0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do
|
|
- Zbigniew Olejnik
- 6 lat temu
- Przeglądów:
Transkrypt
1 0. OpenGL ma układ współrzędnych taki, że oś y jest skierowana (względem monitora) a) w dół b) w górę c) w lewo d) w prawo e) w kierunku do obserwatora f) w kierunku od obserwatora 1. Obrót dookoła osi x jest określony macierzą a) b) c) d) Tonalność to występowanie tego samego koloru w a) w tych samych nasyceniach i jasnościach b) w różnych nasyceniach i tych samych jasnościach c) w tych samych nasyceniach i różnych jasnościach d) różnych nasyceniach i jasnościach 3. Ciągłotonalność to ciągłe przechodzenie pomiędzy a) barwami b) jasnościami c) nasyceniami d) kolorami pikseli 4. W obrazie cyfrowym barwa a) zmienia się skokowo b) nie zmienia się c) zmienia się nieciągle 5. Woksel to (w grafice komputerowej) a) odpowiednik piksela w grafice 2D b) najmniejszy element przestrzeni c) najmniejszy element płaszczyzny d) inna nazwa współrzędnej jednorodnej w grafice 3D 6. Aliasing (w grafice komputerowej) to zjawisko polegające na zniekształceniu (w procesie rasteryzacji) obrazu w wyniku a) zbyt małej częstotliwości próbkowania (obrazu) b) zbyt dużej częstotliwości próbkowania c) teksturowania d) zmiany koloru 7. Antyaliasing powoduje (na ekranie komputera) a) wrażenie wygładzania krawędzi obiektów b) wrażenie cieniowania obiektu c) zwiększenie rozdzielczości obrazu
2 8. Rozdzielczość PPI to a) liczba elementów podstawowych na jednostkę metryczną b) liczba elementów podstawowych rozmiaru obrazu c) proporcje obrazu d) żadne z powyższych 9. Barwie (1, 0, 0) w modelu RGB odpowiada w modelu CMY barwa a) (0, 1, 1) b) (1, 0, 1) c) (1, 1,0) 10. Ile punktów kontrolnych ma krzywa Beziera stopnia 2? a) 1 b) 2 c) 3 d) Krzywa Beziera stopnia 3 o punktach kontrolnych p 0, p 1, p 2, p 3 jest styczna do odcinka a) p 0p 1 b) p 0p 2 c) p 0p 3 d) p 1p Do eliminacji powierzchni zasłoniętych w OpenGL używany a) algorytmu malarza b) zmodyfikowanego algorytmu malarza c) algorytmu głębokości bufora d) nie ma takiego algorytmu w OpenGL 13. Za pomocą wymiernej krzywej Beziera a) nie można modelować krzywych stożkowych b) można modelować krzywe stożkowe umieszczająca część punktów kontrolnych w nieskończoności c) można modelować krzywe stożkowe umieszczając część punktów kontrolnych w jednym miejscu 14. Przy załamaniu promienia na granicy powietrze woda kąt załamania a) powiększa się b) zmniejsza się c) nie zmienia się 15. Następujący fragment kodu glvertex3f(0, 0, 0); glvertex3f(1, 0, 0); glvertex3f(0, 1, 1); wyświetli a) trójkąt b) trzy punkty c) trzy odcinki d) nie można udzielić odpowiedzi
3 16. Wierzchołki o współrzędnych (1, 0,0); (0, 1, 0) i (0, 0, 1) - tworzące trójkąt - wyznaczają w przestrzeni 3D płaszczyznę o równaniu a) x + 2y + 2z =1 b) 2x + y + 2z = 1 c) x + y + z = Algorytm przeglądania linii służy do wypełniania a) wieloboków b) tylko wieloboków wypukłych c) dowolnych konturów opisanych współrzędnymi 18. Krzywa Beziera jest opisana a) równaniem dwukwadratowym b) wielomianem Bernsteina stopnia 2 c) równaniem parametrycznym 19. Krzywa Beziera w przestrzeni 3D jest określana przy pomocy wielomianów o stopniu a) zależną od liczby punktów kontrolnych b) zawsze równym 3 c) dowolnym 20. Macierz transformacji w przestrzeni 3D (dla współrzędnych jednorodnych) jest a) 4 x 3 b) 3 x 3 c) 4 x 4 d) 3 x 3 x 3 e) 4 x 4 x Aby obrócić wielobok wokół jego wierzchołka o dany kąt należy wykonać a) transformacje przesunięcia i obrotu b) transformację obrotu c) dwie transformacje przesunięcia i obrotu 22. Aby opisać punkt płaszczyzny (x, y) we współrzędnych jednorodnych należy a) dodać trzecią współrzędną b) dodać stałą do x i y c) wyznaczyć medianę z x i y 23. Cztery punktu w przestrzeni trójwymiarowej a) zawsze określają dwie różne płaszczyzny b) zawsze określają jednoznacznie płaszczyznę c) mogą określać jednoznacznie płaszczyznę d) nigdy nie mogą określić jednoznacznie płaszczyzny 24. Iloczyn wektorowy a) jest liczbą b) nie jest przemienny c) nie jest liczbą d) jest iloczynem skalarnym mnożonych wektorów i sinusa kąta między nimi
4 25. W bibliotece OpenGL prawidłowe wypełnienie wieloboku a) jest możliwe dla dowolnego wieloboku b) wymagane jest spełnienie warunku braku wierzchołków leżących na jednej prostej c) wymaga spełnienia warunku wypukłości 26. Iloczyn skalarny wektorów [0 1 1] i [1 0 1] wynosi a) [1 0 1] b) 0 c) 1 d) [1 1 0] 27. Interpolacja to proces polegający na utworzeniu a) nowego piksela b) skończonego zbioru pikseli współliniowych c) płaszczyzny 28. Interpolacja to proces polegający na utworzeniu nowego piksela na podstawie a) dowolnych pikseli b) sąsiadujących pikseli c) sąsiadujących pikseli tak aby nowy był jak najlepiej dopasowany optycznie (wizualnie) d) sąsiadujących pikseli tak aby nowy był jak najlepiej dopasowany do funkcji opisującej krzywą 29. Elipsa wraz z brzegiem a) jest obszarem wypukłym b) nie jest obszarem wypukłym c) jest obszarem wypukłym dla równych ognisk d) jest obszarem wypukłym gdy odległość ognisk jest mniejsza od dowolnej średnicy 30. Iloczyn skalarny dwóch wektorów jest zawsze a) liczbą b) liczbą dodatnią c) wektorem d) skalarem 31. Model barw CMYK jest modelem a) addytywnym b) subtraktywnym c) atraktywnym d) multitatywnym 32. Aby gładko zamknąć krzywą Beziera potrzebne są a) 4 punkty kontrolne b) 3 punkty kontrolne c) 2 punkty kontrolne d) nie ma możliwości takiego zamknięcia
5 33. Do określenia rzeczywistych rozmiarów obrazu niezbędny(e) jest/są a) rozmiar obrazu b) rozdzielczość PPI c) rozmiar obrazu i rozdzielczość PPI d) ogólna liczba pikseli obrazu 34. Liczba bitów użyta do reprezentacji koloru piksela to a) głębia koloru b) kolor c) tonalność d) głębia obrazu 35. Liczba możliwych do uzyskania kolorów dla 8-bitowej głębi równa się a) 128 b) 256 c) 512 d) Minimalna liczba kolorów pozwalająca na uzyskiwanie tonalności obrazu cyfrowego to a) 4 b) 8 c) 16 d) Zmiana skali (szczególnie powiększenie) obrazu rastrowego a) nie powoduje zmian w jakości obrazu b) powoduje jego nieciągłość c) powoduje zmianę tonalności 38. Interpolacja występuje przy a) skalowaniu obrazu wektorowego b) skalowaniu obrazu rastrowego c) tworzeniu obrazu wektorowego d) kolorowaniu obrazu rastrowego e) kolorowaniu obrazu wektorowego 39. Przesunięcie, obrót, zmiana skali, pochylenie i odbicie to przekształcenia a) diofantyczne b) afiniczne c) graniczne d) kategoryczne e) mimiczne 40. Przekształcenia RST to a) translacja, odbicie, obrót b) obrót, pochylenie, odbicie c) translacja, obrót, skalowanie d) rozmycie, skalowanie, translacja
1. Czym jest rendering? a. Komputerowa analiza modelu danej sceny i utworzenie na jej podstawie obrazu 2D. b. Funkcja umożliwiająca kopiowanie obrazu
1. Czym jest rendering? a. Komputerowa analiza modelu danej sceny i utworzenie na jej podstawie obrazu 2D. b. Funkcja umożliwiająca kopiowanie obrazu pomiędzy warstwami. c. Sposób tworzenia modeli 2D d.
Obliczenie punktu przecięcia półprostej i płaszczyzny w przestrzeni 3-D wymaga rozwiązania równania liniowego.
RÓWNANIA, PRAWA, WZORY Obliczenie punktu przecięcia półprostej i płaszczyzny w przestrzeni 3-D wymaga rozwiązania równania liniowego. Znalezienie punktu przecięcia powierzchni kwadryki i półprostej wymaga
Grafika 2D. Pojęcia podstawowe. opracowanie: Jacek Kęsik
Grafika 2D Pojęcia podstawowe opracowanie: Jacek Kęsik Obraz - przedmiot, przeważnie płaski, na którym za pomocą plam barwnych i kreski, przy zastosowaniu różnych technik malarskich i graficznych autor
Grafika Komputerowa Wybrane definicje. Katedra Informatyki i Metod Komputerowych Uniwersytet Pedagogiczny im. KEN w Krakowie apw@up.krakow.
Grafika Komputerowa Wybrane definicje Katedra Informatyki i Metod Komputerowych Uniwersytet Pedagogiczny im. KEN w Krakowie apw@up.krakow.pl Spis pojęć Grafika komputerowa Grafika wektorowa Grafika rastrowa
Plan wykładu. Akcelerator 3D Potok graficzny
Plan wykładu Akcelerator 3D Potok graficzny Akcelerator 3D W 1996 r. opracowana została specjalna karta rozszerzeń o nazwie marketingowej Voodoo, którą z racji wspomagania procesu generowania grafiki 3D
Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II
Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1
1. Podstawowe algorytmy techniki rastrowe a) dwa przecinające się odcinki mogą nie mieć wspólnego piksela (T) b) odcinek o współrzędnych końcowych
1. Podstawowe algorytmy techniki rastrowe a) dwa przecinające się odcinki mogą nie mieć wspólnego piksela (T) b) odcinek o współrzędnych końcowych (2,0), (5,6) narysowany przy wykorzystaniu algorytmu Bresenhama
Podstawy grafiki komputerowej. Teoria obrazu.
WAŻNE POJĘCIA GRAFIKA KOMPUTEROWA - to dział informatyki zajmujący się wykorzystaniem oprogramowania komputerowego do tworzenia, przekształcania i prezentowania obrazów rzeczywistych i wyimaginowanych.
Grafika Komputerowa Wykład 4. Synteza grafiki 3D. mgr inż. Michał Chwesiuk 1/30
Wykład 4 mgr inż. 1/30 Synteza grafiki polega na stworzeniu obrazu w oparciu o jego opis. Synteza obrazu w grafice komputerowej polega na wykorzystaniu algorytmów komputerowych do uzyskania obrazu cyfrowego
Grafika komputerowa. Oko posiada pręciki (100 mln) dla detekcji składowych luminancji i 3 rodzaje czopków (9 mln) do detekcji koloru Żółty
Grafika komputerowa Opracowali: dr inż. Piotr Suchomski dr inż. Piotr Odya Oko posiada pręciki (100 mln) dla detekcji składowych luminancji i 3 rodzaje czopków (9 mln) do detekcji koloru Czerwony czopek
Przykładowe pytania na teście teoretycznym
Przykładowe pytania na teście teoretycznym Przedmiot: Informatyka I Rok akademicki: 2014/2015 Semestr : zimowy Studia: I / Z W grafice wektorowej obraz reprezentowany jest: przez piksele przez obiekty
Animowana grafika 3D. Opracowanie: J. Kęsik.
Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollub.pl Rzutowanie Równoległe Perspektywiczne Rzutowanie równoległe Rzutowanie równoległe jest powszechnie używane w rysunku technicznym - umożliwienie
GRAFIKA. Rodzaje grafiki i odpowiadające im edytory
GRAFIKA Rodzaje grafiki i odpowiadające im edytory Obraz graficzny w komputerze Może być: utworzony automatycznie przez wybrany program (np. jako wykres w arkuszu kalkulacyjnym) lub urządzenie (np. zdjęcie
Obraz jako funkcja Przekształcenia geometryczne
Cyfrowe przetwarzanie obrazów I Obraz jako funkcja Przekształcenia geometryczne dr. inż Robert Kazała Definicja obrazu Obraz dwuwymiarowa funkcja intensywności światła f(x,y); wartość f w przestrzennych
Ćwiczenia nr 7. TEMATYKA: Krzywe Bézier a
TEMATYKA: Krzywe Bézier a Ćwiczenia nr 7 DEFINICJE: Interpolacja: przybliżanie funkcji za pomocą innej funkcji, zwykle wielomianu, tak aby były sobie równe w zadanych punktach. Poniżej przykład interpolacji
Podstawy grafiki komputerowej
Podstawy grafiki komputerowej Krzysztof Gracki K.Gracki@ii.pw.edu.pl tel. (22) 6605031 Instytut Informatyki Politechniki Warszawskiej 2 Sprawy organizacyjne Krzysztof Gracki k.gracki@ii.pw.edu.pl tel.
GRAFIKA RASTROWA. WYKŁAD 1 Wprowadzenie do grafiki rastrowej. Jacek Wiślicki Katedra Informatyki Stosowanej
GRAFIKA RASTROWA WYKŁAD 1 Wprowadzenie do grafiki rastrowej Jacek Wiślicki Katedra Informatyki Stosowanej Grafika rastrowa i wektorowa W grafice dwuwymiarowej wyróżnia się dwa rodzaje obrazów: rastrowe,
GRAFIKA KOMPUTEROWA podstawy matematyczne. dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel.
GRAFIKA KOMPUTEROWA podstawy matematyczne dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel. (12) 617 46 37 Plan wykładu 1/4 ZACZNIEMY OD PRZYKŁADOWYCH PROCEDUR i PRZYKŁADÓW
Gimp Grafika rastrowa (konwersatorium)
GIMP Grafika rastrowa Zjazd 1 Prowadzący: mgr Agnieszka Paradzińska 17 listopad 2013 Gimp Grafika rastrowa (konwersatorium) Przed przystąpieniem do omawiania cyfrowego przetwarzania obrazów niezbędne jest
Przekształcenia geometryczne. Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej
Przekształcenia geometryczne Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej Akademia Górniczo Hutnicza w Krakowie Przekształcenia elementarne w przestrzeni D Punkty p w E na płaszczyźnie
INFORMATYKA WSTĘP DO GRAFIKI RASTROWEJ
INFORMATYKA WSTĘP DO GRAFIKI RASTROWEJ Przygotowała mgr Joanna Guździoł e-mail: jguzdziol@wszop.edu.pl WYŻSZA SZKOŁA ZARZĄDZANIA OCHRONĄ PRACY W KATOWICACH 1. Pojęcie grafiki komputerowej Grafika komputerowa
Synteza i obróbka obrazu. Tekstury. Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych
Synteza i obróbka obrazu Tekstury Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych Tekstura Tekstura (texture) obraz rastrowy (mapa bitowa, bitmap) nakładany na
Załącznik KARTA PRZEDMIOTU. KARTA PRZEDMIOTU Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010 KOMPUTEROWA
1/1 Wydział Automatyki, Elektroniki i Informatyki, Rok akademicki: 2009/2010 Nazwa przedmiotu: Kierunek: Specjalność: Tryb studiów: GRAFIKA KOMPUTEROWA INFORMATYKA Kod/nr GK PRZEDMIOT OBOWIĄZKOWY DLA WSZYSTKICH
Transformacje obiektów 3D
Synteza i obróbka obrazu Transformacje obiektów 3D Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych Lokalny układ współrzędnych Tworząc model obiektu, zapisujemy
Opis krzywych w przestrzeni 3D. Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej AGH
Opis krzywych w przestrzeni 3D Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej AGH Krzywe Beziera W przypadku tych krzywych wektory styczne w punkach końcowych są określane bezpośrednio
Obrót wokół początku układu współrzędnych o kąt φ można wyrazić w postaci macierzowej następująco
Transformacje na płaszczyźnie Przesunięcie Przesunięcie (translacja) obrazu realizowana jest przez dodanie stałej do każdej współrzędnej, co w postaci macierzowej można przedstawić równaniem y'] = [ x
Grafika Komputerowa Wykład 5. Potok Renderowania Oświetlenie. mgr inż. Michał Chwesiuk 1/38
Wykład 5 Potok Renderowania Oświetlenie mgr inż. 1/38 Podejście śledzenia promieni (ang. ray tracing) stosuje się w grafice realistycznej. Śledzone są promienie przechodzące przez piksele obrazu wynikowego
Z ostatniego wzoru i zależności (3.20) można obliczyć n6. Otrzymujemy (3.23) 3.5. Transformacje geometryczne
46 III. Przekształcenia w przestrzeni trójwymiarowej Z ostatniego wzoru i zależności (3.20) można obliczyć n6. Otrzymujemy (3.23) 3.5. Transformacje geometryczne Złożone obiekty trójwymiarowe można uważać,
Grafika komputerowa. Dla DSI II
Grafika komputerowa Dla DSI II Rodzaje grafiki Tradycyjny podział grafiki oznacza wyróżnienie jej dwóch rodzajów: grafiki rastrowej oraz wektorowej. Różnica pomiędzy nimi polega na innej interpretacji
X. ELEMENTY GRAFIKI ANIMOWANEJ
X. ELEMENTY GRAFIKI ANIMOWANEJ 10.1. Wprowadzenie Przekształcenia i algorytmy przedstawione w poprzednich rozdziałach dotyczyły obiektów pozostających w spoczynku, a więc ich obrazy na ekranie były nieruchome.
Przekształcenia geometryczne w grafice komputerowej. Marek Badura
Przekształcenia geometryczne w grafice komputerowej Marek Badura PRZEKSZTAŁCENIA GEOMETRYCZNE W GRAFICE KOMPUTEROWEJ Przedstawimy podstawowe przekształcenia geometryczne na płaszczyźnie R 2 (przestrzeń
GRAFIKA KOMPUTEROWA 10: Antyaliasing
GRAFIKA KOMPUTEROWA 10: Antyaliasing http://galaxy.agh.edu.pl/~mhojny Prowadzący: dr inż. Hojny Marcin Akademia Górniczo-Hutnicza Mickiewicza 30 30-059 Krakow pawilon B5/p.406 tel. (+48)12 617 46 37 e-mail:
GRAFIKA WEKTOROWA. WYKŁAD 1 Wprowadzenie do grafiki wektorowej. Jacek Wiślicki Katedra Informatyki Stosowanej
GRAFIKA WEKTOROWA WYKŁAD 1 Wprowadzenie do grafiki wektorowej Jacek Wiślicki Katedra Informatyki Stosowanej Grafika rastrowa i wektorowa W grafice dwuwymiarowej wyróżnia się dwa rodzaje obrazów: rastrowe,
GRAFIKA RASTROWA GRAFIKA RASTROWA
GRAFIKA KOMPUTEROWA GRAFIKA RASTROWA GRAFIKA RASTROWA (raster graphic) grafika bitmapowa: prezentacja obrazu za pomocą pionowo-poziomej siatki odpowiednio kolorowanych pikseli na monitorze komputera, drukarce
Grafika na stronie www
Grafika na stronie www Grafika wektorowa (obiektowa) To grafika której obraz jest tworzony z obiektów podstawowych najczęściej lini, figur geomtrycznych obrazy są całkowicie skalowalne Popularne programy
Dane obrazowe. R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski
Dane obrazowe R. Robert Gajewski omklnx.il.pw.edu.pl/~rgajewski www.il.pw.edu.pl/~rg s-rg@siwy.il.pw.edu.pl Przetwarzanie danych obrazowych! Przetwarzanie danych obrazowych przyjmuje trzy formy:! Grafikę
Formaty plików graficznych
Formaty plików graficznych grafika rastowa grafika wektorowa Grafika rastrowa Grafika rastrowa służy do zapisywania zdjęć i realistycznych obrazów Jakość obrazka rastrowego jest określana przez całkowitą
SYLABUS/KARTA PRZEDMIOTU
PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W GŁOGOWIE SYLABUS/KARTA PRZEDMIOTU. NAZWA PRZEDMIOTU Metody przetwarzania danych graficznych. NAZWA JEDNOSTKI PROWADZĄCEJ PRZEDMIOT Instytut Politechniczny. STUDIA kierunek
Geometria analityczna - przykłady
Geometria analityczna - przykłady 1. Znaleźć równanie ogólne i równania parametryczne prostej w R 2, któr przechodzi przez punkt ( 4, ) oraz (a) jest równoległa do prostej x + 5y 2 = 0. (b) jest prostopadła
dr inż. Piotr Odya dr inż. Piotr Suchomski
dr inż. Piotr Odya dr inż. Piotr Suchomski Podział grafiki wektorowa; matematyczny opis rysunku; małe wymagania pamięciowe (i obliczeniowe); rasteryzacja konwersja do postaci rastrowej; rastrowa; tablica
Przetwarzanie obrazów rastrowych macierzą konwolucji
Przetwarzanie obrazów rastrowych macierzą konwolucji 1 Wstęp Obrazy rastrowe są na ogół reprezentowane w dwuwymiarowych tablicach złożonych z pikseli, reprezentowanych przez liczby określające ich jasność
Grafika 2D. Przekształcenia geometryczne 2D. opracowanie: Jacek Kęsik
Grafika 2D Przekształcenia geometrczne 2D opracowanie: Jacek Kęsik Wkład obejmuje podstawowe przekształcenia geometrczne stosowane w grafice komputerowej. Opisane są w nim również współrzędne jednorodne
Grafika Komputerowa Wykład 1. Wstęp do grafiki komputerowej Obraz rastrowy i wektorowy. mgr inż. Michał Chwesiuk 1/22
Wykład 1 Wstęp do grafiki komputerowej rastrowy i wektorowy mgr inż. 1/22 O mnie mgr inż. michalchwesiuk@gmail.com http://mchwesiuk.pl Materiały, wykłady, informacje Doktorant na Wydziale Informatyki Uniwersytetu
Cyfrowe przetwarzanie obrazów i sygnałów Wykład 1 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
Grafika Komputerowa Wykład 6. Teksturowanie. mgr inż. Michał Chwesiuk 1/23
Wykład 6 mgr inż. 1/23 jest to technika w grafice komputerowej, której celem jest zwiększenie szczegółowości renderowanych powierzchni za pomocą tekstur. jest to pewna funkcja (najczęściej w formie bitmapy)
6 Grafika 2D. 6.1 Obiekty 2D
6 Grafika 2D. J a c e k Ta r a s i u k 6.1 Obiekty 2D W wektorowej grafice dwuwymiarowej obraz opisuje się jako zbiór prostych obiektów geometrycznych takich jak: odcinki, elipsy, prostokąty itp 1. Każdy
Algebra liniowa z geometrią
Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........
Technologie Informacyjne
Grafika komputerowa Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności December 12, 2016 1 Wprowadzenie 2 Optyka 3 Geometria 4 Grafika rastrowa i wektorowa 5 Kompresja danych Wprowadzenie
Pojęcie Barwy. Grafika Komputerowa modele kolorów. Terminologia BARWY W GRAFICE KOMPUTEROWEJ. Marek Pudełko
Grafika Komputerowa modele kolorów Marek Pudełko Pojęcie Barwy Barwa to wrażenie psychiczne wywoływane w mózgu człowieka i zwierząt, gdy oko odbiera promieniowanie elektromagnetyczne z zakresu światła
Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania.
Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania. Chcąc osiągnąć realizm renderowanego obrazu, należy rozwiązać problem świetlenia. Barwy, faktury i inne właściwości przedmiotów postrzegamy
WYKŁAD 11. Kolor. fiolet, indygo, niebieski, zielony, żółty, pomarańczowy, czerwony
WYKŁAD 11 Modelowanie koloru Kolor Światło widzialne fiolet, indygo, niebieski, zielony, żółty, pomarańczowy, czerwony ~400nm ~700nm Rozróżnialność barw (przeciętna): 150 czystych barw Wrażenie koloru-trzy
i = [ 0] j = [ 1] k = [ 0]
Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym
KARTA KURSU. Grafika komputerowa
KARTA KURSU Nazwa Nazwa w j. ang. Grafika komputerowa Computer graphics Kod Punktacja ECTS* 3 Koordynator dr inż. Krzysztof Wójcik Zespół dydaktyczny: dr inż. Krzysztof Wójcik dr inż. Mateusz Muchacki
Grafika rastrowa (bitmapa)-
Grafika komputerowa Grafika rastrowa Grafika rastrowa (bitmapa)- sposób zapisu obrazów w postaci prostokątnej tablicy wartości, opisujących kolory poszczególnych punktów obrazu (prostokątów składowych).
Grafika 2D. Animacja Zmiany Kształtu. opracowanie: Jacek Kęsik
Grafika 2D Animacja Zmiany Kształtu opracowanie: Jacek Kęsik Wykład przedstawia podstawy animacji zmiany kształtu - morfingu Animacja zmiany kształtu Podstawowe pojęcia Zlewanie (Dissolving / cross-dissolving)
Przetwarzanie obrazu i dźwięku
Przetwarzanie obrazu i dźwięku Obraz - Pojęcia podstawowe opracowanie: dr inż. Jacek Kęsik Przetwarzanie obrazu i dźwięku 15 spotkań ca. 14 wykładów + zaliczenie. Zaliczenie Test pisemny Konspekty wykładów
Oświetlenie obiektów 3D
Synteza i obróbka obrazu Oświetlenie obiektów 3D Opracowanie: dr inż. Grzegorz Szwoch Politechnika Gdańska Katedra Systemów Multimedialnych Rasteryzacja Spłaszczony po rzutowaniu obraz siatek wielokątowych
Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu. Mirosław Głowacki
Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu Mirosław Głowacki Zagadnienia Jak rozumiemy fotorealizm w grafice komputerowej Historyczny rozwój kart graficznych Przekształcenia
Przetwarzanie grafiki rastrowej na wektorową
Przetwarzanie grafiki rastrowej na wektorową Inaczej wektoryzacja, lub trasowanie, czyli zastąpienie rysunku rastrowego rysunkiem wektorowym. Wykonanie: Piotr Dróżdż Podstawowe różnice między grafiką wektorową,
Grafika komputerowa. mgr inż. Remigiusz Pokrzywiński
Grafika komputerowa mgr inż. Remigiusz Pokrzywiński Spis treści Grafika komputerowa Grafika wektorowa Grafika rastrowa Format graficzny, piksel, raster Rozdzielczość, głębia koloru Barwa Modele barw Kompresja
Photoshop. Podstawy budowy obrazu komputerowego
Photoshop Podstawy budowy obrazu komputerowego Wykład 1 Autor: Elżbieta Fedko O czym dzisiaj będziemy mówić? Co to jest grafika komputerowa? Budowa obrazu w grafice wektorowej i rastrowej. Zastosowanie
Prosta i płaszczyzna w przestrzeni
Prosta i płaszczyzna w przestrzeni Wybrane wzory i informacje Równanie prostej przechodzącej przez punkt P 0 = (x 0, y 0, z 0 ) o wektorze wodzącym r 0 i równoległej do wektora v = [a, b, c] : postać parametrycznego
A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)
Rozdział 1 Prosta i płaszczyzna 1.1 Przestrzeń afiniczna Przestrzeń afiniczna to matematyczny model przestrzeni jednorodnej, bez wyróżnionego punktu. Można w niej przesuwać punkty równolegle do zadanego
Trójwymiarowa grafika komputerowa rzutowanie
Trójwymiarowa grafika komputerowa rzutowanie Mirosław Głowacki Wydział Inżynierii Metali i Informatyki Przemysłowej Rzutowanie w przestrzeni 3D etapy procesu rzutowania określenie rodzaju rzutu określenie
Wykład II. Reprezentacja danych w technice cyfrowej. Studia Podyplomowe INFORMATYKA Podstawy Informatyki
Studia Podyplomowe INFORMATYKA Podstawy Informatyki Wykład II Reprezentacja danych w technice cyfrowej 1 III. Reprezentacja danych w komputerze Rodzaje danych w technice cyfrowej 010010101010 001010111010
Animowana grafika 3D. Opracowanie: J. Kęsik.
Animowana grafika 3D Opracowanie: J. Kęsik kesik@cs.pollub.pl Powierzchnia obiektu 3D jest renderowana jako czarna jeżeli nie jest oświetlana żadnym światłem (wyjątkiem są obiekty samoświecące) Oświetlenie
2 Przygotował: mgr inż. Maciej Lasota
Laboratorium nr 2 1/6 Grafika Komputerowa 3D Instrukcja laboratoryjna Temat: Manipulowanie przestrzenią 2 Przygotował: mgr inż. Maciej Lasota 1) Manipulowanie przestrzenią Istnieją dwa typy układów współrzędnych:
Obraz cyfrowy. Radosław Mantiuk. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie
Obraz cyfrowy Radosław Mantiuk Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Obraz Funkcja dwuwymiarowa. Wartością tej funkcji w dowolnym punkcie jest kolor (jasność). Obraz
Parametryzacja obrazu na potrzeby algorytmów decyzyjnych
Parametryzacja obrazu na potrzeby algorytmów decyzyjnych Piotr Dalka Wprowadzenie Z reguły nie stosuje się podawania na wejście algorytmów decyzyjnych bezpośrednio wartości pikseli obrazu Obraz jest przekształcany
GRAFIKA KOMPUTEROWA 7: Kolory i cieniowanie
GRAFIKA KOMPUTEROWA 7: Kolory i cieniowanie http://galaxy.agh.edu.pl/~mhojny Prowadzący: dr inż. Hojny Marcin Akademia Górniczo-Hutnicza Mickiewicza 30 30-059 Krakow pawilon B5/p.406 tel. (+48)12 617 46
Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu. Mirosław Głowacki
Wybrane aspekty teorii grafiki komputerowej - dążenie do wizualnego realizmu Mirosław Głowacki Obraz realistyczny Pojęcie obrazu realistycznego jest rozumiane w różny sposób Nie zawsze obraz realistyczny
Temat: Transformacje 3D
Instrukcja laboratoryjna 11 Grafika komputerowa 3D Temat: Transformacje 3D Przygotował: dr inż. Grzegorz Łukawski, mgr inż. Maciej Lasota, mgr inż. Tomasz Michno 1 Wstęp teoretyczny Bardzo często programując
Grafika rastrowa i wektorowa
Grafika rastrowa i wektorowa Jakie są różnice między grafiką rastrową a wektorową? Podaj przykłady programów do pracy z grafiką rastrową/wektorową? Czym są RGB, CMYK? Gdzie używamy modelu barw RGB/CMYK?
Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2
Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych
Geometria w R 3. Iloczyn skalarny wektorów
Geometria w R 3 Andrzej Musielak Str 1 Geometria w R 3 Działania na wektorach Wektory w R 3 możemy w naturalny sposób dodawać i odejmować, np.: [2, 3, 1] + [ 1, 2, 1] = [1, 5, 2] [2, 3, 1] [ 1, 2, 1] =
Grafika 2D. Animacja Zmiany Kształtu. opracowanie: Jacek Kęsik
Grafika 2D Animacja Zmiany Kształtu opracowanie: Jacek Kęsik Wykład przedstawia podstawy animacji zmiany kształtu - morfingu Animacja zmiany kształtu Podstawowe pojęcia Zlewanie (Dissolving / cross-dissolving)
GEOMETRIA ANALITYCZNA. Poziom podstawowy
GEOMETRIA ANALITYCZNA Poziom podstawowy Zadanie (4 pkt.) Dana jest prosta k opisana równaniem ogólnym x + y 6. a) napisz równanie prostej k w postaci kierunkowej. b) podaj współczynnik kierunkowy prostej
Przetwarzanie obrazów wykład 1. Adam Wojciechowski
Przetwarzanie obrazów wykład 1 Adam Wojciechowski Teoria światła i barwy Światło Spektrum światła białego: 400nm 700nm fiolet - niebieski - cyan - zielony - żółty - pomarańczowy - czerwony Światło białe
GRAFIKA KOMPUTEROWA. Plan wykładu. 1. Początki grafiki komputerowej. 2. Grafika komputerowa a dziedziny pokrewne. 3. Omówienie programu przedmiotu
GRAFIKA KOMPUTEROWA 1. Układ przedmiotu semestr VI - 20000 semestr VII - 00200 Dr inż. Jacek Jarnicki Instytut Cybernetyki Technicznej p. 226 C-C 3, tel. 320-28-2323 jacek@ict.pwr.wroc.pl www.zsk.ict.pwr.wroc.pl
SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa
SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę
Cyfrowe przetwarzanie obrazów i sygnałów Wykład 2 AiR III
1 Niniejszy dokument zawiera materiały do wykładu z przedmiotu Cyfrowe Przetwarzanie Obrazów i Sygnałów. Jest on udostępniony pod warunkiem wykorzystania wyłącznie do własnych, prywatnych potrzeb i może
11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).
1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego
Fotometria i kolorymetria
12. (współrzędne i składowe trójchromatyczne promieniowania monochromatycznego; układ bodźców fizycznych RGB; krzywa barw widmowych; układ barw CIE 1931 (XYZ); alychne; układy CMY i CMYK). http://www.if.pwr.wroc.pl/~wozniak/
Transformacje. dr Radosław Matusik. radmat
www.math.uni.lodz.pl/ radmat Cel wykładu Celem wykładu jest prezentacja m.in. przestrzeni modelu, świata, kamery oraz projekcji, a także omówienie sposobów oświetlania i cieniowania obiektów. Pierwsze
Cyfrowe Przetwarzanie Obrazów. Karol Czapnik
Cyfrowe Przetwarzanie Obrazów Karol Czapnik Podstawowe zastosowania (1) automatyka laboratoria badawcze medycyna kryminalistyka metrologia geodezja i kartografia 2/21 Podstawowe zastosowania (2) komunikacja
Algebra z geometrią analityczną zadania z odpowiedziami
Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści strona główna 1 Wyrażenia algebraiczne, indukcja matematyczna 2 2 Geometria analityczna w R 2 Liczby zespolone 4 4 Wielomiany
Spis treści. Przedmowa do wydania piątego
Zadania z matematyki wyższej. Cz. 1, [Logika, równania liniowe, wektory, proste i płaszczyzny, ciągi, szeregi, rachunek różniczkowy, funkcje uwikłane, krzywe i powierzchnie] / Roman Leitner, Wojciech Matuszewski,
Zestaw Obliczyć objętość równoległościanu zbudowanego na wektorach m, n, p jeśli wiadomo, że objętość równoległościanu zbudowanego na wektorach:
Zestaw 9. Wykazać, że objętość równoległościanu zbudowanego na przekątnych ścian danego równoległościanu jest dwa razy większa od objętości równoległościanu danego.. Obliczyć objętość równoległościanu
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści kierunkowych, moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium GRAFIKA KOMPUTEROWA I WIZUALIZACJA Computer
Percepcja obrazu Podstawy grafiki komputerowej
Percepcja obrazu Podstawy grafiki komputerowej Światło widzialne wycinek szerokiego widma fal elektromagnetycznych 1 Narząd wzroku Narząd wzroku jest wysoko zorganizowanym analizatorem zmysłowym, którego
Synteza i obróbka obrazu. Modelowanie obiektów 3D
Synteza i obróbka obrazu Modelowanie obiektów 3D Grafika 2D a 3D W obu przypadkach efekt jest taki sam: rastrowy obraz 2D. W grafice 2D od początku operujemy tylko w dwóch wymiarach, przekształcając obraz
= [6; 2]. Wyznacz wierzchołki tego równoległoboku.
ZADANIE 1 (5 PKT) Wyznacz współrzędne wierzchołków trójkata jeżeli środki jego boków maja współrzędne: P = (1, 3), Q = ( 5, 4), R = ( 6, 7). ZADANIE 2 (5 PKT) Dla jakich wartości parametru α odległość
Algebra z geometrią analityczną zadania z odpowiedziami
Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki opracowanie Spis treści I Wyrażenia algebraiczne, indukcja matematyczna 2 II Geometria analityczna w R 2 4 III Liczby zespolone 5
Geometria analityczna
Wydział Matematyki Stosowanej Zestaw zadań nr 10 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus maja 018r. 1 Działania na wektorach Zadanie 1. Oblicz długość wektorów: Geometria
Bartosz Bazyluk SYNTEZA GRAFIKI 3D Grafika realistyczna i czasu rzeczywistego. Pojęcie sceny i kamery. Grafika Komputerowa, Informatyka, I Rok
SYNTEZA GRAFIKI 3D Grafika realistyczna i czasu rzeczywistego. Pojęcie sceny i kamery. Grafika Komputerowa, Informatyka, I Rok Synteza grafiki 3D Pod pojęciem syntezy grafiki rozumiemy stworzenie grafiki
A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla
Zadanie 1 Liczba jest równa A. B. C. 10 D. Odpowiedź B. Zadanie 2 Liczba jest równa A. 3 B. 2 C. D. Odpowiedź D. Zadanie 3. Liczba jest równa Odpowiedź D. Zadanie 4. Liczba osobników pewnego zagrożonego
WYKŁAD 3 WYPEŁNIANIE OBSZARÓW. Plan wykładu: 1. Wypełnianie wieloboku
WYKŁ 3 WYPŁNINI OSZRÓW. Wypełnianie wieloboku Zasada parzystości: Prosta, która nie przechodzi przez wierzchołek przecina wielobok parzystą ilość razy. Plan wykładu: Wypełnianie wieloboku Wypełnianie konturu
Rachunek wektorowy - wprowadzenie. dr inż. Romuald Kędzierski
Rachunek wektorowy - wprowadzenie dr inż. Romuald Kędzierski Graficzne przedstawianie wielkości wektorowych Długość wektora jest miarą jego wartości Linia prosta wyznaczająca kierunek działania wektora
str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk
str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 3e: wpisy oznaczone jako: (T) TRYGONOMETRIA, (PII) PLANIMETRIA II, (RP) RACHUNEK PRAWDOPODOBIEŃSTWA, (ST)
Kryteria oceniania z matematyki Klasa III poziom podstawowy
Kryteria oceniania z matematyki Klasa III poziom podstawowy Potęgi Zakres Dopuszczający Dostateczny Dobry Bardzo dobry oblicza potęgi o wykładnikach wymiernych; zna prawa działań na potęgach i potrafi