ANALIZA PRZESTRZENNA PROCESU STARZENIA SIĘ POLSKIEGO SPOŁECZEŃSTWA



Podobne dokumenty
Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu

Procedura normalizacji

METODA UNITARYZACJI ZEROWANEJ Porównanie obiektów przy ocenie wielokryterialnej. Ranking obiektów.

ANALIZA WPŁYWU OBSERWACJI NIETYPOWYCH NA WYNIKI MODELOWANIA REGIONALNEJ WYDAJNOŚCI PRACY

ZRÓŻNICOWANIE ROZWOJU EKONOMICZNEGO POWIATÓW POLSKI WSCHODNIEJ

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4

BADANIE AUTOKORELACJI PRZESTRZENNEJ KRWIODAWSTWA W POLSCE

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD A

Analiza porównawcza rozwoju wybranych banków komercyjnych w latach

Natalia Nehrebecka. Zajęcia 4

ANALIZA PORÓWNAWCZA WYNIKÓW UZYSKANYCH ZA POMOCĄ MIAR SYNTETYCZNYCH: M ORAZ PRZY ZASTOSOWANIU METODY UNITARYZACJI ZEROWANEJ

MODELOWANIE LICZBY SZKÓD W UBEZPIECZENIACH KOMUNIKACYJNYCH W PRZYPADKU WYSTĘPOWANIA DUŻEJ LICZBY ZER, Z WYKORZYSTANIEM PROCEDURY KROSWALIDACJI

MIARY ZALEŻNOŚCI ANALIZA STATYSTYCZNA NA PRZYKŁADZIE WYBRANYCH WALORÓW RYNKU METALI NIEŻELAZNYCH

ZASTOSOWANIE METOD WAP DO OCENY POZIOMU PRZESTRZENNEGO ZRÓŻNICOWANIA ROZWOJU ROLNICTWA W POLSCE

OPTYMALNE STRATEGIE INWESTYCYJNE PODEJŚCIE FUNDAMENTALNE OPTIMAL INVESTMENT STRATEGY FUNDAMENTAL ANALYSIS

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. Strona 1

PRZESTRZENNE ZRÓŻNICOWANIE WYBRANYCH WSKAŹNIKÓW POZIOMU ŻYCIA MIESZKAŃCÓW MIAST ŚREDNIEJ WIELKOŚCI A SYSTEM LOGISTYCZNY MIASTA 1

Analiza i diagnoza sytuacji finansowej wybranych branż notowanych na Warszawskiej Giełdzie Papierów Wartościowych w latach

Statystyka. Zmienne losowe

PROGNOZOWANIE SPRZEDAŻY Z ZASTOSOWANIEM ROZKŁADU GAMMA Z KOREKCJĄ ZE WZGLĘDU NA WAHANIA SEZONOWE

ANALIZA PREFERENCJI SŁUCHACZY UNIWERSYTETU TRZECIEGO WIEKU Z WYKORZYSTANIEM WYBRANYCH METOD NIESYMETRYCZNEGO SKALOWANIA WIELOWYMIAROWEGO

STATYSTYKA REGIONALNA

WPŁYW PARAMETRÓW DYSKRETYZACJI NA NIEPEWNOŚĆ WYNIKÓW POMIARU OBIEKTÓW OBRAZU CYFROWEGO

Regionalne zróżnicowanie cen zbóż w Polsce w latach

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH

ANALIZA KORELACJI WYDATKÓW NA KULTURĘ Z BUDŻETU GMIN ORAZ WYKSZTAŁCENIA RADNYCH

Plan wykładu: Typowe dane. Jednoczynnikowa Analiza wariancji. Zasada: porównać zmienność pomiędzy i wewnątrz grup

Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej

Analiza przestrzenna rozwoju społeczeństwa informacyjnego w Polsce

Statystyka Opisowa 2014 część 2. Katarzyna Lubnauer

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Wpływ modernizacji gospodarki w sferze działalności proekologicznej na jakość środowiska naturalnego w Polsce w układzie regionalnym

W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 2(88)/2012

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

KONSTRUKCJA OPTYMALNYCH PORTFELI Z ZASTOSOWANIEM METOD ANALIZY FUNDAMENTALNEJ UJĘCIE DYNAMICZNE

Proces narodzin i śmierci

ZASTOSOWANIE WYBRANYCH ELEMENTÓW ANALIZY FUNDAMENTALNEJ DO WYZNACZANIA PORTFELI OPTYMALNYCH

Zastosowanie wielowymiarowej analizy porównawczej w doborze spó³ek do portfela inwestycyjnego Zastosowanie wielowymiarowej analizy porównawczej...

Egzamin ze statystyki/ Studia Licencjackie Stacjonarne/ Termin I /czerwiec 2010

BADANIE STABILNOŚCI WSPÓŁCZYNNIKA BETA AKCJI INDEKSU WIG20

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH

Kształtowanie się firm informatycznych jako nowych elementów struktury przestrzennej przemysłu

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Stanisław Cichocki. Natalia Nehrebecka. Wykład 7

65120/ / / /200

PROBLEMY ROLNICTWA ŚWIATOWEGO

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ Autor: Joanna Wójcik

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości

SYMULACJA KOMPUTEROWA NAPRĘŻEŃ DYNAMICZNYCH WE WRĘGACH MASOWCA NA FALI NIEREGULARNEJ

Natalia Nehrebecka. Zajęcia 3

Analiza modyfikacji systemów bonus-malus w ubezpieczeniach komunikacyjnych AC na przykładzie wybranego zakładu ubezpieczeń

STATECZNOŚĆ SKARP. α - kąt nachylenia skarpy [ o ], φ - kąt tarcia wewnętrznego gruntu [ o ],


O PEWNYM MODELU POZWALAJĄCYM IDENTYFIKOWAĆ K NAJBARDZIEJ PODEJRZANYCH REKORDÓW W ZBIORZE DANYCH KSIĘGOWYCH W PROCESIE WYKRYWANIA OSZUSTW FINANSOWYCH

WSKAŹNIK OCENY HIC SAMOCHODU OSOBOWEGO W ASPEKCIE BEZPIECZEŃSTWA RUCHU DROGOWEGO

PORÓWNANIE METOD PROSTYCH ORAZ METODY REGRESJI HEDONICZNEJ DO KONSTRUOWANIA INDEKSÓW CEN MIESZKAŃ

A C T A U N I V E R S I T A T I S N I C O L A I C O P E R N I C I EKONOMIA XXXIX NAUKI HUMANISTYCZNO-SPOŁECZNE ZESZTYT 389 TORUŃ 2009.

TAKSONOMICZNA ANALIZA ROZWOJU TRANSPORTU DROGOWEGO W POLSCE

PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE

Hipotezy o istotności oszacowao parametrów zmiennych objaśniających ˆ ) ˆ

Portfele zawierające walor pozbawiony ryzyka. Elementy teorii rynku kapitałowego

Propozycja modyfikacji klasycznego podejścia do analizy gospodarności

Natalia Nehrebecka. Wykład 2

KURS STATYSTYKA. Lekcja 1 Statystyka opisowa ZADANIE DOMOWE. Strona 1

Analiza struktury zbiorowości statystycznej

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013

5. OPTYMALIZACJA GRAFOWO-SIECIOWA

KOINCYDENTNOŚĆ MODELU EKONOMETRYCZNEGO A JEGO JAKOŚĆ MIERZONA WARTOŚCIĄ WSPÓŁCZYNNIKA R 2 (K)

Problemy jednoczesnego testowania wielu hipotez statystycznych i ich zastosowania w analizie mikromacierzy DNA

Evaluation of estimation accuracy of correlation functions with use of virtual correlator model

6. ROŻNICE MIĘDZY OBSERWACJAMI STATYSTYCZNYMI RUCHU KOLEJOWEGO A SAMOCHODOWEGO

STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU

) będą niezależnymi zmiennymi losowymi o tym samym rozkładzie normalnym z następującymi parametrami: nieznaną wartością 1 4

SZTUCZNA INTELIGENCJA

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2010, Oeconomica 280 (59), 13 20

Weryfikacja hipotez dla wielu populacji

WSHiG Karta przedmiotu/sylabus. Prawo pracy i ubezpieczeń społecznych. Studia stacjonarne 16 godz. Studia niestacjonarne 30 godz.

CHARAKTERYSTYKA PRZESTRZENNA ODCHYŁEK GEOMETRYCZNYCH WYZNACZANYCH W POMIARACH WSPÓŁRZĘDNOŚCIOWYCH POWIERZCHNI SWOBODNYCH

WPŁYW AKCESJI POLSKI DO UNII EUROPEJSKIEJ NA ROZWÓJ ROLNICTWA EKOLOGICZNEGO. Lidia Luty

MATERIAŁY I STUDIA. Zeszyt nr 286. Analiza dyskryminacyjna i regresja logistyczna w procesie oceny zdolności kredytowej przedsiębiorstw

Model oceny ryzyka w działalności firmy logistycznej - uwagi metodyczne

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada. Zajęcia 3

A C T A U N I V E R S I T A T I S L O D Z I E N S I S FOLIA OECONOMICA 293, 2013

WYBÓR PORTFELA PAPIERÓW WARTOŚCIOWYCH ZA POMOCĄ METODY AHP

Rachunek prawdopodobieństwa i statystyka W 11: Analizy zależnościpomiędzy zmiennymi losowymi Model regresji wielokrotnej

WYKORZYSTANIE SHIFT SHARE ANALYSIS W OPISIE ZMIAN STRUKTURY HONOROWYCH DAWCÓW KRWI W POLSCE

ANALIZA WYBRANYCH METOD OCENY SYSTEMÓW BONUS-MALUS

METODY PLANOWANIA EKSPERYMENTÓW. dr hab. inż. Mariusz B. Bogacki

OeconomiA copernicana 2013 Nr 3. Modele ekonometryczne w opisie wartości rezydualnej inwestycji

Analiza przestrzennych zmian regionalnego produktu krajowego brutto w Polsce w latach

Taksonomiczna ocena sytuacji finansowej gospodarstw domowych w Polsce w 2010 roku

Statystyka Inżynierska

Analiza korelacji i regresji

0 0,2 0, p 0,1 0,2 0,5 0, p 0,3 0,1 0,2 0,4

Próba wyjaśnienia regionalnego zróżnicowania międzypłciowej luki płacowej w Polsce

Klasyczne miary efektywności systemu bonus-malus

Transkrypt:

TUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 36 Katarzyna Zeug-Żebro * Unwersytet Ekonomczny w Katowcach ANALIZA PRZETRZENNA PROCEU TARZENIA IĘ POLKIEGO POŁECZEŃTWA TREZCZENIE Perwsze prawo geograf ekonomcznej sformułowane w 970 roku przez W. Toblera [Tobler, 979, s. 34 40], mówące o tym, że wszystko jest powązane ze sobą, ale obekty blższe są bardzej powązane nż odległe, dało początek badanom zwązanym z modelowanem przestrzennym. Powstałe metody okazały sę bardzo dobrym narzędzam, których zastosowane można obserwować, mędzy nnym, w analze regonalnej. Do najczęścej stosowanych należą mary autokorelacj przestrzennej, które obrazują zależność zmennych w odnesenu do lokalzacj przestrzennej. Korelacja przestrzenna pozwala stwerdzć, że naslene danego zjawska jest bardzej zauważalne w jednostkach sąsadujących nż w jednostkach od sebe odległych. Głównym celem artykułu jest badane zależnośc przestrzennej ndeksu starośc demografcznej w Polsce, mernkam globalnej lokalnej autokorelacj przestrzennej. Dane wykorzystane w analze pochodzą z Banku Danych Lokalnych GU-u. Wszystke oblczena oraz prezentowane mapy zostały wykonane w programe R CRAN. łowa kluczowe: autokorelacja przestrzenna, statystyk globalne lokalne, proces starzena sę społeczeństwa. * Adres e-mal: katarzyna.zeug-zebro@ue.katowce.pl.

44 METODY ILOŚCIOWE W EKONOMII Wprowadzene tarzene sę społeczeństwa, będące skutkem wydłużana sę ludzkego życa, mgracj zarobkowych obnżającej sę lczby narodzn, zmena zasadnczo strukturę ludnośc. Tempo zman relacj lczby osób w weku poprodukcyjnym (65+) do lczby osób w weku przedprodukcyjnym (0 7) jest coraz szybsze. Zjawsko starzena sę ludnośc jest obecne jednym z stotnejszych problemów gospodarczych ne tylko w Polsce, ale równeż na całym śwece. twarza, ono szanse stawa wyzwana, które należy zrozumeć, aby umeć m sprostać. Analza tego procesu może zatem posłużyć do wyznaczana właścwych kerunków zman, zwązanych na przykład z prowadzenem poltyk prorodznnej. W artykule przeprowadzono analzę zależnośc przestrzennej ndeksu starośc demografcznej dla aktualnego podzału Polsk na województwa powaty w latach 003 0. Badana oparto na mernkach globalnej lokalnej autokorelacj przestrzennej. Dane wykorzystane w analzach pozyskano z Banku Danych Lokalnych GU-u [www.stat.gov.pl]. Oblczena przeprowadzono przy użycu programu R Cran paketu Mcrosoft Excel.. Zmany ndeksu starośc demografcznej w Polsce w latach 003 0 Od czasu transformacj systemu gospodarczego w Polsce można zauważyć znaczny spadek przyrostu naturalnego ludnośc oraz naslene procesu starzena sę społeczeństwa. Współczynnk starośc demografcznej (rysunek ), oblczony jako stosunek lczby osób w weku poprodukcyjnym do osób ogółem, w 995 roku wynosł 3,77% wskazywał na starość demografczną polskego społeczeństwa [Rosset, 959]. W cągu kolejnych lat współczynnk ten wzrastał w 0 roku osągnął pozom 7,8%. Podobne przedstawa sę sytuacja w przypadku pozomu ndeksu starośc demografcznej (stosunek lczby osób w weku poprodukcyjnym do lczby osób w weku przedprodukcyjnym). Na poczatku rozważanego okresu ndeks ten wynosł zaledwe 49,95%, a w 0 roku osągnął już pozom 97,09% nadal rośne.

KATARZYNA ZEUG-ŻEBRO ANALIZA PRZETRZENNA PROCEU TARZENIA IĘ POLKIEGO POŁECZEŃTWA 443 Rysunek. Współczynnk starośc demografcznej w Polsce w latach 995 003 Źródło: opracowane własne. Rysunek. Zestawene lczby ludnośc w weku przedprodukcyjnym poprodukcyjnym oraz ndeks starośc demografcznej w Polsce w latach 995 003 000000 0000000 8000000 6000000 4000000 000000 0 Lczba ludno c w weku przedprodukcyjnym poprodukcyjnym w Polsce 995 997 999 00 003 005 007 009 0 Indeks starośc ro c w Polsce w latach 995 0 995-0 0% 00% 80% 60% 40% 0% 0% 99499699800000004006008000 przedprodukcyjnym poprodukcyjnym ndeks staro c Źródło: opracowane własne. Proces starzena ludnośc jest zjawskem weloaspektowym, na który wpływ ma, mędzy nnym, demografczny przestrzenny charakter jednostek [Kurek, 008]. Na mapach na rysunku 3 można zauważyć stotne różnce mędzy wartoścam ndeksu starośc demografcznej w poszczególnych województwach powatach. Taka sytuacja może śwadczyć o stotnej zależnośc procesu starzena sę społeczeństwa od rozmeszczena przestrzennego badanych jednostek.

444 METODY ILOŚCIOWE W EKONOMII Rysunek 3. Indeks starośc demografcznej w województwach (w latach 003 0 ) powatach (0) w Polsce Źródło: opracowane własne.

KATARZYNA ZEUG-ŻEBRO ANALIZA PRZETRZENNA PROCEU TARZENIA IĘ POLKIEGO POŁECZEŃTWA 445 Grafczna prezentacja pozwala wyodrębnć województwa o zdecydowane najwyższym najnższym ndekse starośc. W roku 003 najnższą wartość tego ndeksu (z przedzału od 50% do 60 %) zaobserwowano w województwach: lubuskm, podkarpackm, pomorskm, welkopolskm warmńsko-mazurskm, a najwyższą (80 90%) w łódzkm mazoweckm. W roku 0 sytuacja uległa wyraźnej zmane. Do województw z najnższym wskaźnkem starośc (80 90%) dołączyło województwo małopolske, a z najwyższą wartoścą tego ndeksu (0 0%) do województwa łódzkego dołączyły opolske śląske. Na mapach można dostrzec równeż sąsadujące województwa powaty o podobnych wartoścach ndeksu starośc demografcznej lub stotne różne.. tatystyk przestrzenne Metody statystyk przestrzennej służą, mędzy nnym, do dentyfkacj wzorców zależnośc przestrzennej. Testowane występowana zależnośc sprowadza sę do weryfkacj hpotezy o stnenu autokorelacj przestrzennej w danych przestrzenne zlokalzowanych. Ocena autokorelacj przestrzennej wymaga wedzy na temat stopna specyfk różnorodnośc przestrzennej, czyl o zróżncowanu cech poszczególnych mejsc regonów geografcznych. W statystyce przestrzennej szacuje sę dwa typy mar autokorelacj przestrzennej: mary globalne mary lokalne. Globalna autokorelacja wynka z stnena korelacj w obrębe całej badanej jednostk przestrzennej, mary lokalne zaś wykazują zależnośc przestrzenne danej zmennej z jednostkam sąsadującym w konkretnej lokalzacj. Do najczęścej wykorzystywanych mar globalnych należą: statystyka I Morana [Moran, 950, s. 7 3] oraz statystyka C Geary ego [Geary, 954, s. 5 45]. Do mar lokalnych należą: wskaźnk LIA [Anseln, 995, s. 93 5] (lokalna statystyka Morana I Geary egoc ) oraz lokalna statystyka Getsa-Orda G [Gets, Ord, 99, s. 89 06]. Autokorelacja przestrzenna występuje w przypadku, gdy określone zjawsko w jednej jednostce przestrzennej wpływa na zmanę prawdopodobeństwa wystąpena tego zjawska w jednostkach sąsednch [Bvand, 980, s. 3 38]. W ujęcu ogólnym dodatna autokorelacja przestrzenna zachodz wówczas, gdy obserwujemy przestrzenne gromadzene sę, w sense lokalzacj, wysokch lub nskch wartośc obserwowanych zmennych. W przypadku ujemnej autokorelacj wysoke wartośc

446 METODY ILOŚCIOWE W EKONOMII sąsadują z nskm, a nske z wysokm, tworząc pewnego rodzaju szachowncę [ucheck, 00]. Brak autokorelacj przestrzennej oznacza przestrzenną losowość, zatem wartośc wysoke nske obserwowanych zmennych są rozmeszczone nezależne... Wybrane statystyk globalne Globalna statystyka Morana Jedną z najczęścej stosowanych statystyk w badanu autokorelacj przestrzennej jest globalna statystyka I Morana zdefnowana następująco: n n j = j= = ( )( ) n wj x x xj x T = j= n z Wz I = = n n n T 0 z z w x x ( ) gdze: x, x j wartośc zmennych w jednostce przestrzennej oraz j, x średna arytmetyczna wartośc zmennej dla wszystkch jednostek, n lczba wszystkch jednostek przestrzennych uwzględnonych w badanu, 0 suma wszystkch elementów macerzy wag, z wektor kolumnowy o elementach z = x x, W macerz wag przestrzennych stopna n, defnującą strukturę sąsedztwa, w element zero-jedynkowy macerzy wag W: j, gdy jednostka -ta jest sąsadem s adem j j-ej jednostk, wj 0, gdy jednostka -ta ne jest s adem sąsadem j j-ej jednostk, () 0, gdy j-elementy dagonalne macerzy A.D. Clff J.K. Ord [Clff, Ord, 973] udowodnl, że rozkład statystyk Morana jest asymptotyczne normalny. Istotność statystyczna autokorelacj przestrzennej I ~ N 0, : może być zatem zweryfkowana za pomocą unormowanej statystyk ( ) ( ) ( I ) () I E I I = (3) Var

KATARZYNA ZEUG-ŻEBRO ANALIZA PRZETRZENNA PROCEU TARZENIA IĘ POLKIEGO POŁECZEŃTWA 447 gdze: E( I ) wartość oczekwana statystyk Morana, Var I jej warancja: ( ) E n ( I ) = Var ( I ) n n + 30 = ( n ) 0 ( n ) (4) 0 n n n n = wj, ( ) = wj + wj = j=, = j= n n n j j (5) = j= j= = w + w Jeżel statystyka Morana ma wartośc I, I 0, mów sę o braku n autokorelacj, natomast gdy, I > I > 0, mamy do czynena z autokorelacją n dodatną, a dla, I < I < 0 występuje zjawsko autokorelacj ujemnej. n Globalna statystyka Geary ego Kolejną marą globalnej autokorelacj przestrzennej jest statystyka Geary ego C. tatystkę tę wyraża sę wzorem: n n ( n ) wj ( x xj ) T = j= n n z dag. n n n T ( ) ( n ) 0 wj x x z z = j= = ( w ) z C = = I gdze wszystke elementy wzoru zdefnowano w statystyce I. Wdać, że mara Geary ego daje sę wyrazć za pomocą statystyk Morana [Grffth, 003]. Mmo że mary Morana Geary ego dają podobne rezultaty, efektywnejsza jest statystyka Morana. Wynka to z wększej wrażlwość warancj statystyk Geary- ego na rozkład próby. Gdy macerz wag jest nesymetryczna, wartośc tej statystyk mogą być zaburzone. Podobne jak w przypadku statystyk Morana do weryfkacj hpotezy o braku stotnej korelacj przestrzennej można wykorzystać standaryzację mary Geary ego: ( ) ( C) (6) C E C C = ~ N( 0,) (7) Var

448 METODY ILOŚCIOWE W EKONOMII gdze: E( C ) wartość oczekwana statystyk Geary ego, Var C jej warancja: ( ) E( C ) = Var( C) = ( )( ) ( n+ ) n + 4 0 Wartość statystyk Geary ego jest zawsze dodatna należy do przedzału 0,. Jeżel < C < C > 0, można mówć o autokorelacj ujemnej; 0 < C < C < 0 występuje autokorelacja dodatna; C, C 0 oznacza brak autokorelacj przestrzennej. 0 (8).. tatystyka lokalna Morana W welu przypadkach do dentyfkacj układów przestrzennych wykorzystuje sę lokalne wskaźnk zależnośc przestrzennej. Najczęścej stosowanym maram są zaproponowane przez L. Anselna [Anseln, 995, s. 93 5] mernk LIA (Local Indcators of patal Assocaton). W skład LIA wchodz, mędzy nnym, lokalna statystyka Morana I. Za pomocą lokalnej statystyk Morana wyznacza sę skupska jednostek przestrzennych merzy, czy jednostka jest otoczona przez jednostk sąsedzke o podobnych lub różnych wartoścach badanej zmennej w stosunku do losowego rozkładu tych wartośc w badanej przestrzen [Kopczewska, 006]. W przypadku nestandaryzowanych wartośc zmennej standaryzowanej werszam macerzy wag [Arba, 006] ( n n = j= w j = n), lokalna mara Morana ma postać: ( x x) I = x x wj xj x j= = n gdze wszystke elementy wzoru zdefnowano w statystyce I. ( ) n n ( ) (9) W roku 995 L. Anseln [Anseln, 995, s. 93 5] w celu testowana stotnośc lokalnej autokorelacj przestrzennej przedstawł standaryzowaną postać lokalnej statystyk Morana:

KATARZYNA ZEUG-ŻEBRO ANALIZA PRZETRZENNA PROCEU TARZENIA IĘ POLKIEGO POŁECZEŃTWA 449 I ( I) ( I ) I E = ~ N( 0,) (0) Var gdze: E( I ) wartość oczekwana lokalnej statystyk Morana, Var I jej warancja: E ( I ) gdze ( ) n j= w j = n n k = n Var( I ) ( x x) ( x x) 4 ( ) j ( ) n k w k n wlw w h j j l h j = + n ( n )( n ) n. Autokorelacja ujemna występuje wówczas, gdy standaryzowana statystyka lokalna Morana przyjmuje wartośc ujemne, czyl gdy obekt jest otoczony przez jednostk przestrzenne o znacząco różnych wartoścach badanej zmennej. O dodatnej autokorelacj przestrzennej klastrowanu jednostek przestrzennych mów sę wtedy, gdy statystyka ta ma wartośc dodatne (obekt jest otoczony przez podobne jednostk sąsedzke). () 3. Przedmot przebeg badana Badanu poddano dane dotyczące ludnośc dla aktualnego podzału terytoralnego Polsk na województwa powaty w latach 003 0. Dane te uzyskano z Banku Danych Lokalnych GU-u. W perwszym etape badań wyznaczono wartośc ndeksu starośc demografcznej dla województw powatów. Następne określono macerze wag przestrzennych według kryterum wspólnej grancy. W kolejnym kroku dokonano analzy przestrzennej ndeksu starośc w ujęcu wojewódzkm. Oblczone wartośc globalnych statystyk Morana Geary ego przedstawono w tabel.

450 METODY ILOŚCIOWE W EKONOMII Tabela. Wartośc statystyk globalnych Morana Geary ego dla ndeksu starośc demografcznej w Polsce w ujęcu wojewódzkm Rok tatystyka globalna Morana tatystyka globalna Geary ego I E (C) Var (C) p-value C E (C) Var (C) p-value 003 0,306 0,0667 0,0343 0,06 0,7655,0000 0,04 0,0586 004 0,553 0,0667 0,0379 0,084 0,739,0000 0,037 0,0406 005 0,755 0,0667 0,0399 0,036 0,769,0000 0,035 0,09 006 0,89 0,0667 0,0398 0,008 0,6977,0000 0,034 0,06 007 0,97 0,0667 0,0399 0,0094 0,6864,0000 0,034 0,079 008 0,3004 0,0667 0,0396 0,0089 0,68,0000 0,034 0,065 009 0,874 0,0667 0,0396 0,03 0,7000,0000 0,035 0,04 00 0,808 0,0667 0,039 0,03 0,706,0000 0,036 0,047 0 0,640 0,0667 0,038 0,06 0,708,0000 0,037 0,0309 0 0,49 0,0667 0,0384 0,08 0,743,0000 0,037 0,045 Źródło: opracowane własne. Na podstawe danych zawartych w tabel można stwerdzć, że wartośc statystyk globalnej Morana dla badanego okresu mają wartośc stotne wększe od wartośc oczekwanej tej statystyk, co wskazuje na dodatną autokorelację przestrzenną. Wnosek o dodatnej autokorelacj przestrzennej potwerdzają równeż uzyskane wartośc statystyk globalnej Geary ego (0 < C < ). W analzowanym przypadku występuje zatem tendencja do skupana jednostek o podobnej wartośc ndeksu starzena w sąsedztwe. Wzrost wartośc statystyk globalnej Morana mędzy 003 rokem a 008 rokem nformuje o zachodzącym procese wzmacnana zależnośc przestrzennej, a spadek w latach 008 0 o jej osłabenu. Grafczną prezentację statystyk Morana dla początkowego końcowego okresu przedstawono na rysunku 4. Na wykresach wyróżnono województwa o odstających wartoścach ndeksu starośc. W roku 003 było to tylko województwo łódzke, natomast w 0 roku pojawły sę dodatkowo dwa województwa: zachodnopomorske oraz warmńsko-mazurske. Dla punktów (województw) znajdujących sę ponżej ln regresj, wartośc wskaźnka starośc przewyższają wartośc ndeksu starośc w sąsedzkch regonach znaczne bardzej, nż by to wynkało z ogólnego wzorca przestrzennego. Regony te nazywa sę hot spots.

KATARZYNA ZEUG-ŻEBRO ANALIZA PRZETRZENNA PROCEU TARZENIA IĘ POLKIEGO POŁECZEŃTWA 45 Rysunek 4. Wykresy statystyk globalnej Morana dla lat 003 0 Źródło: opracowane własne. Istotne, w województwe łódzkm obserwuje sę wyższą wartość ndeksu starośc (86,3% w 003 roku ) nż w województwach sąsednch: kujawsko-pomorskm (6,84%), mazoweckm (80,46%), śwętokrzyskm (76,6%), śląskm (75,3%), opolskm (74,77%) welkopolskm (59, 8%). W 0 roku do regonów hot spots zalczono województwa łódzke zachodnopomorske, zaś województwo warmńsko-mazurske otoczone jest regonam o ndekse starośc relatywne wyższym od średnej wartośc ndeksu starośc dla całego kraju. Dotychczas przeprowadzone badana pozwolły jedyne na ogólną charakterystykę autokorelacj przestrzennej. W celu uzyskana bardzej szczegółowych nformacj w kolejnym kroku analzy wyznaczono dla każdego województwa lokalną statystykę Morana. Uzyskane wartośc tej statystyk przedstawono w tabel. Pogrubone wartośc w tabel oznaczają stotne wartośc statystyk lokalnej Morana.

45 METODY ILOŚCIOWE W EKONOMII Tabela. Wartośc statystyk lokalnych Morana dla województw w latach 003 0 Województwo 003 004 005 006 007 008 009 00 0 0 Łódzke 0,70 0,75 0,70 0,74 0,744 0,733 0,696 0,700 0,704 0,665 Śwętokrzyske 0,46 0,445 0,433 0,40 0,376 0,349 0,4 0,403 0,367 0,37 Welkopolske 0,045 0,050 0,050 0,069 0,088 0,0 0,090 0,3 0,65 0, Kujawsko-pomorske 0,06 0,060 0,096 0,0 0,3 0,54 0,69 0,7 0,69 0,8 Małopolske 0,064 0,079 0,094 0,3 0,36 0,58 0,0 0,38 0,74 0,38 Dolnośląske 0,367 0,36 0,77 0,5 0,77 0,4 0,44 0,40 0,9 0,7 Lubelske 0,07 0,093 0,087 0,068 0,05 0,043 0,057 0,053 0,036 0,07 Lubuske 0,33 0,65 0,86 0,78 0,7 0,68 0,45 0,05 0,44 0,089 Mazowecke 0,9 0,4 0,0 0,69 0,43 0,3 0,39 0,0 0,094 0,064 Opolske 0,467 0,590 0,68 0,796 0,88 0,945 0,804 0,833 0,870 0,88 Podlaske 0,009 0,000 0,00 0,05 0,040 0,057 0,074 0,06 0,067 0,067 Pomorske 0,963 0,999,04,040,04,04,084,055,04,00 Śląske 0,6 0,74 0,843 0,94 0,979,03,059,05,085,05 Podkarpacke 0,36 0,96 0,77 0,40 0, 0,85 0,6 0,38 0,8 0,98 Warmńsko-mazurske 0,09 0,063 0,9 0,68 0,5 0,49 0,76 0,350 0,403 0,457 Zachodnopomorske 0,583 0,6 0,64 0,60 0,570 0,539 0,48 0,400 0,7 0,38 Boldem oznaczono stotne wartośc statystyk lokalnej Morana. Źródło: opracowane własne. W latach 003 0 lokalna statystyka Morana dla województw łódzkego pomorskego jest stotna wększa od zera, co oznacza, że województwa te są otoczone przez regony o znacząco podobnych wartoścach ndeksu starośc demografcznej. Podobną sytuację można zauważyć w przypadku województwa śląskego (w latach 004 0) opolskego (w latach 005 0). Województwa te określa sę manem klastrów. W kolejnym kroku badań przeprowadzono analzę przestrzenną ndeksu starośc w Polsce z uwzględnenem podzału na powaty. Oblczena wykonano tylko dla danych pochodzących z 0 roku. Wartośc globalnych statystyk Morana Geary ego w ujęcu powatowym przedstawono w tabel 3.

KATARZYNA ZEUG-ŻEBRO ANALIZA PRZETRZENNA PROCEU TARZENIA IĘ POLKIEGO POŁECZEŃTWA 453 Rok Tabela 3. Wartośc statystyk globalnych Morana Geary ego dla ndeksu starośc demografcznej w Polsce w ujęcu powatowym tatystyka globalna Morana tatystyka globalna Geary ego I E (C) Var (C) p-value C E (C) Var (C) p-value 0 0,489 0,007 0,00 0,08 0,84,0000 0,009 0,00 Źródło: opracowane własne. Rysunek 5. Wykres statystyk globalnej Morana w ujęcu powatowym Źródło: opracowane własne. Rezultaty przedstawone w tabel 3 wskazują na pozytywna autokorelację przestrzenną powatów. Dla dowolne wybranego powatu można zatem przyjąć, że ndeks starośc w jednostkach sąsednch przyjmuje podobną wartość. Na wykrese punktowym wyznaczonym dla globalnej statystyk Morana w ujęcu powatowym (rysunek 5) można zauważyć, że powaty tczewsk, masta: Koszaln, Łomża, opot, łupsk, Łódź, Śwnoujśce są jednostkam hot spots. Powaty: łódzk wschodn, zambrowsk, chojnck, masta: łupsk, Jelena Góra, osnowec,

454 METODY ILOŚCIOWE W EKONOMII Katowce, Opole, Częstochowa otoczone są jednostkam o ndekse starośc relatywne wyższym od średnej wartośc ndeksu starośc dla całego kraju. Następnym krokem w analze przestrzennej ndeksu starośc w ujęcu powatowym było wyznaczene lokalnych statystyk Morana. Powaty, dla których te statystyk były stotne, zaznaczono na rysunku 6. Rysunek 6. Wykres lokalnych stotnych statystyk Morana Źródło: opracowane własne. Jednostk terytoralne zaznaczone na mape najcemnejszym kolorem to klastry, gdyż są otoczone przez powaty o znacząco podobnych wartoścach ndeksu starośc. Jednostk zaznaczone jaśnejszym odcenem koloru szarego to outlersy, czyl powaty otoczone przez jednostk o znacząco różnych wartoścach wskaźnka starośc demografcznej. Podsumowane Przeprowadzone analzy zależnośc przestrzennej zjawska starzena sę społeczeństwa polskego wskazują na stnene dodatnej autokorelacj przestrzennej, czyl tworzene sę skupsk jednostek terytoralnych (klastrów) o podobnych war-

KATARZYNA ZEUG-ŻEBRO ANALIZA PRZETRZENNA PROCEU TARZENIA IĘ POLKIEGO POŁECZEŃTWA 455 toścach ndeksu starośc. W układze przestrzennym najwyższym stanem zaawansowana staroścą demografczną (merzoną ndeksem starośc) w latach 003 0 charakteryzowały sę obszary Polsk środkowej, wschodnej połudnowej, natomast zeme zachodne północne były młodsze demografczne. Ostatne lata pokazały, że metody przestrzenne są coraz częścej wykorzystywane w analzach procesów ekonomcznych [Wolny-Domnak, Zeug-Żebro, 0, s. 99 998]. Wynka to, mędzy nnym, z faktu, że lokalne globalne mary autokorelacj przestrzennej, nformując o rodzaju sle zależnośc przestrzennej, umożlwają pełnejsze nż tradycyjne stosowane mary, określene zwązków mędzy jednostkam odnesena oraz określene struktur przestrzennych [Janc, 006, s. 76 83]. Dodatkowy wpływ na to ma równeż szybk rozwój oprogramowana oferującego procedury oblczenowe z zakresu statystyk ekonometr przestrzennej. Efekty tego rozwoju można obserwować, mędzy nnym, w programe R CRAN w paketach {spdep} (Bvand 003) {maptools}. Lteratura Anseln L. (995), Local Indcators of patal Assocaton-LIA, Geographcal Analyss 7. Arba G. (006), patal Econometrcs: tatstcal Foundatons and Applcatons to Regonal Growth Convergence, prnger, New York. Bvand R. (980), Autokorelacja przestrzenna a metody analzy statystycznej w geograf, w: red. Z. Chojnck, Analza regresj geograf, PWN, Poznań. Bvand R. (003), patal Econometrcs Functons n R: Classes and Methods, Journal of Geographcal ystem, Vol. 4. Clff A.D., Ord J.K. (973), patal Autocorrelaton, Pon, London. Geary R. (954), The Contguty Rato and tatstcal Mappng, The Incorporated tatstcan 5. Gets A., Ord J.K. (99), The Analyss of patal Assocaton by Use of Dstance tatstcs, Geographcal Analyss 4. Grffth D.A. (003), patal Autocorrelatons and patal Flterng, prnger, Berln-Hedelberg. Janc K. (006), Zjawsko autokorelacj przestrzennej na przykładze statystyk I Morana oraz lokalnych wskaźnków zależnośc przestrzennej (LIA) wybrane zagadnena metodyczne, w: red. T. Komornck, T. Podgórsk, Idee praktyczny unwersalzm geograf. Dokumentacja Geograf czna 33.

456 METODY ILOŚCIOWE W EKONOMII Kopczewska K. (006), Ekonometra statystyka przestrzenna z wykorzystanem programu R CRAN, Cedewu.pl, Warszawa. Kurek. (008), Typologa starzena sę ludnośc Polsk w ujęcu przestrzennym, Wydawnctwo Naukowe Akadem Pedagogcznej, Kraków. Moran P.A.P. (950), Notes on Contnuous tochastc Phenomena, Bometrka 37 (), s. 7 3. Rosset E. (959), Proces starzena sę ludnośc, PWE, Warszawa. ucheck B. (red.) (00), Ekonometra przestrzenna. Metody modele analzy danych przestrzennych. Wydawnctwo C.H. Beck, Warszawa. Tobler W. (970), A Computer Model mulatng Urban Growth n Detrot Regon, Economc Geography 46(). Wolny-Domnak A., Zeug-Żebro K. (0), patal tatstcs n the Analyss of County Budget Incomes n Poland wth the R CRAN, w: red. J. Ramk, D. tavárek, Proceedngs of 30 th Internatonal Conference Mathematcal Methods n Economcs. Karvná: lesan Unversty, chool of Busness Admnstraton. PATIAL ANALYI OF AGING THE POLIH OCIETY Abstract The frst law of geography formulated by W. Tobler n 970, whch says that everythng s related, but near objects are more related than dstant ones, spatal modelng has become an mportant research area. The methods whch were developed proved to be excellent tools whch can also be used n regonal analyss. The most common are measures of spatal autocorrelatons, whch show the dependence of varables n respect of spatal localzaton. patal correlaton allows to determne that ntensfcaton of a gven phenomenon s more percevable n neghborng unts than n unts dstant from each other. The man objectve of ths paper s to study the spatal dependences of demographc agng ndex usng measures of global and local spatal autocorrelaton. The data used n analyss come from the Local Data Bank of the Central tatstcal Offce. All calculatons and presented maps were made n the R CRAN. Translated by Katarzyna Zeug-Żebro Keywords: spatal autocorrelaton, global and local statstcs, the process of agng. Kod JEL: J4, C44.