach, gdy w skład systemu zrobotyzowanego wchodzą dodatkowe urządzenia np pozycjonery, stoły obróbcze posiadające swoje własne układy współrzędnych. Obydwa układy współrzędnych można zdefiniować dla dowolnej liczby obiektów jak i elementów obrabianych. Różnica pomiędzy układem użytkownika, a obiektu polega na tym, że układ współrzędnych użytkownika definiowany jest w odniesieniu do globalnego układu współrzędnych, a układ współrzędnych obiektu opiera się na układzie współrzędnych użytkownika. Robot może posiadać kilka układów współrzędnych obiektów roboczych, reprezentujących różne obiekty robocze lub kilka kopii tego samego obiektu, znajdujących się w różnych miejscach. Generalnie w układach współrzędnych obiektów roboczych tworzy się ścieżki podczas programowania robota. Przyjęcie tego typu metodologii programowania robota posiada szereg zalet. Podczas zmiany pozycji obiektu roboczego w stanowisku, wystarczy zmienić układ współrzędnych obiektu, a wszystkie ścieżki zostaną zaktualizowane. Ponadto fakt ten, umożliwia pracę z obiektami roboczymi przesuwającymi się np za pomocą osi zewnętrznych lub przenośników. W takiej sytuacji przesuwany jest obiekt roboczy wraz ze ścieżkami pracy robota z nim związanymi. a) b ) Rys. 7. Definiowanie układu współrzędnych obiektu a) schemat, b) panel definiujący W celu zdefiniowania układu współrzędnych obiektu roboczego należy podać trzy pozycje, dwie na osi x i jedną na osi y (rys.7a). Podczas definiowania obiektu roboczego można skorzystać z układ współrzędnych użytkownika jak również z globalnego układu współrzędnych (rys. 7b). 7
Rys. 18a). Okno kalibracji robotów, b)wybór osi robota, która wymaga kalibracji.
kalibracja robotów może się przyczynić do awarii maszyn, co jest bardzo kosztowne i wymaga długich napraw, a więc i zatrzymania produkcji. Opis technik kalibracji został opracowany w oparciu o podręcznik
Projektowanie systemów zrobotyzowanych
ZAKŁAD PROJEKTOWANIA TECHNOLOGII Laboratorium Projektowanie systemów zrobotyzowanych Instrukcja 4 Temat: Programowanie trajektorii ruchu Opracował: mgr inż. Arkadiusz Pietrowiak mgr inż. Marcin Wiśniewski
Manipulator OOO z systemem wizyjnym
Studenckie Koło Naukowe Robotyki Encoder Wydział Automatyki, Elektroniki i Informatyki Politechnika Śląska Manipulator OOO z systemem wizyjnym Raport z realizacji projektu Daniel Dreszer Kamil Gnacik Paweł
www.prolearning.pl/cnc
Gwarantujemy najnowocześniejsze rozwiązania edukacyjne, a przede wszystkim wysoką efektywność szkolenia dzięki części praktycznej, która odbywa się w zakładzie obróbki mechanicznej. Cele szkolenia 1. Zdobycie
Geometryczne podstawy obróbki CNC. Układy współrzędnych, punkty zerowe i referencyjne. Korekcja narzędzi
Geometryczne podstawy obróbki CNC. Układy współrzędnych, punkty zerowe i referencyjne. Korekcja narzędzi 1 Geometryczne podstawy obróbki CNC 1.1. Układy współrzędnych. Układy współrzędnych umożliwiają
Przygotowanie do pracy frezarki CNC
Wydział Budowy Maszyn i Zarządzania Instytut Technologii Mechanicznej Maszyny i urządzenia technologiczne laboratorium Przygotowanie do pracy frezarki CNC Cykl I Ćwiczenie 2 Opracował: dr inż. Krzysztof
Kinematyka manipulatora równoległego typu DELTA 106 Kinematyka manipulatora równoległego hexapod 110 Kinematyka robotów mobilnych 113
Spis treści Wstęp 11 1. Rozwój robotyki 15 Rys historyczny rozwoju robotyki 15 Dane statystyczne ilustrujące rozwój robotyki przemysłowej 18 Czynniki stymulujące rozwój robotyki 23 Zakres i problematyka
Sterowanie, uczenie i symulacja robotów przemysłowych Kawasaki
Ćwiczenie VIII LABORATORIUM MECHATRONIKI IEPiM Sterowanie, uczenie i symulacja robotów przemysłowych Kawasaki Zał.1 - Roboty przemysłowe i mobilne. Roboty Kawasaki - charakterystyka Zał.2 - Oprogramowanie
Mechanika Robotów. Wojciech Lisowski. 5 Planowanie trajektorii ruchu efektora w przestrzeni roboczej
Katedra Robotyki i Mechatroniki Akademia Górniczo-Hutnicza w Krakowie Mechanika Robotów Wojciech Lisowski 5 Planowanie trajektorii ruchu efektora w przestrzeni roboczej Mechanika Robotów KRiM, WIMIR, AGH
Projektowanie systemów zrobotyzowanych
ZAKŁAD PROJEKTOWANIA TECHNOLOGII Laboratorium Projektowanie systemów zrobotyzowanych Instrukcja 2 Temat: Rozpoczęcie pracy z programem RobotStudio Opracował: mgr inż. Arkadiusz Pietrowiak mgr inż. Marcin
Układy współrzędnych GUW, LUW Polecenie LUW
Układy współrzędnych GUW, LUW Polecenie LUW 1 Układy współrzędnych w AutoCAD Rysowanie i opis (2D) współrzędnych kartezjańskich: x, y współrzędnych biegunowych: r
Materiały pomocnicze do ćwiczeń laboratoryjnych
Materiały pomocnicze do ćwiczeń laboratoryjnych Badanie napędów elektrycznych z luzownikami w robocie Kawasaki FA006E wersja próbna Literatura uzupełniająca do ćwiczenia: 1. Cegielski P. Elementy programowania
WPŁYW WYBRANYCH USTAWIEŃ OBRABIARKI CNC NA WYMIARY OBRÓBKOWE
OBRÓBKA SKRAWANIEM Ćwiczenie nr 2 WPŁYW WYBRANYCH USTAWIEŃ OBRABIARKI CNC NA WYMIARY OBRÓBKOWE opracował: dr inż. Tadeusz Rudaś dr inż. Jarosław Chrzanowski PO L ITECH NI KA WARS ZAWS KA INSTYTUT TECHNIK
Laboratorium Maszyny CNC. Nr 4
1 Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium Maszyny CNC Nr 4 Obróbka na frezarce CNC Opracował: Dr inż. Wojciech Ptaszyński Poznań, 03 stycznia 2011 2 1. Cel ćwiczenia Celem
OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA
OPISY PRZESTRZENNE I PRZEKSZTAŁCENIA Wprowadzenie W robotyce przez pojęcie manipulacji rozumiemy przemieszczanie w przestrzeni przedmiotów i narzędzi za pomocą specjalnego mechanizmu. W związku z tym pojawia
Laboratorium Podstaw Robotyki ĆWICZENIE 2
Laboratorium Podstaw Robotyki Politechnika Poznańska Katedra Sterowania i Inżynierii Systemów ĆWICZENIE 2 Podstawy obsługi i programowania manipulatora KR AGILUS Celem ćwiczenia jest zapoznanie ze strukturą
Obrabiarki CNC. Nr 10
Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium Obrabiarki CNC Nr 10 Obróbka na tokarce CNC CT210 ze sterowaniem Sinumerik 840D Opracował: Dr inż. Wojciech Ptaszyński Poznań, 17 maja,
Programowanie kontrolera RH robota S-420S Opracował: Karol Szostek
ZAKŁAD MECHANIKI PŁYNÓW I AERODYNAMIKI LABORATORIUM AUTOMATYZACJI PROCESOW PRODUKCYJNYCH Programowanie kontrolera RH robota S-420S Opracował: Karol Szostek 1. Cel ćwiczenia Rzeszów 2008 Celem ćwiczenia
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas
3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas oddziaływanie między ciałami, ani też rola, jaką to
Robot EPSON SCARA T3-401S
Robot EPSON SCARA T3-401S 1 Napędy robota wykorzystują silniki AC, a pomiar położenia realizowany jest za pomocą enkoderów przyrostowych. 2 3 4 Przebieg ćwiczenia: Celem ćwiczenia jest zaznajomienie się
Manipulatory i roboty mobilne AR S1 semestr 5
Manipulatory i roboty mobilne AR S semestr 5 Konrad Słodowicz MN: Zadanie proste kinematyki manipulatora szeregowego - DOF Położenie manipulatora opisać można dwojako w przestrzeni kartezjańskiej lub zmiennych
Notacja Denavita-Hartenberga
Notacja DenavitaHartenberga Materiały do ćwiczeń z Podstaw Robotyki Artur Gmerek Umiejętność rozwiązywania prostego zagadnienia kinematycznego jest najbardziej bazową umiejętność zakresu Robotyki. Wyznaczyć
Programowanie robota IRb-1400
Programowanie robota IRb-1400 Paweł Ludwików 6 kwietnia 2005 roku Spis treści 1 Język RAPID 2 1.1 Przegląd instrukcji............................... 2 1.2 Opis instrukcji..................................
Roboty przemysłowe. Wprowadzenie
Roboty przemysłowe Wprowadzenie Pojęcia podstawowe Manipulator jest to mechanizm cybernetyczny przeznaczony do realizacji niektórych funkcji kończyny górnej człowieka. Należy wyróżnić dwa rodzaje funkcji
Laboratorium z Napęd Robotów
POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT MASZYN, NAPĘDÓW I POMIARÓW ELEKTRYCZNYCH Laboratorium z Napęd Robotów Robot precyzyjny typu SCARA Prowadzący: mgr inŝ. Waldemar Kanior Sala 101, budynek
Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Rozszerzony konspekt preskryptu do przedmiotu Podstawy Robotyki dr inż. Marek Wojtyra Instytut Techniki Lotniczej
Laboratorium Podstaw Robotyki ĆWICZENIE 2
Laboratorium Podstaw Robotyki Politechnika Poznańska Katedra Sterowania i Inżynierii Systemów ĆWICZENIE 2 Podstawy obsługi i programowania manipulatora KUKA KR30 Celem ćwiczenia jest zapoznanie ze strukturą
Bezpieczna obsługa oraz praca robota na stanowisku przemysłowym
Bezpieczna obsługa oraz praca robota na stanowisku przemysłowym Dr inż. Tomasz Buratowski Wydział inżynierii Mechanicznej i Robotyki Katedra Robotyki i Mechatroniki Bezpieczna Obsługa Robota Podstawowe
Wprowadzenie do rysowania w 3D. Praca w środowisku 3D
Wprowadzenie do rysowania w 3D 13 Praca w środowisku 3D Pierwszym krokiem niezbędnym do rozpoczęcia pracy w środowisku 3D programu AutoCad 2010 jest wybór odpowiedniego obszaru roboczego. Można tego dokonać
Sterownik KR C4(8.x)
Systemy programowania robotów przemysłowych - obsługa i podstawy programowania robotów KUKA Sterownik KR C4(8.x) 1 Klasy robotów KUKA małe średnie wysokie bardzo wysokie konstrukcje obciążenia obciążenia
Instrukcja z przedmiotu Napęd robotów
POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT MASZYN, NAPĘDÓW I POMIARÓW ELEKTRYCZNYCH Instrukcja z przedmiotu Napęd robotów Wieloosiowy liniowy napęd pozycjonujący robot ramieniowy RV-2AJ CEL ĆWICZENIA
PL B1. POLITECHNIKA WARSZAWSKA, Warszawa, PL INSTYTUT TECHNOLOGII EKSPLOATACJI. PAŃSTWOWY INSTYTUT BADAWCZY, Radom, PL
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 207917 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 380341 (22) Data zgłoszenia: 31.07.2006 (51) Int.Cl. G01B 21/04 (2006.01)
Roboty przemysłowe. Cz. II
Roboty przemysłowe Cz. II Klasyfikacja robotów Ze względu na rodzaj napędu: - hydrauliczny (duże obciążenia) - pneumatyczny - elektryczny - mieszany Obecnie roboty przemysłowe bardzo często posiadają napędy
Kąty Ustawienia Kół. WERTHER International POLSKA Sp. z o.o. dr inż. Marek Jankowski 2007-01-19
WERTHER International POLSKA Sp. z o.o. dr inż. Marek Jankowski 2007-01-19 Kąty Ustawienia Kół Technologie stosowane w pomiarach zmieniają się, powstają coraz to nowe urządzenia ułatwiające zarówno regulowanie
4. Chwytaki robotów przemysłowych Wstęp Metody doboru chwytaków robotów przemysłowych Zasady projektowania chwytaków robotów
Spis treści Wstęp 1. Wprowadzenie 11 1.1. Rozwój i prognozy robotyki 11 1.2. Światowy rynek robotyki 19 1.3. Prognoza na lata 2007-2009 25 1.4. Roboty usługowe do użytku profesjonalnego i prywatnego 26
Rys. 1. Brama przesuwna do wykonania na zajęciach
Programowanie robotów off-line 2 Kuka.Sim Pro Import komponentów do środowiska Kuka.Sim Pro i modelowanie chwytaka. Cel ćwiczenia: Wypracowanie umiejętności dodawania własnych komponentów do programu oraz
Programowanie robotów Kuka
Wersje szafy sterowniczej KRC1 Programowanie robotów Kuka KRC2 Istnieje możliwość podłączenia myszy do portu COM1. Jednak aplikacje i funkcje, które z tego portu korzystają muszą zostać przełączone na
IRONCAD. TriBall IRONCAD Narzędzie pozycjonujące
IRONCAD IRONCAD 2016 TriBall o Narzędzie pozycjonujące Spis treści 1. Narzędzie TriBall... 2 2. Aktywacja narzędzia TriBall... 2 3. Specyfika narzędzia TriBall... 4 3.1 Kula centralna... 4 3.2 Kule wewnętrzne...
MODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH CATIA I MATLAB MODEL OF SERIAL MANIPULATOR IN CATIA AND MATLAB
Kocurek Łukasz, mgr inż. email: kocurek.lukasz@gmail.com Góra Marta, dr inż. email: mgora@mech.pk.edu.pl Politechnika Krakowska, Wydział Mechaniczny MODEL MANIPULATORA O STRUKTURZE SZEREGOWEJ W PROGRAMACH
Politechnika Poznańska Instytut Technologii Mechanicznej. Programowanie obrabiarek CNC. Nr 2. Obróbka z wykorzystaniem kompensacji promienia narzędzia
1 Politechnika Poznańska Instytut Technologii Mechanicznej Programowanie obrabiarek CNC Nr 2 Obróbka z wykorzystaniem kompensacji promienia narzędzia Opracował: Dr inż. Wojciech Ptaszyński Poznań, 2015-03-05
Układ współrzędnych dwu trój Wykład 2 "Układ współrzędnych, system i układ odniesienia"
Układ współrzędnych Układ współrzędnych ustanawia uporządkowaną zależność (relację) między fizycznymi punktami w przestrzeni a liczbami rzeczywistymi, czyli współrzędnymi, Układy współrzędnych stosowane
PL B1. Stanowisko do zautomatyzowanego spawania elementów metalowych o dużych i zmiennych gabarytach
PL 217454 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 217454 (13) B1 (21) Numer zgłoszenia: 393858 (51) Int.Cl. B23K 37/00 (2006.01) B23K 37/04 (2006.01) Urząd Patentowy Rzeczypospolitej
1 Zasady bezpieczeństwa
1 Zasady bezpieczeństwa W trakcie trwania zajęć laboratoryjnych ze względów bezpieczeństwa nie należy przebywać w strefie działania robota, która oddzielona jest od pozostałej części laboratorium barierkami.
Program szkolenia zawodowego Operator Programista Obrabiarek Sterowanych Numerycznie CNC
Program szkolenia zawodowego Operator Programista Obrabiarek Sterowanych Numerycznie CNC Kurs zawodowy Operator - Programista Obrabiarek Sterowanych Numerycznie CNC ma na celu nabycie przez kursanta praktycznych
Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium Programowanie obrabiarek CNC. Nr 2
1 Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium Programowanie obrabiarek CNC Nr 2 Obróbka z wykorzystaniem kompensacji promienia narzędzia Opracował: Dr inŝ. Wojciech Ptaszyński
LABORATORIUM Podstawy mechatroniki Programowanie robota przemysłowego ABB IRB 1600 w środowisku ABB RobotStudio
Katedra Inżynierii Biomedycznej, Mechatroniki i Teorii Mechanizmów LABORATORIUM Podstawy mechatroniki Programowanie robota przemysłowego ABB IRB 1600 w środowisku ABB RobotStudio Wrocław 2016 Laboratorium
Symulacja działania sterownika dla robota dwuosiowego typu SCARA w środowisku Matlab/Simulink.
Symulacja działania sterownika dla robota dwuosiowego typu SCARA w środowisku Matlab/Simulink. Celem ćwiczenia jest symulacja działania (w środowisku Matlab/Simulink) sterownika dla dwuosiowego robota
Oprogramowanie FormControl
Pomiar przez kliknięcie myszą. Właśnie tak prosta jest inspekcja detalu w centrum obróbczym z pomocą oprogramowania pomiarowego FormControl. Nie ma znaczenia, czy obrabiany detal ma swobodny kształt powierzchni
Wprowadzenie do robotyki
Wprowadzenie do robotyki Robotyka to nauka i technologia projektowania, budowy i zastosowania sterowanych komputerowo urządzeń mechanicznych popularnie zwanych robotami. Robot urządzenie mechaniczne, które
(12) OPIS PATENTOWY (19) PL (11)
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 178034 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 309898 (22) Data zgłoszenia: 03.08.1995 (51) IntCl6: B 2 1 F 3/04
Szkolenia z zakresu obsługi i programowania obrabiarek sterowanych numerycznie CNC
Kompleksowa obsługa CNC www.mar-tools.com.pl Szkolenia z zakresu obsługi i programowania obrabiarek sterowanych numerycznie CNC Firma MAR-TOOLS prowadzi szkolenia z obsługi i programowania tokarek i frezarek
PRZEKŁADNIE ZĘBATE. Przekł. o osiach stałych. Przekładnie obiegowe. Planetarne: W=1 Różnicowe i sumujące: W>1
PRZEKŁADNIE ZĘBATE Przekł. o osiach stałych Przekładnie obiegowe Planetarne: W=1 Różnicowe i sumujące: W>1 Przekładnie obiegowe: Planetarne: W=1 2 I II 3 ( j ) 1 I n=3 p 1 =2 p 2 =1 W = 3(n-1) - 2p 1 -
PL B BUP 13/ WUP 01/17
PL 224581 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 224581 (13) B1 (21) Numer zgłoszenia: 406525 (51) Int.Cl. B25J 11/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:
Struktura manipulatorów
Temat: Struktura manipulatorów Warianty struktury manipulatorów otrzymamy tworząc łańcuch kinematyczny o kolejnych osiach par kinematycznych usytuowanych pod kątem prostym. W ten sposób w zależności od
Zad. 6: Sterowanie robotem mobilnym
Zad. 6: Sterowanie robotem mobilnym 1 Cel ćwiczenia Utrwalenie umiejętności modelowania kluczowych dla danego problemu pojęć. Tworzenie diagramu klas, czynności oraz przypadków użycia. Wykorzystanie dziedziczenia
Sky-Shop.pl. Poradnik. Pierwsze kroki: Importowanie własnego pliku XML Integracje z hurtowniami
Sky-Shop.pl Poradnik Pierwsze kroki: Importowanie własnego pliku XML Integracje z hurtowniami Wstęp Sky-Shop.pl jest w pełni autorskim, opracowanym od podstaw programem do prowadzenia nowoczesnych sklepów
PL 213839 B1. Manipulator równoległy trójramienny o zamkniętym łańcuchu kinematycznym typu Delta, o trzech stopniach swobody
PL 213839 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 213839 (13) B1 (21) Numer zgłoszenia: 394237 (51) Int.Cl. B25J 18/04 (2006.01) B25J 9/02 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej
T13 Modelowanie zautomatyzowanych procesów wytwórczych, programowanie maszyn CNC
T13 Modelowanie zautomatyzowanych procesów wytwórczych, programowanie maszyn CNC 1. Wstęp Wg normy ISO ITR 8373, robot przemysłowy jest automatycznie sterowaną, programowalną, wielozadaniową maszyną manipulacyjną
Laboratorium Podstaw Robotyki ĆWICZENIE 2
Laboratorium Podstaw Robotyki Politechnika Poznańska Katedra Sterowania i Inżynierii Systemów ĆWICZENIE 2 Podstawy obsługi i programowania manipulatora KR AGILUS Celem ćwiczenia jest zapoznanie ze strukturą
Program szkolenia zawodowego Operator Programista Obrabiarek Sterowanych Numerycznie CNC
Program szkolenia zawodowego Operator Programista Obrabiarek Sterowanych Numerycznie CNC Kurs zawodowy Operator - Programista Obrabiarek Sterowanych Numerycznie CNC ma na celu nabycie przez kursanta praktycznych
Podstawy technik wytwarzania PTWII - projektowanie. Ćwiczenie 4. Instrukcja laboratoryjna
PTWII - projektowanie Ćwiczenie 4 Instrukcja laboratoryjna Człowiek - najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Warszawa 2011 2 Ćwiczenie
Laboratorium Sterowania Robotów Sprawozdanie
Instytut Automatyki Politechniki Łódzkiej FTIMS, Informatyka wtorek 10:15 12:00 Laboratorium Sterowania Robotów Sprawozdanie Skład grupy laboratoryjnej: Krzysztof Łosiewski 127260 Łukasz Nowak 127279 Kacper
Autor - dr inż. Józef Zawada. Instrukcja do ćwiczenia nr 10B MIKROSKOPY WARSZTATOWE NOWEJ GENERACJI PROGRAMOWANIE POMIARÓW
Autor - dr inż. Józef Zawada Instrukcja do ćwiczenia nr 10B Temat ćwiczenia MIKROSKOPY WARSZTATOWE NOWEJ GENERACJI PROGRAMOWANIE POMIARÓW Cel ćwiczenia: Celem ćwiczenia jest zapoznanie studentów z programowaniem
Politechnika Poznańska Instytut Technologii Mechanicznej. Programowanie obrabiarek CNC. Nr 2. Obróbka z wykorzystaniem kompensacji promienia narzędzia
1 Politechnika Poznańska Instytut Technologii Mechanicznej Programowanie obrabiarek CNC Nr 2 Obróbka z wykorzystaniem kompensacji promienia narzędzia Opracował: Dr inż. Wojciech Ptaszyński Poznań, 2016-12-02
Szczegółowy opis techniczny i wymagania w zakresie przedmiotu zamówienia
Szczegółowy opis techniczny i wymagania w zakresie przedmiotu zamówienia Przedmiotem zamówienia jest dostawa współpracującego manipulatora przemysłowego o 6 stopniach swobody i udźwigu nominalnym 5kg wraz
Wektory, układ współrzędnych
Wektory, układ współrzędnych Wielkości występujące w przyrodzie możemy podzielić na: Skalarne, to jest takie wielkości, które potrafimy opisać przy pomocy jednej liczby (skalara), np. masa, czy temperatura.
Roboty przemysłowe. Wojciech Lisowski. 8 Przestrzenna Kalibracja Robotów
Katedra Robotyki i Mechatroniki Akademia Górniczo-Hutnicza w Krakowie Roboty przemysłowe Wojciech Lisowski 8 Przestrzenna Kalibracja Robotów Roboty Przemysłowe KRIM, WIMIR AGH w Krakowie 1 Zagadnienia:
Program szkolenia zawodowego Operator Programista Obrabiarek Sterowanych Numerycznie CNC
Program szkolenia zawodowego Operator Programista Obrabiarek Sterowanych Numerycznie CNC Kurs zawodowy Operator - Programista Obrabiarek Sterowanych Numerycznie CNC ma na celu nabycie przez kursanta praktycznych
Program szkolenia zawodowego Operator Programista Obrabiarek Sterowanych Numerycznie CNC
Program szkolenia zawodowego Operator Programista Obrabiarek Sterowanych Numerycznie CNC Kurs zawodowy Operator - Programista Obrabiarek Sterowanych Numerycznie CNC ma na celu nabycie przez kursanta praktycznych
Następnie zdefiniujemy utworzony szkic jako blok, wybieramy zatem jak poniżej
Zadanie 1 Wykorzystanie opcji Blok, Podziel oraz Zmierz Funkcja Blok umożliwia zdefiniowanie dowolnego złożonego elementu rysunkowego jako nowy blok a następnie wykorzystanie go wielokrotnie w tworzonym
Laboratorium Napędu robotów
WYDZIAŁ ELEKTRYCZNY INSTYTUT MASZYN, NAPĘDÓW I POMIARÓW ELEKTRYCZNYCH Laboratorium Napędu robotów INS 5 Ploter frezująco grawerujący Lynx 6090F 1. OPIS PRZYCISKÓW NA PANELU STEROWANIA. Rys. 1. Przyciski
R 1. Robot o równoległej strukturze kinematycznej i czterech stopniach swobody. Pracownia Nauki Programowania i Aplikacji Robotów Przemysłowych
Pracownia Nauki Programowania i Aplikacji Robotów Przemysłowych Podstawowa instrukcja laboratoryjna R 1 Robot o równoległej strukturze kinematycznej i czterech stopniach swobody. Instrukcja dla studentów
METODYKA BADAŃ DOKŁADNOŚCI I POWTARZALNOŚCI ODWZOROWANIA TRAJEKTORII ROBOTA PRZEMYSŁOWEGO FANUC M-16iB
METODYKA BADAŃ DOKŁADNOŚCI I POWTARZALNOŚCI ODWZOROWANIA TRAJEKTORII ROBOTA PRZEMYSŁOWEGO FANUC M-16iB Marcin WIŚNIEWSKI Jan ŻUREK Olaf CISZAK Streszczenie W pracy omówiono szczegółowo metodykę pomiaru
Podstawy robotyki wykład III. Kinematyka manipulatora
Podstawy robotyki Wykład III sztywnego Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Manipulator typu PUMA ogniwo 2 ogniwo 3 ogniwo 1 PUMA układy
Rok akademicki: 2015/2016 Kod: RME s Punkty ECTS: 12. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne
Nazwa modułu: Roboty przemysłowe Rok akademicki: 2015/2016 Kod: RME-1-504-s Punkty ECTS: 12 Wydział: Inżynierii Mechanicznej i Robotyki Kierunek: Mechatronika Specjalność: Poziom studiów: Studia I stopnia
WYDZIAŁ ELEKTRYCZNY. Optoelektroniczne pomiary aksjograficzne stawu skroniowo-żuchwowego człowieka
dr inż. Witold MICKIEWICZ dr inż. Jerzy SAWICKI Optoelektroniczne pomiary aksjograficzne stawu skroniowo-żuchwowego człowieka Aksjografia obrazowanie ruchu osi zawiasowej żuchwy - Nowa metoda pomiarów
ROBOTY PRZEMYSŁOWE LABORATORIUM FANUC S-420F
ROBOTY PRZEMYSŁOWE LABORATORIUM FANUC S-420F Wstęp Roboty przemysłowe FANUC Robotics przeznaczone są dla szerokiej gamy zastosowań, takich jak spawanie ( Spawanie to jedno z najczęstszych zastosowań robotów.
Kinematyka robotów mobilnych
Kinematyka robotów mobilnych Maciej Patan Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Adaptacja slajdów do wykładu Autonomous mobile robots R. Siegwart (ETH Zurich Master Course:
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury
KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )
Programowanie sterowników przemysłowych / Jerzy Kasprzyk. wyd. 2 1 dodr. (PWN). Warszawa, Spis treści
Programowanie sterowników przemysłowych / Jerzy Kasprzyk. wyd. 2 1 dodr. (PWN). Warszawa, 2017 Spis treści Przedmowa 11 ROZDZIAŁ 1 Wstęp 13 1.1. Rys historyczny 14 1.2. Norma IEC 61131 19 1.2.1. Cele i
ANALIZA KINEMATYKI MANIPULATORÓW NA PRZYKŁADZIE ROBOTA LINIOWEGO O CZTERECH STOPNIACH SWOBODY
MECHNIK 7/ Dr inż. Borys BOROWIK Politechnika Częstochowska Instytut Technologii Mechanicznych DOI:.78/mechanik..7. NLIZ KINEMTYKI MNIPULTORÓW N PRZYKŁDZIE ROBOT LINIOWEGO O CZTERECH STOPNICH SWOBODY Streszczenie:
Instrukcja postępowania przy instalacji wersji programu ze zmianami VAT.
Instrukcja postępowania przy instalacji wersji programu ze zmianami VAT. Zmiany do przeprowadzenia zaraz po instalacji w systemie Windows 7, Vista, 2003, 2008. Bez ustawienie niżej wymienionych opcji,
Celem ćwiczenia jest zapoznanie się z podstawowymi funkcjami i pojęciami związanymi ze środowiskiem AutoCAD 2012 w polskiej wersji językowej.
W przygotowaniu ćwiczeń wykorzystano m.in. następujące materiały: 1. Program AutoCAD 2012. 2. Graf J.: AutoCAD 14PL Ćwiczenia. Mikom 1998. 3. Kłosowski P., Grabowska A.: Obsługa programu AutoCAD 14 i 2000.
2.2 Opis części programowej
2.2 Opis części programowej Rysunek 1: Panel frontowy aplikacji. System pomiarowy został w całości zintegrowany w środowisku LabVIEW. Aplikacja uruchamiana na komputerze zarządza przebiegiem pomiarów poprzez
Instrukcja programowania wieratko-frezarki BFKO, sterowanej odcinkowo (Sinumerik 802C)
Instrukcja programowania wieratko-frezarki BFKO, sterowanej odcinkowo (Sinumerik 802C) Stan na dzień Gliwice 10.12.2002 1.Przestrzeń robocza maszyny Rys. Układ współrzędnych Maksymalne przemieszczenia
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: MECHANIKA I BUDOWA MASZYN Rodzaj przedmiotu: obowiązkowy na kierunku Rodzaj zajęć: wykład, laboratorium ROBOTYKA Robotics Forma studiów: stacjonarne Poziom przedmiotu: I stopnia
Zastosowanie stereowizji do śledzenia trajektorii obiektów w przestrzeni 3D
Zastosowanie stereowizji do śledzenia trajektorii obiektów w przestrzeni 3D autorzy: Michał Dajda, Łojek Grzegorz opiekun naukowy: dr inż. Paweł Rotter I. O projekcie. 1. Celem projektu było stworzenie
PRACA DYPLOMOWA MAGISTERSKA
KATEDRA WYTRZYMAŁOSCI MATERIAŁÓW I METOD KOMPUTEROWYCH MACHANIKI PRACA DYPLOMOWA MAGISTERSKA Analiza kinematyki robota mobilnego z wykorzystaniem MSC.VisualNastran PROMOTOR Prof. dr hab. inż. Tadeusz Burczyński
Jakobiany. Kinematykę we współrzędnych możemy potraktować jako operator przekształcający funkcje czasu
Wstęp do Robotyki c W. Szynkiewicz, 29 1 Jakobiany Kinematykę we współrzędnych możemy potraktować jako operator przekształcający funkcje czasu ( t )z(t)=k(x(t)) Ponieważ funkcje w powyższym równaniu są
PL B1. DEERE & COMPANY,Moline,US ,US,10/285,732. Scott Svend Hendron,Dubuque,US Judson P. Clark,Dubuque,US Bryan D.
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 201142 (13) B1 (21) Numer zgłoszenia: 363199 (51) Int.Cl. E01C 19/20 (2006.01) E02F 3/76 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA AUTOMATYKI. Robot do pokrycia powierzchni terenu
WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA AUTOMATYKI Robot do pokrycia powierzchni terenu Zadania robota Zadanie całkowitego pokrycia powierzchni na podstawie danych sensorycznych Zadanie unikania przeszkód
Laboratorium Napędu Robotów
POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRYCZNY INSTYTUT MASZYN, NAPĘDÓW I POMIARÓW ELEKTRYCZNYCH Laboratorium Napędu Robotów Wieloosiowy liniowy napęd pozycjonujący robot ramieniowy RV-2AJ CEL ĆWICZENIA Celem
R11. Programowanie robota opartego o kinematykę platformy Sterwarta-Gougha. Pracownia Nauki Programowania i Aplikacji Robotów Przemysłowych
Pracownia Nauki Programowania i Aplikacji Robotów Przemysłowych Instrukcja laboratoryjna R Programowanie robota opartego o kinematykę platformy Sterwarta-Gougha. Instrukcja dla studentów studiów dziennych.
ci trwałej modułu steruj cego robota. Po wł niami i programami. W czasie działania wykorzystywane w czasie działania programu: wy robota (poło
ci trwałej modułu steruj cego robota. Po wł niami i programami. W czasie działania wykorzystywane w czasie działania programu: wy robota (poło W systemie AS robot jest sterowany i obsługiwany w trznych
Podstawy robotyki - opis przedmiotu
Podstawy robotyki - opis przedmiotu Informacje ogólne Nazwa przedmiotu Podstawy robotyki Kod przedmiotu 06.9-WE-AiRP-PR Wydział Kierunek Wydział Informatyki, Elektrotechniki i Automatyki Automatyka i robotyka
IRB PODSUMOWANIE:
IRB 2400 - PODSUMOWANIE: Rysunki obrazujące wymiary, udźwig i zasięg znajdują się na kolejnych stronach. Zdjęcia robota opisywanego tutaj są dostępne na dysku sieciowym pod adresem: https://drive.google.com/open?id=0b0jqhp-eodqgcfrhctlual9tauu
Rozwiązanie: I sposób Dla prostego manipulatora płaskiego można w sposób klasyczny wyznaczyćpołożenie punktu C.
Instrukcja laboratoryjna do WORKING MODEL 2D. 1.Wstęp teoretyczny. Do opisu kinematyki prostej niezbędne jest podanie równańkinematyki robota. Zadanie kinematyki prostej można określićnastępująco: posiadając
Kolejną czynnością będzie wyświetlenie dwóch pasków narzędzi, które służą do obsługi układów współrzędnych, o nazwach LUW i LUW II.
Przestrzeń AutoCAD-a jest zbudowana wokół kartezjańskiego układu współrzędnych. Oznacza to, że każdy punkt w przestrzeni posiada trzy współrzędne (X,Y,Z). Do tej pory wszystkie rysowane przez nas projekty
Systemy wspomagające projektowanie i programowanie systemów zrobotyzowanych
Systemy wspomagające projektowanie i programowanie systemów zrobotyzowanych Dassault Systemes STRATEGICZNE RELACJE Z DOSTAWCAMI STRATEGICZNE RELACJE Z KLIENTAMI KLASYFIKACJA IP ORAZ OCHRONA PLANOWANIE