ROZKŁAD PRAWDOPODBIEŃSTWA WIELU ZMIENNYCH LOSOWYCH W przpadku gd mam do czea z zmem losowm możem prawdopodobeństwo, ż przjmą oe wartośc,,, opsać welowmarową fukcją rozkładu gęstośc prawdopodobeństwa f(,,,. W szczególm przpadku, gd zmee te są ezależe, fukcję f(,,, moża przedstawć jako locz fukcj gęstośc prawdopodobeństwa poszczególch zmech: f(,,, f( f( f( Waruek ormalzacj fukcj f(,,,, wkając z defcj prawdopodobeństwa ma dla welowmarowej fukcj rozkładu postać: f(,, d d d Wartość oczekwaą zmeej defujem wzorem: E( f(,, d Dr Adam Mchczńsk - METODY ANALIZY DANYCH POMIAROWYCH 8 d d Możem także wprowadzć pojęce wartośc oczekwaej dowolej fukcj zmech losowch,,,. Jeśl fukcję tą ozaczm jako (,,, to możem apsać: E( (,, f(,, d d d Przkładam takch fukcj są wzor a estmator wartośc oczekwaej (wartość średa cz dspersj (odchlee stadardowe.
WARIANCJA, KOWARIANCJA Podobe jak wartość oczekwaą zmeej losowej możem zdefować jej warację: V( [ - E( ] f(,, d d d Dla rozkładów prawdopodobeństwa welu zmech losowch możem jedak pojęce waracj rozszerzć a przpadek dwóch dowolch zmech losowch wprowadzając tm samm pojęce kowaracj. Kowaracja zmech losowch j jest zdefowaa astępująco: cov(, j [ - E( ] [ j - E( j ] f(,, d d d Kowaracja formuje as o tm, cz zmee j są ze sobą powązae. Jeżel zmee te są ezależe to ch kowaracja 0. Łatwo zauważć że: cov(, V( oraz cov(, j cov( j, Zbór wartośc cov(, dla, j,,, azwa sę macerzą kowaracj. Poeważ cov(, cov(, macerz kowaracj jest smetrcza. V ( cov(, cov(, cov(, cov( V ( cov( cov(,,, cov( cov( V ( cov(,,, cov( cov( cov( V (,,, Dr Adam Mchczńsk - METODY ANALIZY DANYCH POMIAROWYCH 8
WSPÓŁCZYNNIK KORELACJI Oprócz kowaracj defuje sę także e arzędze przdate do określea powązaa pomędz zmem losowm. Jest m współczk korelacj zdefowa jako: r j cov( V (, j V ( Współczk korelacj przjmuje wartośc z zakresu od - do. Jeżel r j > 0 ozacza to, że wzrostow wartośc towarzsz wzrost wartośc j - określam je wted jako dodato skorelowae. Jeżel r j < 0 to wzrostow wartośc towarzsz spadek wartośc j - zmee te określa sę jako skorelowae ujeme. W przpadku gd r j 0 mówm, że zmee oraz j są eskorelowae. W szczególośc r j 0 dla zmech ezależch, jedakże fakt zerowej wartośc współczka korelacj e jest rówoważ ezależośc zmech (tz. może zdarzć sę tak, że współczk korelacj jest rów zeru, a zmee są od sebe zależe. j Dr Adam Mchczńsk - METODY ANALIZY DANYCH POMIAROWYCH 8
PRAWO PROPAGACJI NIEPEWNOŚCI POMIAROWYCH Oprócz welkośc merzoch bezpośredo w praktce pomarowej często mam do czea z welkoścam, które wzaczam pośredo. Przeważe merzm wówczas klka ch welkośc,,, po czm a podstawe otrzmach wków wlczam ze wzoru wartość teresującej as welkośc (,,,. Powstaje zatem ptae jak a podstawe wartośc epewośc pomarów - u(, u(,, u( wzaczć epewość u(. Poeważ w omawam statstczm modelu opsu epewośc jako epewość przjmujem oszacowae dspersj możlwch wartośc welkośc merzoej, róweż w tm przpadku teresować as będze dspersja oraz waracja zmeej losowej. Okazuje sę, że rozważaa aaltcze możem przeprowadzć tlko wówczas, gd zależość (,,, jest lowa lub gd możem ją traktować jako lową w zakrese zma wartośc zmech losowch,,, wkającch z rozrzutu każdej z ch (tz. gd epewośc pomarów - u(, u(,, u( są stosukowo małe. W celu uproszczea przekształceń rozważm elową fukcję dwóch zmech losowch,,,którą ozaczm (,. Dr Adam Mchczńsk - METODY ANALIZY DANYCH POMIAROWYCH 8 4
Dr Adam Mchczńsk - METODY ANALIZY DANYCH POMIAROWYCH 8 5 Przedstawm fukcję (, w postac rozwęca w szereg wokół wartośc oczekwach zmech, -, : ( (, (, ( Jeżel przjmem, że rozrzut zmech, jest mał, wówczas możem w powższm rozwęcu pozostawć tlko wraz lowe. Wzaczm teraz warację V(. W tm celu skorzstam z zależośc: V( E( -(E(, ( E( E(, E(( ( (, ( E E( Zatem: (E( ((, W celu wzaczea E( wlczm ajperw.
Dr Adam Mchczńsk - METODY ANALIZY DANYCH POMIAROWYCH 8 6 ( ( ( (, (, ( ( (, ( ( ( ( ( (, ( (, (, ( Zatem: ] E[( ] ( E[( ] E[( E(, ( E(, (, E(( E(
Dr Adam Mchczńsk - METODY ANALIZY DANYCH POMIAROWYCH 8 7 ] E[( ] ( E[( ] E[( E(, ( E(, (, E(( E( Poeważ: E((, (, E( - 0 E( - 0 E[( - ] V( E [( - ] V( E [( - ( - ] cov(, zatem:, cov( V( V(, ( E( oraz, cov( V( V(, ( -, cov( V( V(, ( - (E( E( V(
Dr Adam Mchczńsk - METODY ANALIZY DANYCH POMIAROWYCH 8 8 Otrzmaa zależość to uogóloa postać prawa propagacj waracj. - Jeżel (, to, cov( V( V( V( Zatem jeżel przjmem, że zmerzlśm bezpośredo dwe welkośc otrzmalśm w wku pomarów wartośc sr sr z ch epewoścam oraz wlczam wartość to prawo propagacj epewośc możem sformułować jako:, cov( u( u( u( sr sr sr sr sr sr Jeżel pomar welkośc, będą ezależe (z takm przpadkem mam ajczęścej do czea to wzor powższe przjmują postać: V( V( V( sr sr u( u( u( sr sr