dr inż. Jarosław Forenc

Wielkość: px
Rozpocząć pokaz od strony:

Download "dr inż. Jarosław Forenc"

Transkrypt

1 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2011/2012 Wykład nr 2 ( ) dr inż. Jarosław Forenc

2 Rok akademicki 2011/2012, Wykład nr 2 2/50 Plan wykładu nr 2 Systemy pozycyjne systemy pozycyjne a język C zastosowania systemów pozycyjnych Systemy niepozycyjne system rzymski Kodowanie liczb naturalny kod binarny (NKB), kod BCD, kod 1 z N (pierścieniowy), kod 2 z 5 kod kołowy (Johnsona), kod Graya (refleksyjny) Kodowanie znaków kod ASCII, ISO/IEC 646, ISO/IEC 8859 EBCDIC, Windows-1250

3 Rok akademicki 2011/2012, Wykład nr 2 3/50 Systemy pozycyjne a język C W języku C liczby mogą być zapisywane w trzech systemach: dziesiętnym (domyślnie), np ósemkowym (zaczynają się od zera - 0), np. 011 (11 (8) = 9 (10) ) szesnastkowym (zaczynają się od 0x lub 0X), np. 0x11 (11 (16) = 17 (10) ) Do wyświetlenia liczby funkcją printf() stosowane są następujące specyfikatory formatu: liczba dziesiętna: %d, %i liczba ósemkowa: %o liczba szesnastkowa: %x, %X Do wczytania liczby funkcją scanf() stosowane są następujące specyfikatory formatu: liczba dziesiętna: %d (typ int), %D (typ long) liczba ósemkowa: %o (typ int), %O (typ long) liczba szesnastkowa: %x (typ int), %X (typ long)

4 Rok akademicki 2011/2012, Wykład nr 2 4/50 Systemy pozycyjne a język C #include <stdio.h> #include <stdlib.h> int main() { int x1 = 456; /* system dziesietny */ int x2 = 0710; /* system osemkowy */ int x3 = 0x1C8; /* system szesnastkowy */ Dziesietny: Osemkowy: Szesnastkowy: 1c8 1c8 1c8 Szesnastkowy: 1C8 1C8 1C8 printf("dziesietny: %d %d printf("osemkowy: %o %o printf("szesnastkowy: %x %x printf("szesnastkowy: %X %X %d\n",x1,x2,x3); %o\n",x1,x2,x3); %x\n",x1,x2,x3); %X\n",x1,x2,x3); } system("pause"); return 0;

5 Rok akademicki 2011/2012, Wykład nr 2 5/50 System dwójkowy - zastosowania System dwójkowy, nazywany także binarnym: p = 2, D = {0,1} Powszechnie używany w elektronice cyfrowej i informatyce

6 Rok akademicki 2011/2012, Wykład nr 2 6/50 System ósemkowy - zastosowania Ósemkowy, oktalny, oktogonalny: p = 8, D = {0,1,2,3,4,5,6,7} Obecnie jego zastosowanie jest znikome Przykład: w systemie Linux/Unix do zmiany praw user group other rwx rwx rwx dostępu do plików i katalogów stosowane jest polecenie chmod chmod tryb plik... tryb może być liczbą ósemkową lub wyrażeniem symbolicznym r w x / + - = / u g o a chmod g+x data tryb jako liczba ósemkowa jest sumą wartości przedstawionych na rysunku

7 Rok akademicki 2011/2012, Wykład nr 2 7/50 System ósemkowy - zastosowania Ósemkowy, oktalny, oktogonalny: p = 8, D = {0,1,2,3,4,5,6,7} Obecnie jego zastosowanie jest znikome Przykład: r-x rw- rwx Obliczenia: = = = = 567 chmod 567 plik

8 Rok akademicki 2011/2012, Wykład nr 2 8/50 System dziesiętny - zastosowania Dziesiętny, dziesiątkowy: p = 10, D = {0,1,2,3,4,5,6,7,8,9} Podstawowy system stosowany w niemal wszystkich krajach Od XVI wieku stosowano go obok systemu rzymskiego w: nauce księgowości bankowości Zdaniem antropologów o przyjęciu systemu dziesiętnego przesądziło posiadanie przez człowieka 10 palców ułatwiających liczenie w systemie dziesiętnym

9 Rok akademicki 2011/2012, Wykład nr 2 9/50 System dwunastkowy - zastosowania Dwunastkowy: p = 12, D = {0,1,2,3,4,5,6,7,8,9,A,B} Uważany przez matematyków za system praktyczniejszy niż dziesiętny, gdyż 12 ma 4 dzielniki naturalne (2,3,4,6) a liczba 10 - tylko dwa (2,5) Wcześniej był częściej stosowany, o czym świadczą niestandardowe nazwy liczebników 11 i 12 w niektórych językach, np. w języku angielskim (11 - eleven, 12 - twelve) Stosowany jest do pomiaru długości (USA): stopa = 12 cali cal = 12 linii linia = 12 punktów

10 Rok akademicki 2011/2012, Wykład nr 2 10/50 System dwunastkowy - zastosowania Z systemu dwunastkowego wywodzą się pojęcia: tuzin (12 sztuk) kopa (5 tuzinów = 60 sztuk) gros (12 tuzinów = 144 sztuki) Na systemie tym opiera się rachuba czasu: rok dzieli się na 12 miesięcy doba dzieli się na 24 godziny godzina na 60 minut minuta na 60 sekund W niektórych kulturach liczba 12 ma szczególny status, np. 12 znaków zodiaku 12 bogów olimpijskich 12 plemion Izraela 12 apostołów 12 gwiazd na fladze UE

11 Rok akademicki 2011/2012, Wykład nr 2 11/50 System szesnastkowy - zastosowania Szesnastkowy, heksadecymalny: p = 16, D = {0,1,,9,A,B,,E,F} Powszechnie używany w informatyce Jeden bajt można zapisać za pomocą tylko dwóch cyfr w systemie szesnastkowym: (2) 00 (16) (2) 0F (16) (2) FF (16) (2) F0 (16) Dzięki powyższej właściwości system ten nadaje się do zapisu bardzo dużych liczb, np. adresów w pamięci Wiele programów wyświetla zawartość pamięci w systemie szesnastkowym

12 Rok akademicki 2011/2012, Wykład nr 2 12/50 System szesnastkowy - zastosowania Adresy sprzętowe MAC urządzeń sieciowych podawane są w systemie szesnastkowym, np. 00:0A:E6:3E:FD:E1 Stosowany jest w HTML do zapisu 24-bitowych kolorów RGB

13 Rok akademicki 2011/2012, Wykład nr 2 13/50 System sześćdziesiątkowy - zastosowania Używany w Babilonie (1750 p.n.e.) skąd dotarł do Europy Obecnie jest używany w związku z jednostkami czasu: godzina dzieli się na 60 minut minuta dzieli się na 60 sekund Powszechnie występuje przy podawaniu miar kątów, a zwłaszcza długości i szerokości geograficznej Zaletą tego systemu jest podzielność liczby 60 przez 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 i 60 Dzięki powyższej podzielności ułamki mają formę liczb całkowitych Przykład: autobus jeździ 3 razy na godzinę rozkład jazdy w systemie sześćdziesiątkowym: 7 00 ; 7 20 ; 7 40 ; 8 00 rozkład jazdy w systemie dziesiętnym: 7,0; 7,3333

14 Rok akademicki 2011/2012, Wykład nr 2 14/50 Przykład systemu niepozycyjnego - system rzymski W systemie rzymskim posługujemy się siedmioma znakami: I - 1 V - 5 X - 10 L - 50 C D M Za pomocą dostępnych symboli można określić liczby od 1 do 3999 System addytywny - wartość liczby określa się na podstawie sumy wartości cyfr, np. II (1+1=2), XXX ( =30) CLX ( =160), MMXII ( =2012) Wyjątkiem od powyższej zasady są liczby do opisu których używa się odejmowania, np. IV (5-1=4), IX (10-1=9), XL (50-10=40), XC (100-10=90) Stosowany w łacińskiej części Europy do końca Średniowiecza Niewygodny w prowadzeniu nawet prostych działań arytmetycznych, brak ułamków

15 Rok akademicki 2011/2012, Wykład nr 2 15/50 Przykład systemu niepozycyjnego - system rzymski Zasady tworzenia liczb: zestawiamy odpowiednie znaki od oznaczającego liczbę największą do oznaczającego liczbę najmniejszą XVI = 10(X) + 5(V) + 1(I) = 16 jeżeli składnik liczby, którą piszemy, jest wielokrotnością liczby nominalnej, wtedy zapisywany jest z użyciem kilku następujących po sobie znaków CCC = 100(C) + 100(C) + 100(C) = 300 dodatkowo należy zachować zasadę nie pisania czterech tych samych znaków po sobie, lecz napisać jeden znak wraz ze znakiem oznaczającym wartość większą o jeden rząd liczbowy CD = 500(D) - 100(C) = 400

16 Rok akademicki 2011/2012, Wykład nr 2 16/50 Przykład systemu niepozycyjnego - system rzymski Zasady odczytu liczb: cyfry jednakowe są dodawane MMM = 1000(M) (M) (M) = 3000 cyfry mniejsze stojące przed większymi są odejmowane od nich CDXCIV = 500(D) - 100(C) + 100(C) - 10(X) + 5(V) - 1(I) = 494 cyfry mniejsze stojące za większymi są do nich dodawane MDCLX = 1000(M) + 500(D) + 100(C) + 50(L) + 10 (X) = 1660

17 Rok akademicki 2011/2012, Wykład nr 2 17/50 Kodowanie Informacje przetwarzane przez komputer to liczby, ale także inne obiekty, np. litery, wartości logiczne, obrazy, itp. Każda informacja przetwarzana przez komputer musi być reprezentowana za pomocą tylko dwóch stanów: wysokiego (1 - jedynka) niskiego (0 - zero) Konieczne są zatem reguły przekształcania różnych postaci informacji na informację binarną (zero-jedynkową) Proces przekształcania jednego rodzaju postaci informacji na inną postać nazywamy kodowaniem

18 Rok akademicki 2011/2012, Wykład nr 2 18/50 Kodowanie

19 Rok akademicki 2011/2012, Wykład nr 2 19/50 Kody liczbowe - Naturalny Kod Binarny (NKB) Jeżeli dowolnej liczbie dziesiętnej przypiszemy odpowiadającą jej liczbę binarną, to otrzymamy naturalny kod binarny (NKB)

20 Rok akademicki 2011/2012, Wykład nr 2 20/50 Kody liczbowe - Naturalny Kod Binarny (NKB) W naturalnym kodzie binarnym za pomocą n-bitów można zapisać liczbę dwójkową z zakresu: n X( 2) = 0, 2 1 Największe liczby dwójkowe: 1 bit 2 bity 3 bity L 8 bitów 10 bitów 16 bitów 32 bity 1 (2) 11 (2) 111 (2) (2) (2) (2) K (2) = = = = = = = = = = = = = = (10) (10) 65 (10) 255 (10) (10) 535 (10) (10)

21 Rok akademicki 2011/2012, Wykład nr 2 21/50 Kody liczbowe - Kod BCD Binary-Coded Decimal - dziesiętny zakodowany dwójkowo BCD - sposób zapisu liczb polegający na zakodowaniu kolejnych cyfr liczby dziesiętnej w 4-bitowym systemie dwójkowym (NKB) W ogólnym przypadku kodowane są tylko znaki 0 9 Pozostałe kombinacje bitowe mogą być stosowane do kodowania znaku liczby lub innych znaczników

22 Rok akademicki 2011/2012, Wykład nr 2 22/50 Kody liczbowe - Kod BCD Przykład: 168 =? (10) (BCD) 1 } } 6 } ( 10) = (BCD) { 0101 { 0011 { (BCD) =? ( = 953 BCD) (10) (10) Zastosowania: urządzenia elektroniczne z wyświetlaczem cyfrowym (np. kalkulatory, mierniki cyfrowe) przechowywania daty i czasu w BIOSie komputerów (także wczesne modele PlayStation 3) zapis części ułamkowych kwot (systemy bankowe)

23 Rok akademicki 2011/2012, Wykład nr 2 23/50 Kody liczbowe - Kod BCD: przechowywanie liczb Użycie 4 najmłodszych bitów jednego bajta, 4 starsze bity są ustawiane na jakąś konkretną wartość: (np. kod EBCDIC, liczby F0 (16) F9 (16) ) 0011 (tak jak w ASCII, liczby 30 (16) 39 (16) ) Zapis dwóch cyfr w każdym bajcie (starsza na starszej połówce, młodsza na młodszej połówce) - jest to tzw. spakowane BCD w przypadku liczby zapisanej na kilku bajtach, najmniej znacząca tetrada (4 bity) używane są jako flaga znaku standardowo przyjmuje się 1100 (C (16) ) dla znaku plus (+) i 1101 (D (16) ) dla znaku minus (-), np (10) (10) = 0001 = (127C (127D (16) (16) ) )

24 Rok akademicki 2011/2012, Wykład nr 2 24/50 Kody liczbowe - Kod BCD Zalety BCD w stosunku do NKB: prostsze obliczenia i zaokrąglanie liczb (podstawa systemu: 10) prostsza konwersja do postaci dogodnej do wyświetlenia (wyświetlacz 7-segmentowy), konwersja wykonywana w czasie liniowym niektóre wartości niecałkowite (np. 0,1) mają w BCD skończoną reprezentację, dzięki czemu BCD wprowadza mniejsze błędy obliczeń Wady BCD w stosunku do NKB: skomplikowane operacje arytmetyczne (dodawanie, mnożenie) nadmiarowość - na 4 bitach można zapisać 16 różnych wartości, a BCD wykorzystuje tylko 10 z nich operacje wykonywane w praktycznie istniejących implementacjach BCD są wolniejsze niż w NKB

25 Rok akademicki 2011/2012, Wykład nr 2 25/50 Kody liczbowe - Kod BCD Na poprzednich slajdach przedstawiono podstawową postać kodu BCD - BCD 8421 lub SBCD (Simple Binary - Coded Decimal) Istnieją inne warianty kodu BCD, w których poszczególne cyfry są kodowane w inny sposób

26 Rok akademicki 2011/2012, Wykład nr 2 26/50 Kody liczbowe - Kod 1 z N (pierścieniowy) Najbardziej rozpowszechniony jest kod 1 z 10 Kod wagowy (9,8,7,6,5,4,3,2,1,0) Kod detekcyjny w czasie wykonywania operacji można kontrolować liczbę jedynek wykrycie braku jedynki lub wykrycie dwóch lub więcej jedynek wskazuje na błąd

27 Rok akademicki 2011/2012, Wykład nr 2 27/50 Kody liczbowe - Kod 2 z 5 Kod 5-bitowy - jeden znak kodowany jest na 5 bitach (2 bity są zawsze równe jeden, a 3 bity są zawsze równe zeru) Można zakodować 10 znaków, koduje cyfry dziesiętne, kody nie są wzajemnie jednoznaczne (ta sama wartość może być zakodowana w różny sposób) Kod stałowagowy, występuje w wielu wersjach, np , 01234, Kod detekcyjny Stosowany przede wszystkim w kodach kreskowych

28 Rok akademicki 2011/2012, Wykład nr 2 28/50 Kody liczbowe - Kod 2 z 5 Industrial (1960 r.) Jednowymiarowy kod kreskowy kodujący cyfry: 0 9 Każdy znak składa się z 5 pasków (2 szerokich i 3 wąskich), odstępy pełnią rolę separatorów Szeroki pasek jest wielokrotnością wąskiego, szerokości muszą być takie same dla całego kodu Struktura kodu: start: numer stop: Może zawierać sumę kontrolną

29 Rok akademicki 2011/2012, Wykład nr 2 29/50 Kody liczbowe - Kod kołowy 5-bitowy kod kołowy nazywany jest kodem Johnsona Począwszy od najmniej znaczącego bitu zwiększa się liczba stanów 1 aż do wszystkich bitów równych 1 Następnie stanów 1 zaczyna ubywać (począwszy od najmniej znaczącego bitu) aż do osiągnięcia wartości Kolejną wartością po będzie ponownie 00000

30 Rok akademicki 2011/2012, Wykład nr 2 30/50 Kody liczbowe - Kod Graya (refleksyjny) Kod dwójkowy, bezwagowy, niepozycyjny Dwa kolejne słowa kodowe różnią się stanem jednego bitu Kod cykliczny - ostatni i pierwszy wyraz również różnią się stanem jednego bitu Konstrukcja n-bitowego kodu: dopisz do (n-1)-bitowego kodu te same słowa kodowe, ale w odwrotnej kolejności (lustrzane odbicie) do początkowych wyrazów dopisz bit o wartości 0, natomiast do odbitych lustrzanie bit o wartości 1

31 Rok akademicki 2011/2012, Wykład nr 2 31/50 Kody liczbowe - Kod Graya Stosowany w przetwornikach analogowo-cyfrowych, do cyfrowego pomiaru analogowych wielkości mechanicznych (przesuw liniowy, kąt obrotu) /applets/hades/webdemos/10-gates/15-graycode/dual2gray.html

32 Rok akademicki 2011/2012, Wykład nr 2 32/50 Kod ASCII ASCII - American Standard Code for Information Interchange 7-bitowy kod przypisujący liczby z zakresu 0-127: - literom (alfabet angielski) - cyfrom - znakom przestankowym - innym symbolom - poleceniom sterującym kody 0-31, kody sterujące służące do sterowania urządzeniami typu drukarka czy terminal kody kodów tworzących zbiór znaków ASCII

33 Rok akademicki 2011/2012, Wykład nr 2 33/50 Kod ASCII - Kody sterujące Kody sterujące - 33 kody, o numerach: 0-31, 127

34 Rok akademicki 2011/2012, Wykład nr 2 34/50 Kod ASCII - Kody sterujące a język C 0 (10) = 0 (16) NUL - koniec łańcucha znaków, zapis: \0 7 (10) = 7 (16) BEL - alarm, dźwięk głośniczka, zapis: \a 8 (10) = 8 (16) BS - klawisz Backspace, zapis: \b 9 (10) = 9 (16) TAB - tabulacja (odstęp), zapis: \t 10 (10) = A (16) LF - przejście do nowego wiersza, zapis: \n 13 (10) = D (16) CR - powrót na początek wiersza, zapis: \r 27 (10) = 1B (16) ESC - klawisz Escape 127 (10) = 7F (16) DEL - klawisz Delete

35 Rok akademicki 2011/2012, Wykład nr 2 35/50 Kod ASCII - Pliki tekstowe Elementami pliku tekstowego są wiersze, mogą one mieć różną długość W systemie Windows każdy wiersz pliku zakończony jest parą znaków: CR, ang. carriage return - powrót karetki, kod ASCII - 13 (10) = 0D (16) LF, ang. line feed - przesunięcie o wiersz, kod ASCII - 10 (10) = 0A (16) Załóżmy, że plik tekstowy ma postać: Rzeczywista zawartość pliku jest następująca: Wydruk zawiera: przesunięcie od początku pliku (szesnastkowo) wartości poszczególnych bajtów pliku (szesnastkowo) znaki odpowiadające bajtom pliku (traktując bajty jako kody ASCII)

36 Rok akademicki 2011/2012, Wykład nr 2 36/50 Kod ASCII - Pliki tekstowe W czasie wczytywania tekstu z pliku do pamięci komputera znaki CR i LF zastępowane są jednym znakiem - LF Znak LF w języku C reprezentowany jest przez \n, zaś CR - przez \r #include <stdio.h> int main() { printf("\\n --> %d %X\n",'\n','\n'); printf("\\r --> %d %X\n",'\r','\r'); \n --> 10 A \r --> 13 D } return 0; Przy zapisywaniu łańcucha znaków do pliku tekstowego mamy sytuację odwrotną - znak LF zastępowany jest parą CR i LF

37 Rok akademicki 2011/2012, Wykład nr 2 37/50 Kod ASCII - Pliki tekstowe W systemie Linux znakiem końca wiersza jest tylko LF o kodzie ASCII - 10 (10) = 0A (16) Załóżmy, że plik tekstowy ma postać: Rzeczywista zawartość pliku jest następująca: Podczas przesyłania pliku tekstowego (np. przez protokół ftp) z systemu Linux do systemu Windows pojedynczy znak LF zamieniany jest automatycznie na parę znaków CR i LF Błędne przesłanie pliku tekstowego (w trybie binarnym) powoduje nieprawidłowe jego wyświetlanie:

38 Rok akademicki 2011/2012, Wykład nr 2 38/50 ISO/IEC 646 ISO/IEC norma definiująca modyfikację 7-bitowego kodowania ASCII, stosowana w latach 70-tych i 80-tych W normie określono 10 pozycji na znaki w języku kraju, który przyjął tę normę oraz 2 pozycje na znaki walut A B C D E F Znaki kontrolne SP! " # $ % & ( ) * +, -. / : ; < = A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { } ~ żółty - znaki narodowe niebieski - znaki walut Wszystkie pozostałe znaki są zgodne z ASCII

39 Rok akademicki 2011/2012, Wykład nr 2 39/50 ISO/IEC odmiany narodowe Norma: BN-74/

40 Rok akademicki 2011/2012, Wykład nr 2 40/50 ISO/IEC 8859 ISO/IEC zestaw standardów służących do kodowania znaków za pomocą 8-bitów Wszystkie zestawy ISO 8859 mają znaki 0 (10) -127 (10) (00 (16) -7F (16) ) takie same jak w kodzie ASCII Pozycjom 128 (10) -159 (10) (80 (16) -9F (16) ) przypisane są dodatkowe kody sterujące, tzw. C1 (obecnie nie są używane) W czerwcu 2004 roku, grupa robocza odpowiedzialna za utrzymanie zestawów znaków kodowanych ośmiobitowo została rozwiązana, wstrzymane zostały prace związane z ISO 8859, a skoncentrowano się na standardzie Unicode

41 Rok akademicki 2011/2012, Wykład nr 2 41/50 ISO/IEC 8859 Stosowane standardy ISO 8859: ISO (Latin-1) - alfabet łaciński dla Europy zachodniej ISO (Latin-2) - łaciński dla Europy środkowej i wschodniej ISO (Latin-3) - łaciński dla Europy południowej ISO (Latin-4) - łaciński dla Europy północnej ISO (Cyrillic) - dla cyrylicy ISO (Arabic) - dla alfabetu arabskiego ISO (Greek) - dla alfabetu greckiego ISO (Hebrew) - dla alfabetu hebrajskiego ISO (Latin-5) ISO (Latin-6) ISO (Thai) - dla alfabetu tajskiego ISO brak ISO (Latin-7) ISO (Latin-8) - zawiera polskie znaki ISO (Latin-9) ISO (Latin-10) - łaciński dla Europy środkowej, zawiera polskie znaki

42 Rok akademicki 2011/2012, Wykład nr 2 42/50 ISO/IEC ISO/IEC , Latin-1 ( zachodnioeuropejskie ) kodowanie używane w Amerykach, Europie Zachodniej, Oceanii i większej części Afryki dostępne języki: albański, angielski, baskijski, duński, estoński, fiński, francuski, hiszpański, irlandzki, islandzki, kataloński, łaciński, niderlandzki, niemiecki, norweski, portugalski, retoromański, szkocki, szwedzki, włoski 191 znaków łacińskiego pisma SP - spacja NBSP - twarda spacja SHY - miękki dywiz (myślnik)

43 Rok akademicki 2011/2012, Wykład nr 2 43/50 ISO/IEC ISO/IEC , Latin-2 ( środkowo, wschodnioeuropejskie ) dostępne języki: bośniacki, chorwacki, czeski, węgierski, polski, rumuński, serbski, serbsko-chorwacki, słowacki, słoweński, górno- i dolnołużycki możliwość przedstawienia znaków w języku niemieckim i angielskim 191 znaków łacińskiego pisma kody z przedziałów 00 (16) -1F (16) oraz 7F (16) -9F (16) nie są używane w ISO kodowanie zgodne z Polską Normą SP - spacja NBSP - twarda spacja SHY - miękki dywiz (myślnik)

44 Rok akademicki 2011/2012, Wykład nr 2 44/50 ISO/IEC Kodowanie polskich znaków 18 znaków: Ą - ą Ć - ć Ę - ę Ł - ł Ń - ń Ó - ó Ś - ś Ź - ź Ż - ż

45 Rok akademicki 2011/2012, Wykład nr 2 45/50 ISO/IEC i ISO/IEC porównanie

46 Rok akademicki 2011/2012, Wykład nr 2 46/50 EBCDIC EBCDIC - Extended Binary Coded Decimal Interchange Code 8-bitowe kodowanie znaków stworzone jako rozszerzenie kodowania BCD używane głównie w systemach IBM w latach 60-tych XX wieku umożliwia zapisanie do 256 różnych symboli brak zachowania kolejności liter zgodnie z kolejnością kodów, np. po R nie ma S kody EBCDIC nie są zgodne z ASCII

47 Rok akademicki 2011/2012, Wykład nr 2 47/50 EBCDIC i ISO porównanie

48 Rok akademicki 2011/2012, Wykład nr 2 48/50 Windows-1250 Windows-1250 (CP-1250) - strona kodowa używana przez system Microsoft Windows do reprezentacji tekstów w językach środkowoeuropejskich używających alfabetu łacińskiego Obsługiwane języki: albański, chorwacki, czeski, polski, rumuński, słowacki, słoweński, węgierski (ale także niemiecki) Windows-1250 jest podobny do ISO posiada wszystkie jego drukowalne znaki (a także kilka dodatkowych), lecz kilka z nich zajmuje inne miejsca

49 Rok akademicki 2011/2012, Wykład nr 2 49/50 ISO i Windows porównanie

50 Rok akademicki 2011/2012, Wykład nr 2 50/50 Koniec wykładu nr 2 Dziękuję za uwagę!

Systemy pozycyjne. Systemy niepozycyjne. Kodowanie liczb. Kodowanie znaków. dr inż. Jarosław Forenc

Systemy pozycyjne. Systemy niepozycyjne. Kodowanie liczb. Kodowanie znaków. dr inż. Jarosław Forenc Rok akademicki 2011/2012, Wykład nr 2 2/50 Plan wykładu nr 2 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2011/2012

Bardziej szczegółowo

Kodowanie informacji. Kody liczbowe

Kodowanie informacji. Kody liczbowe Wykład 2 2-1 Kodowanie informacji PoniewaŜ komputer jest urządzeniem zbudowanym z układów cyfrowych, informacja przetwarzana przez niego musi być reprezentowana przy pomocy dwóch stanów - wysokiego i niskiego,

Bardziej szczegółowo

Kodowanie liczb. Kodowanie znaków. Reprezentacja liczb w systemach komputerowych Reprezentacja stałoprzecinkowa. dr inŝ.

Kodowanie liczb. Kodowanie znaków. Reprezentacja liczb w systemach komputerowych Reprezentacja stałoprzecinkowa. dr inŝ. Rok akademicki 2/2, Wykład nr 3 2/53 Plan wykładu nr 3 Informatyka Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia stacjonarne I stopnia Rok akademicki 2/2 Kodowanie

Bardziej szczegółowo

dr inż. Jarosław Forenc

dr inż. Jarosław Forenc Informatyka Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia stacjonarne I stopnia Rok akademicki 8/9 Wykład nr 4 (.3.9) Rok akademicki 8/9, Wykład nr 4 /33 Plan wykładu

Bardziej szczegółowo

Kody liczbowe - Naturalny Kod Binarny (NKB) Kody liczbowe - Kod BCD. Kody liczbowe - Przechowywanie liczb w kodzie BCD

Kody liczbowe - Naturalny Kod Binarny (NKB) Kody liczbowe - Kod BCD. Kody liczbowe - Przechowywanie liczb w kodzie BCD Rok akademicki 007/008, Wykład nr 3 /4 Informatyka Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia (zaoczne) Rok akademicki 007/008 Wykład nr

Bardziej szczegółowo

dr inż. Jarosław Forenc

dr inż. Jarosław Forenc Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia stacjonarne I stopnia Rok akademicki 2018/2019 Wykład nr 7 (12.04.2019) Rok akademicki 2018/2019, Wykład

Bardziej szczegółowo

Informatyka 1. Wykład nr 3 ( ) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc

Informatyka 1. Wykład nr 3 ( ) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia (zaoczne) Rok akademicki 2007/2008 Wykład nr 3 (30.03.2008) Rok akademicki 2007/2008,

Bardziej szczegółowo

dr inż. Jarosław Forenc

dr inż. Jarosław Forenc Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2014/2015 Wykład nr 2 (06.03.2015) Rok akademicki 2014/2015, Wykład

Bardziej szczegółowo

Kodowanie informacji. Przygotował: Ryszard Kijanka

Kodowanie informacji. Przygotował: Ryszard Kijanka Kodowanie informacji Przygotował: Ryszard Kijanka Komputer jest urządzeniem służącym do przetwarzania informacji. Informacją są liczby, ale także inne obiekty, takie jak litery, wartości logiczne, obrazy

Bardziej szczegółowo

Pracownia Komputerowa wyk ad VII

Pracownia Komputerowa wyk ad VII Pracownia Komputerowa wyk ad VII dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Notacja szesnastkowa - przypomnienie Szesnastkowy

Bardziej szczegółowo

Jednostki informacji cyfrowej. Kodowanie znaków. Kodowanie liczb. dr inż. Jarosław Forenc

Jednostki informacji cyfrowej. Kodowanie znaków. Kodowanie liczb. dr inż. Jarosław Forenc Rok akademicki 2014/2015, Wykład nr 2 2/55 Plan wykładu nr 2 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2014/2015

Bardziej szczegółowo

Architektura systemów komputerowych Laboratorium 5 Kodowanie liczb i tekstów

Architektura systemów komputerowych Laboratorium 5 Kodowanie liczb i tekstów Architektura systemów komputerowych Laboratorium 5 Kodowanie liczb i tekstów Marcin Stępniak Informacje. Kod NKB Naturalny kod binarny (NKB) jest oparty na zapisie liczby naturalnej w dwójkowym systemie

Bardziej szczegółowo

dr inż. Jarosław Forenc

dr inż. Jarosław Forenc Technologie informacyjne Politechnika Białostocka - Wydział Elektryczny semestr I, studia stacjonarne I stopnia Rok akademicki 2014/2015 Pracownia nr 2 (08.10.2014) dr inż. Jarosław Forenc Rok akademicki

Bardziej szczegółowo

Jednostki informacji - bit. Kodowanie znaków: ASCII, ISO 8859, Unicode liczb: NKB (BCN), U2, BCD. Liczby zmiennoprzecinkowe standard IEEE 754

Jednostki informacji - bit. Kodowanie znaków: ASCII, ISO 8859, Unicode liczb: NKB (BCN), U2, BCD. Liczby zmiennoprzecinkowe standard IEEE 754 Rok akademicki 06/07, Pracownia nr /33 Pracownia nr Technologie informacyjne Politechnika Białostocka - Wydział Elektryczny semestr I, studia stacjonarne I stopnia Rok akademicki 06/07 Jednostki informacji

Bardziej szczegółowo

Jednostki informacji cyfrowej. Kodowanie znaków. Kodowanie liczb. Reprezentacja liczb w systemach komputerowych. Reprezentacja stałoprzecinkowa

Jednostki informacji cyfrowej. Kodowanie znaków. Kodowanie liczb. Reprezentacja liczb w systemach komputerowych. Reprezentacja stałoprzecinkowa Rok akademicki 2012/2013, Wykład nr 2 2/65 Plan wykładu nr 2 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2012/2013

Bardziej szczegółowo

12. Wprowadzenie Sygnały techniki cyfrowej Systemy liczbowe. Matematyka: Elektronika:

12. Wprowadzenie Sygnały techniki cyfrowej Systemy liczbowe. Matematyka: Elektronika: PRZYPOMNIJ SOBIE! Matematyka: Dodawanie i odejmowanie "pod kreską". Elektronika: Sygnały cyfrowe. Zasadę pracy tranzystorów bipolarnych i unipolarnych. 12. Wprowadzenie 12.1. Sygnały techniki cyfrowej

Bardziej szczegółowo

Techniki multimedialne

Techniki multimedialne Techniki multimedialne Digitalizacja podstawą rozwoju systemów multimedialnych. Digitalizacja czyli obróbka cyfrowa oznacza przetwarzanie wszystkich typów informacji - słów, dźwięków, ilustracji, wideo

Bardziej szczegółowo

dr inż. Jarosław Forenc

dr inż. Jarosław Forenc Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia stacjonarne I stopnia Rok akademicki 2013/2014 Wykład nr 2 (24.03.2014) Rok akademicki 2013/2014, Wykład

Bardziej szczegółowo

Informatyka 1. Wykład nr 3 ( ) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc

Informatyka 1. Wykład nr 3 ( ) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia stacjonarne I stopnia Rok akademicki 2007/2008 Wykład nr 3 (07.04.2008) Rok akademicki 2007/2008, Wykład

Bardziej szczegółowo

1.1. Pozycyjne systemy liczbowe

1.1. Pozycyjne systemy liczbowe 1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego

Bardziej szczegółowo

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego Arytmetyka cyfrowa Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego (binarnego). Zapis binarny - to system liczenia

Bardziej szczegółowo

dr inż. Jarosław Forenc

dr inż. Jarosław Forenc Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia stacjonarne I stopnia Rok akademicki 2018/2019 Wykład nr 6 (05.04.2019) Rok akademicki 2018/2019, Wykład

Bardziej szczegółowo

Arytmetyka komputera

Arytmetyka komputera Arytmetyka komputera Systemy zapisu liczb System dziesiętny Podstawą układu dziesiętnego jest liczba 10, a wszystkie liczby można zapisywać dziesięcioma cyframi: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Jednostka

Bardziej szczegółowo

DZIESIĘTNY SYSTEM LICZBOWY

DZIESIĘTNY SYSTEM LICZBOWY DZIESIĘTNY SYSTEM LICZBOWY Do zapisu dowolnej liczby system wykorzystuje dziesięć symboli (cyfr): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Dowolną liczbę w systemie dziesiętnym możemy przedstawić jako następująca

Bardziej szczegółowo

Kodowanie liczb całkowitych w systemach komputerowych

Kodowanie liczb całkowitych w systemach komputerowych Kodowanie liczb całkowitych w systemach komputerowych System pozycyjny Systemy addytywne znaczenie historyczne Systemy pozycyjne r podstawa systemu liczbowego (radix) A wartość liczby a - cyfra i pozycja

Bardziej szczegółowo

Komunikacja człowiek-komputer

Komunikacja człowiek-komputer Komunikacja człowiek-komputer Wykład 3 Dr inż. Michał Kruk Komunikacja człowiek - komputer dr inż. Michał Kruk Reprezentacja znaków Aby zakodować tekst, trzeba każdej możliwej kombinacji bitów przyporządkować

Bardziej szczegółowo

Komputerowa reprezentacja znaków i liczb. dr inż. Izabela Szczęch Politechnika Poznańska Podstawy informatyki

Komputerowa reprezentacja znaków i liczb. dr inż. Izabela Szczęch Politechnika Poznańska Podstawy informatyki Komputerowa reprezentacja znaków i liczb dr inż. Izabela Szczęch Politechnika Poznańska Podstawy informatyki Plan wykładu Reprezentacja informacji w systemie komputerowym Podstawowe jednostki informacji

Bardziej szczegółowo

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych Reprezentacja danych w systemach komputerowych Kod (łac. codex - spis), ciąg składników sygnału (kombinacji sygnałów elementarnych, np. kropek i kresek, impulsów prądu, symboli) oraz reguła ich przyporządkowania

Bardziej szczegółowo

Ochrona danych osobowych. Pozycyjne systemy liczbowe. Jednostki informacji. Kodowanie znaków ASCII, ISO 8859, Unicode. Kodowanie liczb NKB, U2, BCD

Ochrona danych osobowych. Pozycyjne systemy liczbowe. Jednostki informacji. Kodowanie znaków ASCII, ISO 8859, Unicode. Kodowanie liczb NKB, U2, BCD Rok akademicki /, Pracownia nr / Pracownia nr Technologie informacyjne Politechnika Białostocka - Wydział Elektryczny semestr I, studia stacjonarne I stopnia Rok akademicki / Pracownia nr (8/..) dr inż.

Bardziej szczegółowo

Podstawy informatyki. Reprezentacja danych w systemach cyfrowych

Podstawy informatyki. Reprezentacja danych w systemach cyfrowych Podstawy informatyki Reprezentacja danych w systemach cyfrowych Systemy liczbowe Najpopularniejsze systemy liczbowe: system decymalny (dziesiętny) system binarny (dwójkowy) system heksadecymalny (szesnastkowy)

Bardziej szczegółowo

kodowanie informacji Autor prezentacji: 1 prof. dr hab. Maria Hilczer

kodowanie informacji Autor prezentacji: 1 prof. dr hab. Maria Hilczer kodowanie informacji Autor prezentacji: 1 prof. dr hab. Maria Hilczer Liczba całkowita to ciąg cyfr d n d n-1... d 2 d 1 d 0 system dziesiętny podstawa = 10 d i = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 liczba (10)

Bardziej szczegółowo

Systemy liczenia. 333= 3*100+3*10+3*1

Systemy liczenia. 333= 3*100+3*10+3*1 Systemy liczenia. System dziesiętny jest systemem pozycyjnym, co oznacza, Ŝe wartość liczby zaleŝy od pozycji na której się ona znajduje np. w liczbie 333 kaŝda cyfra oznacza inną wartość bowiem: 333=

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne System binarny Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności October 7, 26 Pojęcie bitu 2 Systemy liczbowe 3 Potęgi dwójki 4 System szesnastkowy 5 Kodowanie informacji 6 Liczby ujemne

Bardziej szczegółowo

Sposób reprezentacji informacji w systemie. Reprezentacja informacji. Dzięki kodowaniu informacji.

Sposób reprezentacji informacji w systemie. Reprezentacja informacji. Dzięki kodowaniu informacji. Sposób reprezentacji informacji w systemie Reprezentacja informacji Jak to się dzieje że w pamięci komputera można przechowywać teksty, obrazy, dźwięki i liczby? Dzięki kodowaniu informacji. Kodowanie

Bardziej szczegółowo

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,

Bardziej szczegółowo

Temat 7. Dekodery, enkodery

Temat 7. Dekodery, enkodery Temat 7. Dekodery, enkodery 1. Pojęcia: koder, dekoder, enkoder, konwerter kodu, transkoder, enkoder priorytetowy... Koderami (lub enkoderami) nazywamy układy realizujące proces zamiany informacji kodowanej

Bardziej szczegółowo

Kody liczbowe - Naturalny Kod Binarny (NKB) Kody liczbowe - Kod BCD. Kody liczbowe - Przechowywanie liczb w kodzie BCD

Kody liczbowe - Naturalny Kod Binarny (NKB) Kody liczbowe - Kod BCD. Kody liczbowe - Przechowywanie liczb w kodzie BCD Rok akademicki 2007/2008, Wykład nr 3 2/55 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia stacjonarne I stopnia Rok akademicki 2007/2008 Wykład nr 3 (07.04.2008)

Bardziej szczegółowo

Systemy liczbowe używane w technice komputerowej

Systemy liczbowe używane w technice komputerowej Systemy liczbowe używane w technice komputerowej Systemem liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach.

Bardziej szczegółowo

ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH

ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK.RD.01 Rok

Bardziej szczegółowo

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,

Bardziej szczegółowo

Wstęp do informatyki. Pojęcie liczebności. Zapis liczb. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek

Wstęp do informatyki. Pojęcie liczebności. Zapis liczb. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek Pojęcie liczebności Wstęp do informatyki Podstawy arytmetyki komputerowej Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Naturalna zdolność człowieka do postrzegania

Bardziej szczegółowo

Znaki w tym systemie odpowiadają następującym liczbom: I=1, V=5, X=10, L=50, C=100, D=500, M=1000

Znaki w tym systemie odpowiadają następującym liczbom: I=1, V=5, X=10, L=50, C=100, D=500, M=1000 SYSTEMY LICZBOWE I. PODZIAŁ SYSTEMÓW LICZBOWYCH: systemy liczbowe: pozycyjne (wartośd cyfry zależy od tego jaką pozycję zajmuje ona w liczbie): niepozycyjne (addytywne) (wartośd liczby jest sumą wartości

Bardziej szczegółowo

dr inż. Paweł Myszkowski

dr inż. Paweł Myszkowski dr inż. Paweł Myszkowski Politechnika Białostocka Wydział Elektryczny Elektronika i Telekomunikacja, semestr II, studia stacjonarne I stopnia Rok akademicki 2015/2016 Wykład nr 2 (2.03.2016) Plan prezentacji:

Bardziej szczegółowo

INFORMATYKA. Zajęcia organizacyjne. Arytmetyka komputerowa.

INFORMATYKA. Zajęcia organizacyjne. Arytmetyka komputerowa. INFORMATYKA Zajęcia organizacyjne Arytmetyka komputerowa http://www.infoceram.agh.edu.pl http://home.agh.edu.pl/~grzesik/ KONSULTACJE Zbigniew Grzesik środa, 9 ; A-3, p. 2 tel.: 67-249 e-mail: grzesik@agh.edu.pl

Bardziej szczegółowo

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System

Bardziej szczegółowo

Podstawy informatyki. Izabela Szczęch. Politechnika Poznańska

Podstawy informatyki. Izabela Szczęch. Politechnika Poznańska Podstawy informatyki Izabela Szczęch Politechnika Poznańska KOMPUTEROWA REPREZENTACJA ZNAKÓW I LICZB 2 Plan wykładu Reprezentacja informacji w systemie komputerowym Podstawowe jednostki informacji Komputerowa

Bardziej szczegółowo

RODZAJE INFORMACJI. Informacje analogowe. Informacje cyfrowe. U(t) U(t) Umax. Umax. R=(0,Umax) nieskończony zbiór możliwych wartości. Umax.

RODZAJE INFORMACJI. Informacje analogowe. Informacje cyfrowe. U(t) U(t) Umax. Umax. R=(0,Umax) nieskończony zbiór możliwych wartości. Umax. RODZAJE INFORMACJI Informacje analogowe U(t) Umax Umax 0 0 R=(0,Umax) nieskończony zbiór możliwych wartości WE MASZYNA ANALOGOWA WY Informacje cyfrowe U(t) Umaxq Umax R=(U, 2U, 3U, 4U) # # MASZYNA # CYFROWA

Bardziej szczegółowo

Wstęp do informatyki. Pojęcie liczebności. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek

Wstęp do informatyki. Pojęcie liczebności. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek Wstęp do informatyki Podstawy arytmetyki komputerowej Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Pojęcie liczebności Naturalna zdolność człowieka do postrzegania

Bardziej szczegółowo

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia. ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię

Bardziej szczegółowo

Teoretyczne Podstawy Informatyki

Teoretyczne Podstawy Informatyki Teoretyczne Podstawy Informatyki cel zajęć Celem kształcenia jest uzyskanie umiejętności i kompetencji w zakresie budowy schematów blokowych algor ytmów oraz ocenę ich złożoności obliczeniowej w celu optymizacji

Bardziej szczegółowo

Podstawy Informatyki dla Nauczyciela

Podstawy Informatyki dla Nauczyciela Podstawy Informatyki dla Nauczyciela Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 2 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki dla Nauczyciela Wykład 2 1 / 1 Informacja

Bardziej szczegółowo

Systemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10).

Systemy liczbowe. 1. Przedstawić w postaci sumy wag poszczególnych cyfr liczbę rzeczywistą R = (10). Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 1. Systemy liczbowe Cel dydaktyczny: Poznanie zasad reprezentacji liczb w systemach pozycyjnych o różnych podstawach. Kodowanie liczb dziesiętnych

Bardziej szczegółowo

Systemy zapisu liczb.

Systemy zapisu liczb. Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy. Zdobycie umiejętności wykonywania działań na liczbach w różnych systemach. Zagadnienia:

Bardziej szczegółowo

Kodowanie liczb. Reprezentacja liczb całkowitych. Standard IEEE 754. dr inż. Jarosław Forenc

Kodowanie liczb. Reprezentacja liczb całkowitych. Standard IEEE 754. dr inż. Jarosław Forenc Rok akademicki 18/19, Wykład nr 4 /63 Plan wykładu nr 4 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 18/19 Wykład

Bardziej szczegółowo

Pracownia Komputerowa wykład IV

Pracownia Komputerowa wykład IV Pracownia Komputerowa wykład IV dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny

Bardziej szczegółowo

Technika Cyfrowa i Mikroprocesorowa

Technika Cyfrowa i Mikroprocesorowa Technika Cyfrowa i Mikroprocesorowa Prowadzący przedmiot: Ćwiczenia laboratoryjne: dr inż. Andrzej Ożadowicz dr inż. Andrzej Ożadowicz dr inż. Jakub Grela Wydział Elektrotechniki, Automatyki, Informatyki

Bardziej szczegółowo

PODSTAWY INFORMATYKI. Informatyka? - definicja

PODSTAWY INFORMATYKI. Informatyka? - definicja PODSTAWY INFORMATYKI Informatyka? - definicja Definicja opracowana przez ACM (Association for Computing Machinery) w 1989 roku: Informatyka to systematyczne badanie procesów algorytmicznych, które charakteryzują

Bardziej szczegółowo

Cyfrowy zapis informacji. 5 grudnia 2013 Wojciech Kucewicz 2

Cyfrowy zapis informacji. 5 grudnia 2013 Wojciech Kucewicz 2 Cyfrowy zapis informacji 5 grudnia 2013 Wojciech Kucewicz 2 Bit, Bajt, Słowo 5 grudnia 2013 Wojciech Kucewicz 3 Cyfrowy zapis informacji Bit [ang. binary digit] jest elementem zbioru dwuelementowego używanym

Bardziej szczegółowo

Stan wysoki (H) i stan niski (L)

Stan wysoki (H) i stan niski (L) PODSTAWY Przez układy cyfrowe rozumiemy układy, w których w każdej chwili występują tylko dwa (zwykle) możliwe stany, np. tranzystor, jako element układu cyfrowego, może być albo w stanie nasycenia, albo

Bardziej szczegółowo

4 Standardy reprezentacji znaków. 5 Przechowywanie danych w pamięci. 6 Literatura

4 Standardy reprezentacji znaków. 5 Przechowywanie danych w pamięci. 6 Literatura ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 1 2 Standardy reprezentacji wartości całkowitoliczbowych

Bardziej szczegółowo

L6.1 Systemy liczenia stosowane w informatyce

L6.1 Systemy liczenia stosowane w informatyce L6.1 Systemy liczenia stosowane w informatyce Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Publikacja jest dystrybuowana bezpłatnie Program Operacyjny Kapitał

Bardziej szczegółowo

Dr inż. Grażyna KRUPIŃSKA. D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI

Dr inż. Grażyna KRUPIŃSKA. D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI Dr inż. Grażyna KRUPIŃSKA Grazyna.Krupinska@fis.agh.edu.pl D-10 pokój 227 WYKŁAD 2 WSTĘP DO INFORMATYKI Ćwiczenia i laboratorium 2 Kolokwia zaliczeniowe - 1 termin - poniedziałek, 29 stycznia 2018 11:30

Bardziej szczegółowo

Urządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN):

Urządzenia Techniki. Klasa I TI. System dwójkowy (binarny) -> BIN. Przykład zamiany liczby dziesiętnej na binarną (DEC -> BIN): 1. SYSTEMY LICZBOWE UŻYWANE W TECHNICE KOMPUTEROWEJ System liczenia - sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Do zapisu

Bardziej szczegółowo

Jednostki informacji cyfrowej. Kodowanie znaków. Język C. dr inż. Jarosław Forenc. FLOPS (FLoating point Operations Per Second)

Jednostki informacji cyfrowej. Kodowanie znaków. Język C. dr inż. Jarosław Forenc. FLOPS (FLoating point Operations Per Second) Rok akademicki 2018/2019, Wykład nr 3 2/56 Plan wykładu nr 3 Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia Rok akademicki 2018/2019

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 4 Jan Kazimirski 1 Reprezentacja danych 2 Plan wykładu Systemy liczbowe Zapis dwójkowy liczb całkowitych Działania arytmetyczne Liczby rzeczywiste Znaki i łańcuchy znaków

Bardziej szczegółowo

Pracownia komputerowa. Dariusz Wardecki, wyk. VIII

Pracownia komputerowa. Dariusz Wardecki, wyk. VIII Pracownia komputerowa Dariusz Wardecki, wyk. VIII Powtórzenie Podaj wartość liczby przy następującej reprezentacji zmiennoprzecinkowej (Kc = 7) Z C C C C M M M 1 0 1 1 1 1 1 0-1.75 (dec) Rafa J. Wysocki

Bardziej szczegółowo

Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński

Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Temat: Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy.

Bardziej szczegółowo

Informatyka kodowanie liczb. dr hab. inż. Mikołaj Morzy

Informatyka kodowanie liczb. dr hab. inż. Mikołaj Morzy Informatyka kodowanie liczb dr hab. inż. Mikołaj Morzy plan wykładu definicja informacji sposoby kodowania reprezentacja liczb naturalnych i całkowitych arytmetyka binarna arytmetyka oktalna arytmetyka

Bardziej szczegółowo

Wprowadzenie do informatyki i użytkowania komputerów. Kodowanie informacji System komputerowy

Wprowadzenie do informatyki i użytkowania komputerów. Kodowanie informacji System komputerowy 1 Wprowadzenie do informatyki i użytkowania komputerów Kodowanie informacji System komputerowy Kodowanie informacji 2 Co to jest? bit, bajt, kod ASCII. Jak działa system komputerowy? Co to jest? pamięć

Bardziej szczegółowo

Naturalny kod binarny (NKB)

Naturalny kod binarny (NKB) SWB - Arytmetyka binarna - wykład 6 asz 1 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2 1 0 wartość 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 wartość 128 64 32 16 8 4 2 1 bity b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 System

Bardziej szczegółowo

Arytmetyka binarna - wykład 6

Arytmetyka binarna - wykład 6 SWB - Arytmetyka binarna - wykład 6 asz 1 Arytmetyka binarna - wykład 6 Adam Szmigielski aszmigie@pjwstk.edu.pl SWB - Arytmetyka binarna - wykład 6 asz 2 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2

Bardziej szczegółowo

Pracownia Komputerowa wyk ad IV

Pracownia Komputerowa wyk ad IV Pracownia Komputerowa wykad IV dr Magdalena Posiadaa-Zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja

Bardziej szczegółowo

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne 1. Bit Pozycja rejestru lub komórki pamięci służąca do przedstawiania (pamiętania) cyfry w systemie (liczbowym)

Bardziej szczegółowo

Podstawy programowania w C++

Podstawy programowania w C++ Podstawy programowania w C++ Zmienne typu znakowego Bibliografia: CPA: PROGRAMMING ESSENTIALS IN C++ https://www.netacad.com Opracował: Andrzej Nowak ASCII (American Standard Code for Information Interchange)

Bardziej szczegółowo

Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej

Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej Moduł 2 Zastosowanie systemów liczbowych w informacji cyfrowej 1. Pozycyjne systemy liczbowe 2. Zasady zapisu liczb w pozycyjnych systemach liczbowych 3. Podstawowe działania na liczbach binarnych 4. Liczby

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

Wstęp do Informatyki

Wstęp do Informatyki Wstęp do Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 4 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 4 1 / 1 DZIELENIE LICZB BINARNYCH Dzielenie

Bardziej szczegółowo

Podstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 5 Liczby w komputerze

Podstawy Informatyki. Inżynieria Ciepła, I rok. Wykład 5 Liczby w komputerze Podstawy Informatyki Inżynieria Ciepła, I rok Wykład 5 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie

Bardziej szczegółowo

Pracownia Komputerowa wykład V

Pracownia Komputerowa wykład V Pracownia Komputerowa wykład V dr Magdalena Posiadała-Zezula http://www.fuw.edu.pl/~mposiada/pk16 1 Reprezentacje liczb i znaków! Liczby:! Reprezentacja naturalna nieujemne liczby całkowite naturalny system

Bardziej szczegółowo

Dr inż. Jan Chudzikiewicz Pokój 117/65 Tel Materiały:

Dr inż. Jan Chudzikiewicz Pokój 117/65 Tel Materiały: Dr inż Jan Chudzikiewicz Pokój 7/65 Tel 683-77-67 E-mail: jchudzikiewicz@watedupl Materiały: http://wwwitawatedupl/~jchudzikiewicz/ Warunki zaliczenie: Otrzymanie pozytywnej oceny z kolokwium zaliczeniowego

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię

Bardziej szczegółowo

System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb.

System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb. 2. Arytmetyka komputera. Systemy zapisu liczb: dziesietny, dwójkowy (binarny), ósemkowy, szesnatskowy. Podstawowe operacje arytmetyczne na liczbach binarnych. Zapis liczby binarnej ze znakiem. Reprezentacja

Bardziej szczegółowo

Informatyka 1. Wykład nr 3 ( ) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc

Informatyka 1. Wykład nr 3 ( ) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc Informatyka 1 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia stacjonarne I stopnia Rok akademicki 008/009 Wykład nr 3 (31.03.009) Rok akademicki 008/009, Wykład nr 3

Bardziej szczegółowo

Wykład I: Kodowanie liczb w systemach binarnych. Studia Podyplomowe INFORMATYKA Podstawy Informatyki

Wykład I: Kodowanie liczb w systemach binarnych. Studia Podyplomowe INFORMATYKA Podstawy Informatyki Studia Podyplomowe INFORMATYKA Podstawy Informatyki Wykład I: Kodowanie liczb w systemach binarnych 1 Część 1 Dlaczego system binarny? 2 I. Dlaczego system binarny? Pojęcie bitu Bit jednostka informacji

Bardziej szczegółowo

Kod znak-moduł. Wartość liczby wynosi. Reprezentacja liczb w kodzie ZM w 8-bitowym formacie:

Kod znak-moduł. Wartość liczby wynosi. Reprezentacja liczb w kodzie ZM w 8-bitowym formacie: Wykład 3 3-1 Reprezentacja liczb całkowitych ze znakiem Do przedstawienia liczb całkowitych ze znakiem stosowane są następujące kody: - ZM (znak-moduł) - U1 (uzupełnienie do 1) - U2 (uzupełnienie do 2)

Bardziej szczegółowo

1. Wprowadzanie danych z klawiatury funkcja scanf

1. Wprowadzanie danych z klawiatury funkcja scanf 1. Wprowadzanie danych z klawiatury funkcja scanf Deklaracja int scanf ( const char *format, wskaźnik, wskaźnik,... ) ; Biblioteka Działanie stdio.h Funkcja scanf wczytuje kolejne pola (ciągi znaków),

Bardziej szczegółowo

SYSTEMY LICZBOWE. SYSTEMY POZYCYJNE: dziesiętny (arabski): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M

SYSTEMY LICZBOWE. SYSTEMY POZYCYJNE: dziesiętny (arabski): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M SYSTEMY LICZBOWE SYSTEMY POZYCYJNE: dziesiętny (arabski):,, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M System pozycyjno wagowy: na przykład liczba 444 4 4 4 4 4 4 Wagi systemu dziesiętnego:,,,,...

Bardziej szczegółowo

1. Systemy liczbowe. addytywne systemy w których wartośd liczby jest sumą wartości jej znaków cyfrowych.

1. Systemy liczbowe. addytywne systemy w których wartośd liczby jest sumą wartości jej znaków cyfrowych. 1. Systemy liczbowe 1.1. System liczbowy zbiór reguł jednolitego zapisu, nazewnictwa i działao na liczbach. Do zapisywania liczb zawsze używa się pewnego skooczonego zbioru znaków, zwanych cyframi. Cyfry

Bardziej szczegółowo

SYSTEMY LICZBOWE 275,538 =

SYSTEMY LICZBOWE 275,538 = SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej

Bardziej szczegółowo

System Liczbowe. Szesnastkowy ( heksadecymalny)

System Liczbowe. Szesnastkowy ( heksadecymalny) SYSTEMY LICZBOWE 1 System Liczbowe Dwójkowy ( binarny) Szesnastkowy ( heksadecymalny) Ósemkowy ( oktalny) Dziesiętny ( decymalny) 2 System dziesiętny Symbol Wartość w systemie Liczba 6 6 *10 0 sześć 65

Bardziej szczegółowo

Systemy liczbowe. Laura Robińska

Systemy liczbowe. Laura Robińska Systemy liczbowe Laura Robińska Czym jest system liczbowy? Systemem liczbowym nazywamy sposób zapisywania liczb oraz zbiór reguł umożliwiających wykonywanie działań na tych liczbach. Systemy pozycyjne

Bardziej szczegółowo

Reprezentacja stałoprzecinkowa. Reprezentacja zmiennoprzecinkowa zapis zmiennoprzecinkowy liczby rzeczywistej

Reprezentacja stałoprzecinkowa. Reprezentacja zmiennoprzecinkowa zapis zmiennoprzecinkowy liczby rzeczywistej Informatyka, studia niestacjonarne I stopnia Rok akademicki /, Wykład nr 4 /6 Plan wykładu nr 4 Informatyka Politechnika Białostocka - Wydział lektryczny lektrotechnika, semestr II, studia niestacjonarne

Bardziej szczegółowo

Jednostki informacji. Bajt moŝna podzielić na dwie połówki 4-bitowe nazywane tetradami (ang. nibbles).

Jednostki informacji. Bajt moŝna podzielić na dwie połówki 4-bitowe nazywane tetradami (ang. nibbles). Wykład 1 1-1 Informatyka nauka zajmująca się zbieraniem, przechowywaniem i przetwarzaniem informacji. Informacja obiekt abstrakcyjny, który w postaci zakodowanej moŝe być przechowywany, przesyłany, przetwarzany

Bardziej szczegółowo

LABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q

LABORATORIUM PROCESORY SYGNAŁOWE W AUTOMATYCE PRZEMYSŁOWEJ. Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q LABORAORIUM PROCESORY SYGAŁOWE W AUOMAYCE PRZEMYSŁOWEJ Zasady arytmetyki stałoprzecinkowej oraz operacji arytmetycznych w formatach Q 1. Zasady arytmetyki stałoprzecinkowej. Kody stałopozycyjne mają ustalone

Bardziej szczegółowo

Cyfrowy zapis informacji

Cyfrowy zapis informacji F1-1 Cyfrowy zapis informacji Alfabet: uporządkowany zbiór znaków, np. A = {a,b,..., z} Słowa (ciągi) informacyjne: łańcuchy znakowe, np. A i = gdtr Długość słowa n : liczba znaków słowa, np. n(sbdy) =

Bardziej szczegółowo

Programowanie Niskopoziomowe

Programowanie Niskopoziomowe Programowanie Niskopoziomowe Wykład 2: Reprezentacja danych Dr inż. Marek Mika Państwowa Wyższa Szkoła Zawodowa im. Jana Amosa Komeńskiego W Lesznie Plan Kilka ciekawostek Zapisy binarny, oktalny, decymalny

Bardziej szczegółowo

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 Do zapisu liczby ze znakiem mamy tylko 8 bitów, pierwszy od lewej bit to bit znakowy, a pozostałem 7 to bity na liczbę. bit znakowy 1 0 1 1

Bardziej szczegółowo

ZAMIANA SYSTEMÓW LICZBOWYCH

ZAMIANA SYSTEMÓW LICZBOWYCH SZKOŁA PODSTAWOWA NR 109 IM. KORNELA MAKUSZYŃSKIEGO W KRAKOWIE UL. MACKIEWICZA 15; 31-214 KRAKÓW; TEL. 0 12 415 27 59 sp109krakow.w.w.interia.pl ; e-mail: sp109krakow@wp.pl; Krakowskie Młodzieżowe Towarzystwo

Bardziej szczegółowo

SYSTEMY LICZBOWE. Zapis w systemie dziesiętnym

SYSTEMY LICZBOWE. Zapis w systemie dziesiętnym SYSTEMY LICZBOWE 1. Systemy liczbowe Najpopularniejszym systemem liczenia jest system dziesiętny, który doskonale sprawdza się w życiu codziennym. Jednak jego praktyczna realizacja w elektronice cyfrowej

Bardziej szczegółowo