Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie



Podobne dokumenty
Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Tematyka egzaminu z Podstaw sterowania

Plan wykładu. Własności statyczne i dynamiczne elementów automatyki:

Systemy. Krzysztof Patan

Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych

Podstawy Automatyki. Wykład 2 - podstawy matematyczne. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

przy warunkach początkowych: 0 = 0, 0 = 0

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Inżynieria Systemów Dynamicznych (4)

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

III. Układy liniowe równań różniczkowych. 1. Pojęcie stabilności rozwiązań.

Podstawy Automatyki. Wykład 2 - matematyczne modelowanie układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Opis systemów dynamicznych w przestrzeni stanu. Wojciech Kurek , Gdańsk

Podstawy Automatyki. Wykład 2 - modelowanie matematyczne układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Transmitancje układów ciągłych

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE zadania z odpowiedziami

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Podstawy Automatyki. wykład 1 ( ) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Równania różniczkowe zwyczajne zadania z odpowiedziami

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

Przeksztacenie Laplace a. Krzysztof Patan

Podstawy Automatyki. Wykład 5 - stabilność liniowych układów dynamicznych. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Zadania zaliczeniowe z Automatyki i Robotyki dla studentów III roku Inżynierii Biomedycznej Politechniki Lubelskiej

Równania różniczkowe zwyczajne Zadania z odpowiedziami

Podstawy Automatyki Zbiór zadań dla studentów II roku AiR oraz MiBM

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy

Technika regulacji automatycznej

Procedura modelowania matematycznego

Zadania do wykładu Jakościowa Teoria Równań Różniczkowych Zwyczajnych

Sposoby modelowania układów dynamicznych. Pytania

Przekształcenie Z. Krzysztof Patan

POLITECHNIKA ŚLĄSKA WYDZIAŁ GÓRNICTWA I GEOLOGII. Roman Kaula

Automatyka i robotyka

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:

ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013

RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE. Marta Zelmańska

Sterowanie Serwonapędów Maszyn i Robotów

Stabilność II Metody Lapunowa badania stabilności

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Regulator liniowo kwadratowy na przykładzie wahadła odwróconego

Rys 1 Schemat modelu masa- sprężyna- tłumik

Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transform

Analiza matematyczna dla informatyków 3 Zajęcia 14

Wykład z modelowania matematycznego.

Obliczenia iteracyjne

Stabilność. Krzysztof Patan

1. Transformata Laplace a przypomnienie

Przekształcanie równań stanu do postaci kanonicznej diagonalnej

Metody systemowe i decyzyjne w informatyce

PAiTM. materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż.

Zadania egzaminacyjne

Automatyka i robotyka

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

LINIOWE UKŁADY DYSKRETNE

Po zastosowaniu uproszczenia zgubiono więc ważną informację o układzie fizycznym, a zatem drugie rozwiązanie zadania jest niepoprawne.

1. Opis teoretyczny regulatora i obiektu z opóźnieniem.

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Przekształcenia liniowe

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

FUNKCJE ZESPOLONE Lista zadań 2005/2006

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Tydzień nr 9-10 (16 maja - 29 maja), Równania różniczkowe, wartości własne, funkcja wykładnicza od operatora - Matematyka II 2010/2011L

Przekształcenia całkowe. Wykład 1

Mnożniki funkcyjne Lagrange a i funkcje kary w sterowaniu optymalnym

x y

Rozwiązywanie równań różniczkowych zwyczajnych za pomocą komputera

Sterowalność liniowych uk ladów sterowania

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

Sterowanie napędów maszyn i robotów

Teoria sterowania - studia niestacjonarne AiR 2 stopień

Zestaw zadań z Równań różniczkowych cząstkowych I 18/19

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c

Część 1. Transmitancje i stabilność

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

Przekształcenia liniowe

O MACIERZACH I UKŁADACH RÓWNAŃ

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

Całkowanie numeryczne

POLITECHNIKA BIAŁOSTOCKA

Przyjmuje się umowę, że:

Dynamika układów podstawy analizy i symulacji. IV. Układy wielowymiarowe (MIMO)

Układy równań i równania wyższych rzędów

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

Ćwiczenie nr 1 Odpowiedzi czasowe układów dynamicznych

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Inżynieria Systemów Dynamicznych (3)

Analiza matematyczna 2 zadania z odpowiedziami

TRANSFORMATA FOURIERA

Matematyka 2. Metoda operatorowa Transformata Laplace a

INSTRUKCJA DO ĆWICZENIA NR 7

Wykład Analiza jakościowa równań różniczkowych

ANALIZA MATEMATYCZNA 2 zadania z odpowiedziami

Modelowanie i obliczenia techniczne. Modelowanie matematyczne Metody modelowania

RÓŻNICZKOWANIE FUNKCJI WIELU ZMIENNYCH: rachunek pochodnych dla funkcji wektorowych. Pochodne cząstkowe funkcji rzeczywistej wielu zmiennych

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B

Automatyka i sterowanie w gazownictwie Modelowanie

Równania różniczkowe. Notatki z wykładu.

Transkrypt:

Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e t 3t d) cos 5t e 3t e) (sin 3t t cos t) 2 f) e 2t sin t Zad 2 Rozwiąż równania różniczkowe: a) y (t) + 3y (t) + 3y (t) + y(t) = 6e t, y(0) = y (0) = y (0) = 0 b) y (t) + 4y(t) = sin t, y(0) = y (0) = 0 c) 2y (t) + y(t) = t 2 + 2, y(0) = 4 d) y (t) + 4y(t) = 3 sin t + 0 cos 3t, y(0) = 2, y (0) = 3 e) y (t) 3y (t) + 2y(t) = 4e 3t, y(0) = 2, y (0) = 6 f) y (4) (t) + y (t) = cos t, y(0) = y (0) = y (0) = y (0) = 0 g) y (t) + 2y (t) + 5y(t) = 3e 2t, y(0) =, y (0) = h) y (t) + 9y (t) + 4y(t) = 2 sin t, y(0) = 0, y (0) = i) y (t) 3y (t) + 3y (t) y(t) = t 2 e t, y(0) =, y (0) = 2, y (0) = 3 j) y (t) y(t) = e t ( t 2 3t + 3 ), y(0) =, y (0) =

Zad 3 Wyznacz transmitancje obiektów dynamicznych opisanych równaniami różniczkowymi: a) y (t) + 3y (t) + 2y(t) = u (t) + u(t), b) y (t) + 2y(t) = u(t) Wyciągnij wnioski z otrzymanych rezultatów Zad 4 Podaj opisy w postaci transmitancji i wektora stanu dla procesów opisanych równaniami różniczkowymi z zadania 2 przyjmując, że prawa strona równania jest opisem sygnału wejściowego u(t) Zad 5 Dany jest układ ciągły o transmitancji K(s) = Wyznacz odpowiedź tego układu s + na skok jednostkowy Zad 6 Pewien proces można modelować za pomocą równania różniczkowego: y (t) + 2y (t) + y(t) = u(t) Zakładając zerowe warunki początkowe, wyznacz jego transmitancję oraz odpowiedzi na impuls Diraca u(t) = δ(t) oraz na skok jednostkowy u(t) = (t) Wykreśl przebiegi y(t) dla obu pobudzeń Zad 7 Układ liniowy ciągły na wymuszenie u(t) = (t) odpowiedział sygnałem y(t) = e t Wyznacz transmitancję tego układu Zad 8 Zbadaj stabilność stanów równowagi systemów o podanych opisach, posługując się definicją oraz wartościami własnymi macierzy systemowej: a) x (t) = ax(t) x b) (t) = x 2 (t) x 2 (t) = x (t) x 2 (t) d) x (t) = x (t) x 2 (t) = 2x (t) x 2 (t) + 2x 3 (t) x 3 (t) = 3x (t) 2x 2 (t) x 3 (t) c) x (t) = x 2 (t) x 2 (t) = x (t) e) x (t) = x (t)x 2 (t) x 2 (t) = x (t) [x 2 (t)] 3 2

Zad 9 Zlinearyzuj względem początku układu współrzędnych następujące procesy: x (t) = 3x 2(t) + x (t)x 2 (t) + [x 2 (t)] 2 u 2 (t) a) x 2 (t) = 2x (t) + e x2(t) sin x (t) + 2u(t) y(t) = x (t) + u(t) b) x (t) = x (t) sin x 2 (t) + x 2 (t)u(t) x 2 (t) = x (t)e x 2(t) + u 2 (t) y(t) = 2x (t)x 2 (t) + [x 2 (t)] 2 Następnie wyznacz wzór określający stany równowagi x zlinearyzowanych procesów dla zadanych sterowań u(t) = u Zad 0 Znajdź model w postaci równania różniczkowego odwróconego wahadła umieszczonego na ruchomym wózku Opracuj jego opis w postaci wektora stanu Zlinearyzuj model wokół niestabilnego położenia równowagi Zad Wykonaj 4 pierwsze iteracje schematu Eulera dla równań różniczkowych a) y (t) = y(t), y(0) = b) y (t) + y (t) + y(t) = 0, y(0) = 0, y (0) = przyjmując w kolejnych symulacjach wielkość kroku całkowania h =, h = 05, h = 0 Zad 2 Wyznacz z definicji transformaty Z poniższych funkcji: a) x n = δ n b) x n = n c) x n = n d) x n = n 2 e) x n = a n Zad 3 Wyznacz z definicji transformaty Z, wykorzystując jej wybrane własności: a) x n = n b) x n = n 2 c) x n = na n d) x n = n 2 a n e) x n = sin ωn f) x n = cos ωn 3

Zad 4 Wyznacz oryginały x n podanych wyrażeń: a) X(z) = 2z z 2 b) X(z) = c) X(z) = d) X(z) = 2z z 2 + 05z (z 05)(z ) 8z (2z )(4z + ) e) X(z) = f) X(z) = g) X(z) = z (z ) 2 (z 2) (z ) (z + )(3z ) Zad 5 Dla systemu opisanego równaniem różnicowym x n+ + 2x n = 3u n wyznacz odpowiedź na pobudzenie u n = δ n przy warunku początkowym x 0 = na dwa sposoby: bez użycia transformaty Z oraz z jej wykorzystaniem Porównaj oba podejścia Zad 6 Rozwiąż równanie różnicowe x n+2 5x n+ + 6x n = u n dla u n = n i warunkach początkowych x 0 =, x = Zad 7 Dla systemu opisanego równaniem różnicowym x n+ ax n = bu n+ + cu n wyznacz odpowiedź na pobudzenie u n = δ n przy warunku początkowym x 0 Zad 8 n dla n 0 Układ liniowy dyskretny na wymuszenie u n = 0 dla n < 0 y n = e n dla n 0 Wyznacz jego transmitancję odpowiedział sygnałem 4

DODATEK Transformatą Laplace a nazywamy następujące przekształcenie: L [f(t)] F (s) 0 f(t)e st dt, Transformata Laplace a posiada następujące własności: gdzie s jest zmienną zespoloną L [a f (t) + a 2 f 2 (t)] = a F (s) + a 2 F (s), gdzie a, a 2 R [ ] 2 L f (n) (t) = s n F (s) s n f(0) s n 2 f (0) f (n ) (0) [ t ] 3 L f(u)du = 0 s F (s) 4 Jeśli L [f(t)] = F (s) to L [( ) n t n f(t)] = F (n) (s) [ ] f(t) 5 L = F (s)ds t s 6 L [f(at)] = a F ( s ), gdzie a > 0 a 7 L [f(t a)] = a as F (s), gdzie a > 0 8 L [ e p 0t f(t) ] = F (s p 0 ), gdzie p o jest dowolną liczbą zespoloną f (t) (t) F (s) s δ(t) sin at cos at t sin at t cos at a s 2 + a 2 s s 2 + a 2 2as (s 2 + a 2 ) 2 s 2 a 2 (s 2 + a 2 ) 2 f (t) F (s) e at s a e at b sin bt (s a) 2 + b 2 e at s a cos bt (s a) 2 + b 2 t n n!, n N s n+ eat tn n!, n N (s a) n+ Tablica : Tabela często używanych transformat Laplace a 5

Transmitancją liniowego procesu o zerowych warunkach początkowych nazywamy stosunek transformaty Laplace a wyjścia do transformaty Laplace a wejścia: K(s) Y (s) U(s) Opis w postaci wektora stanu ma formę układu: x (t) = F (x(t), u(t)) y(t) = G (x(t), u(t)), gdzie u, x, y to wektory o określonych wymiarach: x (t) u (t) x 2 (t) u 2 (t) x(t) = x R (t), u(t) = u S (t), y(t) = Funkcje F i G są funkcjami wektorowymi o postaciach: f (x(t), u(t)) f 2 (x(t), u(t)) F (x(t), u(t)) =, G (x(t), u(t)) = f R (x(t), u(t)) y (t) y 2 (t) y L (t) g (x(t), u(t)) g 2 (x(t), u(t)) g L (x(t), u(t)) W szczególnym przypadku, liniowy proces można opisać za pomocą układu: x (t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t) gdzie A, B, C, D to macierze o odpowiednich wymiarach: A R R R, B R R S, C R L R, D R L S Metoda linearyzacji bazująca na rozwinięciu w szereg Taylora pozwala uzyskać dla opisu x (t) = F (x(t), u(t)) y(t) = G (x(t), u(t)) opis liniowy x (t) = A x(t) + B u(t) y(t) = C x(t) + D u(t), gdzie x = x x, u = u u, y = y y = y G (x, u ), 6

będący jego przybliżeniem w otoczeniu wybranego punktu: [ x u ] = x x R u u S Macierze wchodzące w skład przybliżenia liniowego mają postać: A = x F (x, u) x=x,u=u = B = u F (x, u) x=x,u=u = C = x G(x, u) x=x,u=u = D = x G(x, u) x=x,u=u = f f x x R f R x f R x R f f u u S f R u f R u S g g x x R g L x g L x R g g u u S g L u g L u S x=x,u=u x=x,u=u x=x,u=u x=x,u=u Przyjmujemy, że stan równowagi x procesu opisanego za pomocą wektora stanu to taki punkt, w którym x (t) = 0 (dla procesu ciągłego) lub x n+ = x n (dla procesu dyskretnego) 7

Analiza stabilności liniowych systemów autonomicznych Autonomiczny system liniowy o opisie x (t) = Ax(t) ma stan równowagi w środku układu współrzędnych (x = 0) wtedy i tylko wtedy, gdy det A 0 Stan równowagi x systemu dyskretnego o opisie x n+ = Ax n spełnia warunek Ax = x Jeżeli det A I 0, to system dyskretny ma dokładnie jeden stan równowagi, w przeciwnym razie tych stanów jest nieskończenie wiele Stan równowagi x nazywamy stabilnym, jeżeli dla dowolnego ε > 0 istnieje δ > 0 takie, że każde rozwiązanie x(t) dla stanu początkowego x(0) leżącego w pobliżu x, tj x(0) x < δ istnieje dla t > 0 i spełnia warunek x(t) x < ε Jeżeli dodatkowo lim t x(t) = x to stan równowagi x nazywamy asymptotycznie stabilnym Definicja stabilności systemu dyskretnego jest analogiczna (po zmianie dziedziny czasu ciągłego na czas dyskretny) Stan równowagi x = 0 autonomicznego systemu liniowego o opisie x (t) = Ax(t) jest asymptotycznie stabilny, jeżeli wszystkie wartości własne macierzy (A) mają ujemne części rzeczywiste Stan równowagi x autonomicznego systemu liniowego o opisie x n+ = Ax n jest asymptotycznie stabilny, jeżeli moduły wszystkich wartości własnych macierzy A są mniejsze od 8

Piękne i przydatne wzory: sin x = eix e ix, cos x = eix + e ix 2i 2 e ix = cos x + i sin x Transformatą Z nazywamy następujące przekształcenie: Z [x n ] x n z n, n=0 gdzie z jest zmienną zespoloną Transformata Z posiada następujące własności: Z [a x n + a 2 y n ] = a X(z) + a 2 Y (z), gdzie a, a 2 R ] m 2 Z [x n+m ] = z [X(z) m x k z k przesunięcie w prawo k=0 3 Z [nx n ] = z d X(z) - zmiana skali oryginału dz 4 Z [a n x n ] = X(az) - zmiana skali transformaty 5 6 n x i = i=0 z z X(z) n x n i y i = X(z)Y (z) transformata splotu i= x n Z [x n ] δ n z n z a n z z a na n az (z a) 2 x n Z [x n ] n 2 a n az(z + a) (z a) 3 sin ωn zsinω z 2 2zcosω + cos ωn z 2 zcosω z 2 2zcosω + Tablica 2: Tabela często używanych transformat Z 9