AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA"

Transkrypt

1 AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA II rok Kierunek Transport Temat: Transmitancja operatorowa. Badanie odpowiedzi układów automatyki. Opracował mgr inż. Artur Kujawski Zatwierdził dr inż. Małgorzata Szyszko Obowiązuje od: Rok akademicki 2016 / 2017

2 RAMOWY SPIS TREŚCI CEL I ZAKRES ĆWICZENIA... 3 CZĘŚĆ TEORETYCZNA... 3 PRZEBIEG ĆWICZENIA... 4 WARUNKI ZALICZENIA... 6 EFEKTY KSZTAŁCENIA... 6 LITERATURA

3 CEL I ZAKRES ĆWICZENIA Celem ćwiczenia jest zapoznanie się z pojęciem transmitancji operatorowej zwanej funkcją przejścia oraz z podstawowymi pojęciami dotyczącymi układów sterowania w środowisku Matlab i Simulink. CZĘŚĆ TEORETYCZNA Transmitancja operatorowa G(s) (funkcja przejścia) jest definiowana jako stosunek transformaty Laplace a sygnału wyjściowego (funkcji odpowiedzi) do transformaty Laplace a sygnału wejściowego (funkcji wymuszającej), przy zerowych warunkach początkowych. U(s) G(s) Y(s) Właściwości transmitancji operatorowej są następujące: jest właściwością samego układu, niezależną od wielkości i rodzaju sygnału wejściowego; transmitancje dla wielu fizycznie różnych układów mogą być identyczne; transmitancja zawiera niezbędne składniki do przedstawienia związku pomiędzy sygnałami wyjściowymi i wejściowymi nie dostarczając żadnej informacji dotyczącej fizycznej struktury układu; jeżeli znamy transmitancję układu to możemy określić sygnał wyjściowy (odpowiedź) dla różnych sygnałów wejściowych; transmitancja operatorowa opisuje układ tak samo dokładnie jak równanie różniczkowe, równanie charakterystyki statycznej można otrzymać z transmitancji operatorowej przez podstawienie w miejsce s=0; mianownik transmitancji operatorowej przyrównany do zera jest równaniem charakterystycznym układu automatyki. Dwa podstawowe sygnały wymuszające to: sygnał impulsowy - sygnał skokowy - 1 3

4 PRZEBIEG ĆWICZENIA I. Obliczanie odpowiedzi układów automatyki na zadany sygnał wymuszający 1. Znajdź odpowiedź impulsową układu o danej transmitancji: Znajdź odpowiedź impulsową układu o danej transmitancji: Znajdź odpowiedź skokową układu o danej transmitancji: Znajdź odpowiedź skokową układu o danej transmitancji: II. Wyznacz wykresy odpowiedzi impulsowych i skokowych w Matlabie na podstawie przykładów2 i 3 z zadania I W programie Matlab konieczne jest zdefiniowanie transmitancji operatorowej, która jak wiemy nazywana jest również funkcją przejścia. Odpowiada za to wbudowana funkcja o nazwie: transfer function tf(). Parametrami tej funkcji są wektory liczb odpowiadające kolejnym współczynnikom stojącym przy zmiennej zespolonej s. Funkcja przejścia jest ułamkiem dwóch wielomianów i dla tego konieczne jest zdefiniowanie dwóch wektorów (licznik numerator, mianownik denominator). Przykład: Transmitancja dana wzorem będzie miała swoją reprezentację w Matlabie jako funkcja przejścia: 3 2,4 2 3 Aby wykreślić odpowiedzi skokową oraz impulsową należy użyć odpowiednio funkcji step() lub Impulse(). Wynikiem powinien być wykres. 4

5 Proszę zrobić wykresy (step, impulse) odpowiednio dla przykładów 2 i 3 z zadania I. Wyniki proszę umieścić w sprawozdaniu. III. Zbuduj 2 układy w Simulinku na podstawie przykładów 2 i 3 z zadania I Po wykonaniu poprzedniego zadania należy przejść do Simulinka wpisując po prostu w wiersz poleceń komendę simulink. Po lewej stronie znajduje się drzewo dostępnych bloków pogrupowanych względem kategorii. Nas będą interesowały 3 kategorie: Sources Continuous Sinks W grupie Sources potrzebne nam będą bloki Step oraz Pulse. W grupie Continuous potrzebny będzie blok Transfer Fcn Z grupy Sinks będziemy korzystać z bloku Scope Budujemy 2 układy na obraz i podobieństwo poniższego rysunku: Dwa układy będą reprezentowały odpowiedzi impulsowe a dwa będą reprezentowały odpowiedzi skokowe dla przykładów 2 i 3 z zadania pierwszego. Parametry każdego bloku edytuje się poprzez dwukrotne kliknięcie myszą. IV. Sprawozdanie W sprawozdaniu powinny znaleźć się: 2 wykresy z zadania II i zrzut ekranowy z wiersza poleceń dla każdej poprawnie zdefiniowanej funkcji przejścia; 2 układy z zadania III ; 2 wykresy sygnałów wymuszających impulsowego oraz skokowego z zadania III; 2 wykresy odpowiedzi impulsowej i skokowej z zadania III,; 5

6 WARUNKI ZALICZENIA Warunkiem zaliczenia ćwiczenia jest poprawne wykonanie zadań oraz wysłanie pliku sprawozdania o nazwie: Nazwisko_Imie_06 na adres wybierając katalog dla odpowiedniej grupy laboratoryjnej. EFEKTY KSZTAŁCENIA Posiada wiedzę w zakresie analizy sygnałów w układach automatycznej regulacji na podstawie wyznaczania odpowiedzi impulsowej oraz skokowej w elementach o danej transmitancji. Posiada wiedzę z zakresu obsługi komputerów osobistych z dostępem do internetu oraz obsługi systemu operacyjnego Windows z pakietem do obliczeń inżynierskich Matlab oraz Simulink. (SEKP10, SEKP11). LITERATURA html?s_cid=learn_vid 6

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 3 AUTOMATYKA

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 3 AUTOMATYKA AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 3 AUTOMATYKA II rok Kierunek Transport Temat: Minimalizacja funkcji logicznych. Projektowanie układów logicznych. Opracował

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 1 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 1 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 1 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH II rok Kierunek Logistyka Temat: Zajęcia wprowadzające. BHP stanowisk

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 3 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 3 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 3 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH II rok Kierunek Logistyka Temat: Minimalizacja funkcji logicznych.

Bardziej szczegółowo

Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji

Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Opracowanie: mgr inż. Krystian Łygas, inż. Wojciech Danilczuk Na podstawie materiałów Prof. dr hab.

Bardziej szczegółowo

ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013

ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013 SIMULINK część pakietu numerycznego MATLAB (firmy MathWorks) służąca do przeprowadzania symulacji komputerowych. Atutem programu jest interfejs graficzny (budowanie układów na bazie logicznie połączonych

Bardziej szczegółowo

Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych

Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z metodą wyznaczania odpowiedzi skokowych oraz impulsowych podstawowych obiektów regulacji.

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 7 TECHNOLOGIE INFORMACYJNE

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 7 TECHNOLOGIE INFORMACYJNE AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 7 TECHNOLOGIE INFORMACYJNE I rok Kierunek Zarządzanie i Inżynieria Produkcji Temat: Wprowadzenie do arkusza kalkulacyjnego

Bardziej szczegółowo

Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi

Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi . Cele ćwiczenia Laboratorium nr Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi zapoznanie się z metodami symbolicznego i numerycznego rozwiązywania równań różniczkowych w Matlabie,

Bardziej szczegółowo

przy warunkach początkowych: 0 = 0, 0 = 0

przy warunkach początkowych: 0 = 0, 0 = 0 MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,

Bardziej szczegółowo

Plan wykładu. Własności statyczne i dynamiczne elementów automatyki:

Plan wykładu. Własności statyczne i dynamiczne elementów automatyki: Plan wykładu Własności statyczne i dynamiczne elementów automatyki: - charakterystyka statyczna elementu automatyki, - sygnały standardowe w automatyce: skok jednostkowy, impuls Diraca, sygnał o przebiegu

Bardziej szczegółowo

Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II. Podstawy SIMULINKA

Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II. Podstawy SIMULINKA Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II Podstawy SIMULINKA Simulink jest

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 2. REPREZENTACJA

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 9 TECHNOLOGIE INFORMACYJNE

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 9 TECHNOLOGIE INFORMACYJNE AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 9 TECHNOLOGIE INFORMACYJNE I rok Kierunek Zarządzanie i Inżynieria Produkcji Temat: Tworzenie złożonych arkuszy obliczeniowych

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Technologie informatyczne Wprowadzenie do Simulinka w środowisku MATLAB Pytania i zadania do ćwiczeń laboratoryjnych

Bardziej szczegółowo

Podstawy Informatyki 1. Laboratorium 8

Podstawy Informatyki 1. Laboratorium 8 Podstawy Informatyki 1 Laboratorium 8 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z nakładką SIMULINK oraz zdobycie praktycznych umiejętności tworzenia i symulowania modeli z wykorzystaniem tej

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 11 TECHNOLOGIE INFORMACYJNE

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 11 TECHNOLOGIE INFORMACYJNE AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 11 TECHNOLOGIE INFORMACYJNE I rok Kierunek Transport Temat: Funkcje daty, czasu, indeksowania oraz funkcje statystyczne

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 7 BADANIE ODPOWIEDZI USTALONEJ NA OKRESOWY CIĄG IMPULSÓW 1. Cel ćwiczenia Obserwacja przebiegów wyjściowych

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 3. Charakterystyki

Bardziej szczegółowo

Laboratorium Komputerowego Wspomagania Analizy i Projektowania

Laboratorium Komputerowego Wspomagania Analizy i Projektowania Laboratorium Komputerowego Wspomagania Analizy i Projektowania Ćwiczenie 6. Symulacja obiektów dynamicznych w środowisku SIMULINK. Opracował: dr inż. Sebastian Dudzik 1. Cel ćwiczenia Celem ćwiczenia jest

Bardziej szczegółowo

Laboratorium nr 3. Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka

Laboratorium nr 3. Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka Laboratorium nr 3. Cele ćwiczenia Projektowanie układów automatyki z wykorzystaniem Matlaba i Simulinka poznanie sposobów tworzenia liniowych modeli układów automatyki, zmiana postaci modeli, tworzenie

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy Rodzaj zajęć: wykład, laboratorium Automatyka Automatics Forma studiów: studia stacjonarne Poziom kwalifikacji: I stopnia Liczba

Bardziej szczegółowo

1. Transformata Laplace a przypomnienie

1. Transformata Laplace a przypomnienie Transformata Laplace a - przypomnienie, transmitancja operatorowa, schematy blokowe, wprowadzenie do pakietu Matlab/Scilab i Simulink, regulatory PID - transmitancja, przykłady modeli matematycznych wybranych

Bardziej szczegółowo

Modele układów dynamicznych - laboratorium. SIMULINK - wprowadzenie

Modele układów dynamicznych - laboratorium. SIMULINK - wprowadzenie Modele układów dynamicznych - laboratorium SIMULINK - wprowadzenie SIMULINK Simulink to przybornik (toolbo) pakietu Matlab przeznaczony do symulacji układów dynamicznych w trybie graficznym. Simulink to

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z własnościami

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Inżynieria oprogramowania, Sieci komputerowe Rodzaj zajęć: wykład, laboratorium MODELOWANIE I SYMULACJA Modelling

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy Automatyka i robotyka ETP2005L Laboratorium semestr zimowy 2017-2018 Liniowe człony automatyki x(t) wymuszenie CZŁON (element) OBIEKT AUTOMATYKI y(t) odpowiedź Modelowanie matematyczne obiektów automatyki

Bardziej szczegółowo

Laboratorium z automatyki

Laboratorium z automatyki Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z automatyki Algebra schematów blokowych, wyznaczanie odpowiedzi obiektu na sygnał zadany, charakterystyki częstotliwościowe Kierunek studiów:

Bardziej szczegółowo

Rok akademicki: 2030/2031 Kod: RAR n Punkty ECTS: 7. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2030/2031 Kod: RAR n Punkty ECTS: 7. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Podstawy automatyki Rok akademicki: 2030/2031 Kod: RAR-1-303-n Punkty ECTS: 7 Wydział: Inżynierii Mechanicznej i Robotyki Kierunek: Automatyka i Robotyka Specjalność: - Poziom studiów: Studia

Bardziej szczegółowo

Podstawy MATLABA, cd.

Podstawy MATLABA, cd. Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka Podstawy MATLABA, cd. 1. Wielomiany 1.1. Definiowanie

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - podstawy matematyczne Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe, n.p. turbulencje, wiele

Bardziej szczegółowo

Projektowanie układów metodą sprzężenia od stanu - metoda przemieszczania biegunów

Projektowanie układów metodą sprzężenia od stanu - metoda przemieszczania biegunów Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium Sterowania Procesami Ciągłych Projektowanie układów metodą sprzężenia od stanu - metoda przemieszczania biegunów. Obliczanie

Bardziej szczegółowo

Układ regulacji automatycznej (URA) kryteria stabilności

Układ regulacji automatycznej (URA) kryteria stabilności Układ regulacji automatycznej (URA) kryteria stabilności y o e G c (s) z z 2 u G o (s) y () = () ()() () H(s) oraz jego wartością w stanie ustalonym. Transmitancja układu otwartego regulacji: - () = ()

Bardziej szczegółowo

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 2 - modelowanie matematyczne układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Rzeczywiste obiekty regulacji, a co za tym idzie układy regulacji, mają właściwości nieliniowe,

Bardziej szczegółowo

Rozwiązywanie równań liniowych. Transmitancja. Charakterystyki częstotliwościowe

Rozwiązywanie równań liniowych. Transmitancja. Charakterystyki częstotliwościowe Zał. nr do ZW 33/01 WYDZIAŁ Informatyki i Zarządzania / STUDIUM KARTA PRZEDMIOTU Nazwa w języku polskim Modele systemów dynamicznych Nazwa w języku angielskim Dynamic Systems Models. Kierunek studiów (jeśli

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. Wprowadzenie do Simulinka środowiska MATLAB. Materiały pomocnicze do ćwiczeń laboratoryjnych - - termin T3

PODSTAWY AUTOMATYKI. Wprowadzenie do Simulinka środowiska MATLAB. Materiały pomocnicze do ćwiczeń laboratoryjnych - - termin T3 WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI Wprowadzenie do Simulinka środowiska MATLAB. Materiały pomocnicze do ćwiczeń laboratoryjnych - - termin T3

Bardziej szczegółowo

O co chodzi z tym MATLAB'em?!

O co chodzi z tym MATLAB'em?! O co chodzi z tym MATLAB'em?! Część 1. SIMULINK W pliku data.mat jest zapisany przebieg. Gdzieś tam i kiedyś tam zarejestrowany. Widać go na fioletowo poniżej. Powstał on z obiektu, co ciekawe wiemy jak

Bardziej szczegółowo

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem: PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy na specjalności: systemy sterowania Rodzaj zajęć: wykład, laboratorium UKŁADY AUTOMATYKI PRZEMYSŁOWEJ Industrial Automatics Systems

Bardziej szczegółowo

Laboratorium z podstaw automatyki

Laboratorium z podstaw automatyki Wydział Inżynierii Mechanicznej i Mechatroniki Laboratorium z podstaw automatyki Analiza stabilności obiektów automatyzacji, Wpływ sprzężenia zwrotnego na stabilność obiektów Kierunek studiów: Transport,

Bardziej szczegółowo

Macierz A nazywamy macierzą systemu, a B macierzą wejścia.

Macierz A nazywamy macierzą systemu, a B macierzą wejścia. Dwiczenia 3 Automatyka i robotyka Równaniem stanu. Macierz A nazywamy macierzą systemu, a B macierzą wejścia. Równaniem wyjścia. Do opisu układu możemy użyd jednocześnie równania stanu i równania wyjścia

Bardziej szczegółowo

Badanie wpływu parametrów korektora na własności dynamiczne układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Automatyzacji

Badanie wpływu parametrów korektora na własności dynamiczne układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Automatyzacji WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego Badanie wpływu parametrów korektora na własności dynamiczne układu regulacji Ćwiczenia Laboratoryjne Podstawy Automatyki i Automatyzacji mgr inż.

Bardziej szczegółowo

KOMPUTERY W STEROWANIU. Ćwiczenie 5 Projektowanie kompensatora cyfrowego metodą symulacji

KOMPUTERY W STEROWANIU. Ćwiczenie 5 Projektowanie kompensatora cyfrowego metodą symulacji Wydział Elektryczny Zespół Automatyki (ZTMAiPC) KOMPUTERY W STEROWANIU Ćwiczenie 5 Projektowanie kompensatora cyfrowego metodą symulacji. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodami projektowania

Bardziej szczegółowo

AiR_TSiS_1/2 Teoria sygnałów i systemów Signals and systems theory. Automatyka i Robotyka I stopień ogólnoakademicki

AiR_TSiS_1/2 Teoria sygnałów i systemów Signals and systems theory. Automatyka i Robotyka I stopień ogólnoakademicki Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014

Bardziej szczegółowo

Laboratorium nr 1. dsolve( rownanie1, rownanie2,, warunek 1, warunek 2 );

Laboratorium nr 1. dsolve( rownanie1, rownanie2,, warunek 1, warunek 2 ); Laboratorium nr. Cele ćwiczenia zapoznanie si z metodami symbolicznego i numerycznego rozwi zywania równa ró niczkowych w Matlabie, wykorzystanie Simulinka do tworzenia modelu równania ró niczkowego, archiwizacja

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Teoria sterowania MATLAB funkcje zewnętrzne (m-pliki, funkcje) Materiały pomocnicze do ćwiczeń laboratoryjnych

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Teoria sterowania Wprowadzenie do Simulinka w środowisku MATLAB Materiały pomocnicze do ćwiczeń laboratoryjnych

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 10. Dyskretyzacja

Bardziej szczegółowo

Zastosowanie dyskretnej transformaty Laplace a do modelowania przebiegu procesów przejœciowych w przemyœle

Zastosowanie dyskretnej transformaty Laplace a do modelowania przebiegu procesów przejœciowych w przemyœle AUTOMATYKA 2005 Tom 9 Zeszyt 3 Jerzy Zalewicz* Zastosowanie dyskretnej transformaty Laplace a do modelowania przebiegu procesów przejœciowych w przemyœle 1. Wstêp Przy analizie zjawisk dynamicznych zwi¹zanych

Bardziej szczegółowo

Część 1. Transmitancje i stabilność

Część 1. Transmitancje i stabilność Część 1 Transmitancje i stabilność Zastosowanie opisu transmitancyjnego w projektowaniu przekształtników impulsowych Istotne jest przewidzenie wpływu zmian w warunkach pracy (m. in. v g, i) i wielkości

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA

WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 7. Metoda projektowania

Bardziej szczegółowo

Rok akademicki: 2014/2015 Kod: RME s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2014/2015 Kod: RME s Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Podstawy automatyki Rok akademicki: 2014/2015 Kod: RME-1-305-s Punkty ECTS: 6 Wydział: Inżynierii Mechanicznej i Robotyki Kierunek: Mechatronika Specjalność: - Poziom studiów: Studia I stopnia

Bardziej szczegółowo

Badanie stabilności liniowych układów sterowania

Badanie stabilności liniowych układów sterowania Badanie stabilności liniowych układów sterowania ver. 26.2-6 (26-2-7 4:6). Badanie stabilności liniowych układów sterowania poprzez analizę równania charakterystycznego. Układ zamknięty liniowy i stacjonarny

Bardziej szczegółowo

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.

Bardziej szczegółowo

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 4 - algebra schematów blokowych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Schemat blokowy Schemat blokowy (strukturalny): przedstawia wzajemne powiązania pomiędzy poszczególnymi zespołami

Bardziej szczegółowo

Matematyka licea ogólnokształcące, technika

Matematyka licea ogólnokształcące, technika Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem

Bardziej szczegółowo

Zakłócenia w układach elektroenergetycznych LABORATORIUM 3

Zakłócenia w układach elektroenergetycznych LABORATORIUM 3 Zakłócenia w układach elektroenergetycznych LABORATORIUM 3 Przekształcenie 0-1- Dane są napięcia w trzech fazach (symetryczne): U = V U A = U max sin(ωt + 11. ) U B = U max sin(ωt + 11. ) U C = U max sin(ωt

Bardziej szczegółowo

Techniki regulacji automatycznej

Techniki regulacji automatycznej Techniki regulacji automatycznej Metoda linii pierwiastkowych Wojciech Paszke Instytut Sterowania i Systemów Informatycznych, Uniwersytet Zielonogórski 1 z 25 Plan wykładu Podstawy metody linii pierwiastkowych

Bardziej szczegółowo

Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna

Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna Ćwiczenie 20 Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna Program ćwiczenia: 1. Wyznaczenie stałej czasowej oraz wzmocnienia obiektu inercyjnego I rzędu 2. orekcja dynamiczna

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA WYDZIAŁ GÓRNICTWA I GEOLOGII. Roman Kaula

POLITECHNIKA ŚLĄSKA WYDZIAŁ GÓRNICTWA I GEOLOGII. Roman Kaula POLITECHNIKA ŚLĄSKA WYDZIAŁ GÓRNICTWA I GEOLOGII Roman Kaula ZASTOSOWANIE NOWOCZESNYCH NARZĘDZI INŻYNIERSKICH LabVIEW oraz MATLAB/Simulink DO MODELOWANIA UKŁADÓW DYNAMICZNYCH PLAN WYKŁADU Wprowadzenie

Bardziej szczegółowo

CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera)

CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) I. Wprowadzenie do ćwiczenia CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) Ogólnie termin przetwarzanie sygnałów odnosi się do nauki analizowania zmiennych w czasie procesów fizycznych.

Bardziej szczegółowo

Właściwości dynamiczne kolektora słonecznego a efektywność instalacji grzewczej

Właściwości dynamiczne kolektora słonecznego a efektywność instalacji grzewczej Właściwości dynamiczne kolektora słonecznego a efektywność instalacji grzewczej mgr inż. Joanna Aleksiejuk 2016-09-19 Problemy gospodarki energią i środowiskiem w rolnictwie, leśnictwie i przemyśle spożywczym

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Środowiska obowiązuje studentów rozpoczynających studia w roku akademickim 014/015 Kierunek studiów: Gospodarka przestrzenna

Bardziej szczegółowo

WYMAGANIA DOTYCZĄCE ZALICZENIA ZAJĘĆ

WYMAGANIA DOTYCZĄCE ZALICZENIA ZAJĘĆ Nazwa przedmiotu: Techniki symulacji Kod przedmiotu: ES1C300 015 Forma zajęć: pracownia specjalistyczna Kierunek: elektrotechnika Rodzaj studiów: stacjonarne, I stopnia (inŝynierskie) Semestr studiów:

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:

Bardziej szczegółowo

Podstawowe człony dynamiczne

Podstawowe człony dynamiczne . Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty

Bardziej szczegółowo

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 4 - algebra schematów blokowych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 4 - algebra schematów blokowych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Schemat blokowy Schemat blokowy (strukturalny): przedstawia wzajemne powiązania pomiędzy poszczególnymi zespołami

Bardziej szczegółowo

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki Wykład 5 - stabilność liniowych układów dynamicznych Instytut Automatyki i Robotyki Warszawa, 2015 Wstęp Stabilność O układzie możemy mówić, że jest stabilny gdy układ ten wytrącony ze stanu równowagi

Bardziej szczegółowo

METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH

METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH ĆWICZENIE NR 1 WPROWADZENIE DO PROGRAMU KOMPUTEROWEGO MATLAB Dr inż. Sergiusz Sienkowski ĆWICZENIE NR 1 Wprowadzenie do programu komputerowego Matlab 1.1.

Bardziej szczegółowo

Laboratorium 1. Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi

Laboratorium 1. Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi Laboratorium 1 1. Cel ćwiczenia Rozwiązywanie równań różniczkowych z niezerowymi warunkami początkowymi Zapoznanie się z metodami symbolicznego i numerycznego rozwiązywania równań różniczkowych w Matlabie,

Bardziej szczegółowo

Podstawy Automatyki ćwiczenia w Matlab z przykładami

Podstawy Automatyki ćwiczenia w Matlab z przykładami Podstawy Automatyki ćwiczenia w Matlab z przykładami % wyznaczenie pierwiastkow rownania char %dane jest rownanie postaci % a(n)*x^x+a(n-1)*x^(n-1)+...a0*x^0=0 % podaj macierz wspolczynnikow wielomianu

Bardziej szczegółowo

Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan

Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan Wprowadzenie do technik regulacji automatycznej prof nzw. dr hab. inż. Krzysztof Patan Czym jest AUTOMATYKA? Automatyka to dziedzina nauki i techniki zajmująca się teorią i praktycznym zastosowaniem urządzeń

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 4 WYZNACZANIE CHARAKTERYSTYK CZĘSTOTLIWOŚCIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia jest doświadczalne

Bardziej szczegółowo

Przeksztacenie Laplace a. Krzysztof Patan

Przeksztacenie Laplace a. Krzysztof Patan Przeksztacenie Laplace a Krzysztof Patan Wprowadzenie Transformata Fouriera popularna metoda opisu systemów w dziedzinie częstotliwości Transformata Fouriera umożliwia wykonanie wielu użytecznych czynności:

Bardziej szczegółowo

Implementacja rozmytych systemów wnioskujących w zdaniach regulacji

Implementacja rozmytych systemów wnioskujących w zdaniach regulacji Metody Sztucznej Inteligencji w Sterowaniu Ćwiczenie 5 Implementacja rozmytych systemów wnioskujących w zdaniach regulacji Przygotował: mgr inż. Marcin Pelic Instytut Technologii Mechanicznej Politechnika

Bardziej szczegółowo

Identyfikacja i modelowanie struktur i procesów biologicznych

Identyfikacja i modelowanie struktur i procesów biologicznych Identyfikacja i modelowanie struktur i procesów biologicznych Laboratorium 1: Modele ciągłe. Model Lotki-Volterry. mgr inż. Urszula Smyczyńska AGH Akademia Górniczo-Hutnicza 1. Ćwiczenie 1: Rozwiązanie

Bardziej szczegółowo

P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H

P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H W O J S K O W A A K A D E M I A T E C H N I C Z N A W Y D Z I A Ł E L E K T R O N I K I Drukować dwustronnie P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H Grupa... Data wykonania

Bardziej szczegółowo

3. WRAŻLIWOŚĆ I BŁĄD USTALONY. Podstawowe wzory. Wrażliwość Wrażliwość transmitancji względem parametru. parametry nominalne

3. WRAŻLIWOŚĆ I BŁĄD USTALONY. Podstawowe wzory. Wrażliwość Wrażliwość transmitancji względem parametru. parametry nominalne 3. WRAŻLIWOŚĆ I BŁĄD USTALONY Podstawowe wzory Wrażliwość Wrażliwość transmitancji względem parametru (3.1a) parametry nominalne (3.1b) Wrażliwość układu zamkniętego (3.2a) (3.2b) Uwaga. Dla Zmiana odpowiedzi

Bardziej szczegółowo

Po zapoznaniu się z funkcją liniową możemy przyjśd do badania funkcji kwadratowej.

Po zapoznaniu się z funkcją liniową możemy przyjśd do badania funkcji kwadratowej. Po zapoznaniu się z funkcją liniową możemy przyjśd do badania funkcji kwadratowej. Definicja 1 Jednomianem stopnia drugiego nazywamy funkcję postaci: i a 0. Dziedziną tej funkcji jest zbiór liczb rzeczywistych

Bardziej szczegółowo

Podstawowe człony dynamiczne. dr hab. inż. Krzysztof Patan

Podstawowe człony dynamiczne. dr hab. inż. Krzysztof Patan Podstawowe człony dynamiczne dr hab. inż. Krzysztof Patan Człon proporcjonalny Równanie w dziedzinie czasu Transmitancja y(t) = Ku(t) Y (s) = KU(s) G(s) = Y (s) U(S) = K Transmiancja widmowa G(s) = K G(jω)

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* Zał. nr 4 do ZW /01 WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim : AUTOMATYKA I ROBOTYKA Nazwa w języku angielskim: AUTOMATION AND ROBOTICS Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

UWAGA. Wszystkie wyniki zapisywać na dysku Dane E: Program i przebieg ćwiczenia:

UWAGA. Wszystkie wyniki zapisywać na dysku Dane E: Program i przebieg ćwiczenia: Cel ćwiczenia: Zapoznanie się z. metodami badania i analitycznego wyznaczania parametrów dynamicznych obiektów rzeczywistych na przykładzie mikrotermostatu oraz z metodami symulacyjnymi umożliwiającymi

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ NAWIGACYJNY ZAKŁAD BUDOWY I STATECZNOŚCI STATKU INSTRUKCJA

AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ NAWIGACYJNY ZAKŁAD BUDOWY I STATECZNOŚCI STATKU INSTRUKCJA AKADEMIA MORSKA W SZCZECINIE WYDZIAŁ NAWIGACYJNY ZAKŁAD BUDOWY I STATECZNOŚCI STATKU INSTRUKCJA OBLICZANIE POCZĄTKOWEJ WYSOKOŚCI METACENTRYCZNEJ PODCZAS OPERACJI BALASTOWYCH Zajęcia laboratoryjne z przedmiotu:

Bardziej szczegółowo

Tematyka egzaminu z Podstaw sterowania

Tematyka egzaminu z Podstaw sterowania Tematyka egzaminu z Podstaw sterowania Rafał Trójniak 6 września 2009 Spis treści 1 Rozwiązane tematy 1 1.1 Napisać równanie różniczkowe dla zbiornika z odpływem grawitacyjnym...............................

Bardziej szczegółowo

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k. Funkcje wymierne Jerzy Rutkowski Teoria Przypomnijmy, że przez R[x] oznaczamy zbiór wszystkich wielomianów zmiennej x i o współczynnikach rzeczywistych Definicja Funkcją wymierną jednej zmiennej nazywamy

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 4 TECHNOLOGIE INFORMACYJNE

AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 4 TECHNOLOGIE INFORMACYJNE AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 4 TECHNOLOGIE INFORMACYJNE I rok Kierunek Transport Temat: Osadzanie grafiki do dokumentu tekstowego. Schematy blokowe,

Bardziej szczegółowo

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych Równania różniczkowe zwyczajne o rozdzielonych zmiennych Definicja. Równaniem różniczkowym o rozdzielonych zmiennych nazywamy równanie postaci p(y) = q() (.) rozwiązanie równania sprowadza się do postaci

Bardziej szczegółowo

analogowego regulatora PID doboru jego nastaw i przetransformowanie go na cyfrowy regulator PID, postępując według następujących podpunktów:

analogowego regulatora PID doboru jego nastaw i przetransformowanie go na cyfrowy regulator PID, postępując według następujących podpunktów: Cel projektu. Projekt składa się z dwóch podstawowych zadań, mających na celu zaprojektowanie dla danej transmitancji: G( s) = m 2 s 2 e + m s + sτ gdzie wartości m 2 = 27, m = 2, a τ = 4. G( s) = 27s

Bardziej szczegółowo

Przekształcenia całkowe. Wykład 1

Przekształcenia całkowe. Wykład 1 Przekształcenia całkowe Wykład 1 Przekształcenia całkowe Tematyka wykładów: 1. Liczby zespolone -wprowadzenie, - funkcja zespolona zmiennej rzeczywistej, - funkcja zespolona zmiennej zespolonej. 2. Przekształcenie

Bardziej szczegółowo

WYDZIAŁ MECHANICZNY PWR KARTA PRZEDMIOTU

WYDZIAŁ MECHANICZNY PWR KARTA PRZEDMIOTU WYDZIAŁ MECHANICZNY PWR KARTA PRZEDMIOTU Zał. nr 4 do ZW Nazwa w języku polskim: FUNKCJE ZESPOLONE Nazwa w języku angielskim: Complex functions Kierunek studiów (jeśli dotyczy): Automatyka i Robotyka Specjalność

Bardziej szczegółowo

LINIOWE UKŁADY DYSKRETNE

LINIOWE UKŁADY DYSKRETNE LINIOWE UKŁADY DYSKRETNE Współczesne układy regulacji automatycznej wyposażone są w regulatory cyfrowe, co narzuca konieczność stosowania w ich analizie i syntezie odpowiednich równań dynamiki, opisujących

Bardziej szczegółowo

KRYTERIA ALGEBRAICZNE STABILNOŚCI UKŁADÓW LINIOWYCH

KRYTERIA ALGEBRAICZNE STABILNOŚCI UKŁADÓW LINIOWYCH KRYTERIA ALEBRAICZNE STABILNOŚCI UKŁADÓW LINIOWYCH Zadie 1 Problem: Zbadać stabilność układu zamkniętego przedstawionego na schemacie według kryterium Hurwitza. 1 (s) (s) Rys 1. Schemat układu regulacji

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia I. Informacje ogólne Podstawy Automatyki 2 Nazwa jednostki prowadzącej moduł (należy wskazać nazwę zgodnie ze Statutem PSW Instytut, Zakład) Instytut

Bardziej szczegółowo

WPROWADZENIE DO ŚRODOWISKA SCICOS

WPROWADZENIE DO ŚRODOWISKA SCICOS Politechnika Gdańska Wydział Elektrotechniki i Automatyki WPROWADZENIE DO ŚRODOWISKA SCICOS Materiały pomocnicze do ćwiczeń laboratoryjnych Oryginał: Modeling and Simulation in Scilab/Scicos Stephen L.

Bardziej szczegółowo

III TUTORIAL Z METOD OBLICZENIOWYCH

III TUTORIAL Z METOD OBLICZENIOWYCH III TUTORIAL Z METOD OBLICZENIOWYCH ALGORYTMY ROZWIĄZYWANIA UKŁADÓW RÓWNAŃ LINIOWYCH Opracowanie: Agata Smokowska Marcin Zmuda Trzebiatowski Koło Naukowe Mechaniki Budowli KOMBO Spis treści: 1. Wstęp do

Bardziej szczegółowo

TRANZYSTOR UNIPOLARNY MOS

TRANZYSTOR UNIPOLARNY MOS L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE TRANZYSTOR UNIPOLARNY MOS RE. 1.0 1. CEL ĆWICZENIA - zapoznanie się z działaniem tranzystora unipolarnego MOS, - wykreślenie charakterystyk napięciowo-prądowych

Bardziej szczegółowo