Dynamika. Fizyka I (Mechanika) Wykład IV: Rozwiazywanie równań ruchu ruch w jednorodnym polu elektrycznym i magnetycznym Dynamika ruchu po okręgu

Podobne dokumenty
Prawa ruchu: dynamika

Opory ruchu. Fizyka I (B+C) Wykład XII: Tarcie. Ruch w ośrodku

Prawa ruchu: dynamika

Prawa ruchu: dynamika

Mechanika ruchu obrotowego

Prawa ruchu: dynamika

Dynamika: równania ruchu

Dynamika. Fizyka I (Mechanika) Wykład VI:

Prawa ruchu: dynamika

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Fizyka 4. Janusz Andrzejewski

Fizyka 1- Mechanika. Wykład 4 27.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Kinematyka: opis ruchu

Mechanika ośrodków ciagłych

Kinematyka: opis ruchu

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

Prawa ruchu: dynamika

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka

Mechanika ośrodków ciagłych

Zasada zachowania energii

Tarcie poślizgowe

Bryła sztywna. Wstęp do Fizyki I (B+C) Wykład XIX: Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Zasady zachowania. Fizyka I (Mechanika) Wykład VI:

Prawa ruchu: dynamika

Podstawy fizyki sezon 1 II. DYNAMIKA

Podstawy fizyki sezon 1 II. DYNAMIKA

Bryła sztywna. Fizyka I (B+C) Wykład XXI: Statyka Prawa ruchu Moment bezwładności Energia ruchu obrotowego

Mechanika ośrodków ciagłych

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.

Zasada zachowania energii

Kinematyka: opis ruchu

Wykład FIZYKA I. 3. Dynamika punktu materialnego. Dr hab. inż. Władysław Artur Woźniak

8. OPORY RUCHU (6 stron)

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:

Dynamika. Fizyka I (Mechanika) Wykład V: Prawa ruchu w układzie nieinercjalnym siły bezwładności

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

1.6. Ruch po okręgu. ω =

STATYKA I DYNAMIKA PŁYNÓW (CIECZE I GAZY)

Kinematyka: opis ruchu

DYNAMIKA SIŁA I JEJ CECHY

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Zasada bezwładności. Isaac Newton

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski

Fizyka 1- Mechanika. Wykład 9 1.XII Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

WYDZIAŁ LABORATORIUM FIZYCZNE

Zderzenia. Fizyka I (B+C) Wykład XVI: Układ środka masy Oddziaływanie dwóch ciał Zderzenia Doświadczenie Rutherforda

Oddziaływania te mogą być różne i dlatego można podzieli je np. na:

Jaki musi być kąt b, aby siła S potrzebna do wywołania poślizgu była minimalna G S

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko

Dynamika: układy nieinercjalne

D Y N A M I K A Na początek kilka powodów dla których warto uczyć się dynamiki:

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY

Ruch drgajacy. Drgania harmoniczne. Drgania harmoniczne... Drgania harmoniczne... Notatki. Notatki. Notatki. Notatki. dr inż.

Zasada zachowania energii

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Fizyka 11. Janusz Andrzejewski

DYNAMIKA dr Mikolaj Szopa

Fizyka 12. Janusz Andrzejewski

Zasady dynamiki Isaak Newton (1686 r.)

Zasady dynamiki Newtona

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów

Podstawy fizyki sezon 1 VII. Ruch drgający

Ruch pod wpływem sił zachowawczych

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

IV.4.4 Ruch w polach elektrycznym i magnetycznym. Siła Lorentza. Spektrometry magnetyczne

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa

MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu

Podstawy fizyki sezon 1 V. Pęd, zasada zachowania pędu, zderzenia

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr

Fizyka 1(mechanika) AF14. Wykład 3

Podstawy fizyki sezon 1 IV. Pęd, zasada zachowania pędu

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności

PLAN REALIZACJI MATERIAŁU NAUCZANIA FIZYKI W GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH

Politechnika Poznańska Wydział Inżynierii Zarządzania. Wprowadzenie do techniki tarcie ćwiczenia

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści

WYMAGANIA EDUKACYJNE Z FIZYKI

MECHANIKA 2. Teoria uderzenia

Drgania. O. Harmoniczny

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

Fizyka Podręcznik: Świat fizyki, cz.1 pod red. Barbary Sagnowskiej. 4. Jak opisujemy ruch? Lp Temat lekcji Wymagania konieczne i podstawowe Uczeń:

DRGANIA OSCYLATOR HARMONICZNY

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z FIZYKI KLASA II

SZCZEGÓŁOWE CELE EDUKACYJNE

FALOWA I KWANTOWA HASŁO :. 1 F O T O N 2 Ś W I A T Ł O 3 E A I N S T E I N 4 D Ł U G O Ś C I 5 E N E R G I A 6 P L A N C K A 7 E L E K T R O N

Podstawy fizyki wykład 4

[ ] ρ m. Wykłady z Hydrauliki - dr inż. Paweł Zawadzki, KIWIS WYKŁAD WPROWADZENIE 1.1. Definicje wstępne

MECHANIKA II. Praca i energia punktu materialnego

Kinematyka, Dynamika, Elementy Szczególnej Teorii Względności

ARKUSZ PRÓBNEJ MATURY Z OPERONEM FIZYKA I ASTRONOMIA

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.

Transkrypt:

Dynamika Fizyka I (Mechanika) Wykład IV: Rozwiazywanie równań ruchu ruch w jednorodnym polu elektrycznym i magnetycznym Dynamika ruchu po okręgu Siły sprężyste Opory ruchu

Równania ruchu Podstawowym zagadnieniem dynamiki jest rozwiazywanie równań ruchu, czyli określanie ruchu ciała ze znajomości działajacych na nie sił. Siła działajaca na ciało może zależeć od położenia i prędkości czastki oraz czasu równanie ruchu: m d2 r(t) dt 2 = F( r, v, t) Ogólne rozwiazanie ma sześć stałych całkowania: r = r (t, C 1, C 2,..., C 6 ) Aby ściśle określić ruch ciała musimy poza rozwiazaniem równań ruchu wyznaczyć wartości wolnych parametrów (w ogólnym przypadku sześciu) Najczęściej dokonujemy tego określajac warunki poczatkowe: r 0 = r (t 0 ) v 0 = v (t 0 ) t 0 ¹ ÛÝ Ö Ò Û Ð ÔÓÞ Ø ÓÛ A.F.Żarnecki Wykład IV 1

Rówanania ruchu Pole elektryczne Stałe jednorodne pole elektryczne E = (0, E,0) W chwili t 0 = 0 w punkcie r 0 = (0,0,0) w pole wlatuje z prędkościa v 0 = (v 0,0,0) czastka o masie m i ładunku Q F E = Q E Równania ruchu: m d2 x dt 2 = 0 m d2 y dt 2 = Q E Całkowanie + warunki poczatkowe x(t) = v 0 t y(t) = Q E 2m t2 równanie toru: y = Q E 2mv0 2 Kat odchylenia: x 2 tan θ = dy = Q E L dx x=l m v0 2 A.F.Żarnecki Wykład IV 2

Rówanania ruchu Pole magnetyczne Stałe jednorodne pole B = (0,0, B) W chwili t 0 = 0 w punkcie r 0 = (0,0,0) w pole wlatuje z prędkościa v 0 = (0, v 0,0) czastka o masie m i ładunku Q F B = Q v B ÄÓÖ ÒÞ Z definicji iloczynu wektorowego i x i y i z m d2 r dt 2 = Q dx dy dz dt dt dt 0 0 B Układ dwóch równań: m d2 x dt 2 = Q B dy dt m d2 y dx = Q B dt2 dt Całkujac pierwsze równanie m dx = Q B (y y c ) dt d2 ( ) y Q B 2 dt 2 = (y y c ) m A.F.Żarnecki Wykład IV 3

Rówanania ruchu Pole magnetyczne Otrzymujemy równania ruchu: d 2 y dt 2 = ω2 (y y c Ó ÝÐ ØÓÖ ) dx = ω (y y c ) ω = Q B dt m ruch po okręgu ω - częstość cyklotronowa y V Q F B r Rozwiazanie: x = r sin(ωt + φ 0 ) + x c y = r cos(ωt + φ 0 ) + y c gdzie r - promień cyklotronowy: r = m v 0 Q B Z warunków poczatkowych ( r(0) = r 0 i v(0) = v 0 ): x = r (1 cos ωt) y = r sin ωt B x Ruch w polu magnetycznym jest jednostajny: v = const r = m v Q B = p Q B A.F.Żarnecki Wykład IV 4

Rówanania ruchu W fizyce czastek pole magnetyczne powszechnie wykorzystywane jest do pomiaru pędu czastek. Wszystkie długożyciowe czastki naładowane maja ładunek ±1e... Komora pęcherzykowa w CERN Detektor CDF w Fermilab A.F.Żarnecki Wykład IV 5

Rówanania ruchu Pole magnetyczne W ogólnym przypadku prędkość czastki V nie musi być prostopadła do wektora indukcji pola magnetycznego B. Jednak siła Lorenza zawsze prostopadła do B na kierunku równoległym do pola znika! W kierunku wektora pola ruch czastki jest ruchem jednostajnym. W ogólnym przypadku torem ruchu jest spirala. A.F.Żarnecki Wykład IV 6

Rówanania ruchu Pole magnetyczne Odchylenie czastki przelatujacej przez waski obszar jednorodnego pola zakładamy ωt 1: x y r r ωt [( 1 (ωt)2 2 ) 1 ] = x2 2 r Kat odchylenia: tan θ = dy = L dx x=l r = Q B L m v 0 A.F.Żarnecki Wykład IV 7

Rówanania ruchu Spektroskop Thomsona (1913) Czastki przelatuja przez obszar jednorodnych pól E i B E B Pozycja czastki na ekranie d L y e d tan θ B = Q B L d m v 0 z e d tan θ E = Q E L d m v 2 0 z e = m Q Czastki o róznych v 0 układaja się na parabolach odpowiadajacych ich m Q separacja izotopów o różnych masach - spektroskopia masowa E B 2 L d y2 e A.F.Żarnecki Wykład IV 8

Rówanania ruchu Selektor prędkości z Czastka w skrzyżowanych jednorodnych polach E B B V E y V<V o x V=V o F E F B = Q E = Q v B Dla prędkości V 0 = E B wypadkowa sił F E + F B = 0 tor prostoliniowy Q > 0 V>V o metoda selekcji czastek o ustalonej prędkości niezależnie od ich Q i m A.F.Żarnecki Wykład IV 9

Rówanania ruchu Spektrometr Bainbridge a Mierzymy promień cyklotronowy r = m v 0 Q B dla cz astek o ustalonej prędkości v 0 = E B pomiar m Q Czastki o różnych masach zaczernia kliszę w różnych odległościach od szczeliny A.F.Żarnecki Wykład IV 10

Ruch po okręgu Zasada bezwładności Każde ciało trwa w swym stanie spoczynku lub ruchu prostoliniowego i jednostajnego, jeśli siły przyłożone nie zmuszajż ciała do zmiany tego stanu. I.Newton aby ciało pozostawało w ruchu po okręgu konieczne jest działanie siły siła dośrodkowa y V Q F B B r x Ruch po okręgu może być wynikiem działania różnego rodzaju sił: siły zewnętrzne siła Lorenza (pole magnetyczne) siły sprężystości siły reakcji więzów (kulka na nitce) wypadkowej sił reakcji i sił zewnętrznych (regulator Watta, kulka w wirujacym naczyniu...) A.F.Żarnecki Wykład IV 11

Ruch po okręgu Siła dośrodkowa Czastka naładowana w polu magnetycznym y V Q F B B r x Siła Lorenza: Dla v B: F B = Q v B F B = Q v B Promień cyklotronowy: r = m v Q B = p Q B F B = Q B m v m v2 = 1 r m v2 F B = m v2 r = m ω 2 r A.F.Żarnecki Wykład IV 12

Ruch po okręgu Siła dośrodkowa Regulator Watta Kulka w wirujacym naczyniu ω R R F mg F ω mg Siła dośrodkowa jest wypadkowa siły reakcji i siły ciężkości: F = m g + R A.F.Żarnecki Wykład IV 13

Siła dośrodkowa Ruch po okręgu X Z φ ω s r V Y a = d v dt dv = v dφ = v ω dt a = v ω = ω 2 r = v2 r r dφ dv x = r cos(ω t) y = r sin(ω t) z 0 W zapisie wektorowym: dφ = ω dt ω = const V a x = ω 2 r cos(ω t) a y = ω 2 r sin(ω t) a = ω 2 r F = m ω 2 r a = d V dt = d( ω r) dt = ω d r dt = ω V = ω ( ω r) = ω 2 r r = (x, y,0) A.F.Żarnecki Wykład IV 14

Ruch po okręgu Siła dośrodkowa Kulka w wirujacym naczyniu mg R F ω α r F = m g + R Siła dośrodkowa skierowana poziomo ze składania sił: R cos α mg = 0 F = R sin α = mg tan α Z równania ruchu: F = m ω 2 r = m ω 2 r sin α cos α = g ω 2 r Kulka odchyli się dopiero dla ω > g r = ω ω - częstość drgań wahadła matematycznego o długości r A.F.Żarnecki Wykład IV 15

Siła sprężysta Prawo Hooke a Opisuje zależność siły sprężystej od odkształcenia ciała: L Prawo Hooke a jest prawem empirycznym Jest słuszne tylko dla małych naprężeń. granica wytrzymałości L S F = E S L L F Cu: E = 1.2 10 11 N m 2 Pr = 1.9 10 8 N m 2 Pr 10 3 E E - moduł Younga [N/m 2 ] naprężenie odpowiadajace dwukrotnemu wydłużeniu granica proporcjonalności (P r) A.F.Żarnecki Wykład IV 16

Relaksacja Siła sprężysta Prawo Hooke a odnosi się do sytuacji statycznej. Od momentu przyłożenia siły do osiagnięcia odpowiedniego odkształcenie mija skończony czas - czas relaksacji Histereza podobnie gdy siła przestanie działać Przyłożenie dużej siły, nawet na krótki czas może powodować trwałe odkształcenie trzeba przyłożyć siłę przeciwnie skierowana A.F.Żarnecki Wykład IV 17

Tarcie Tarcie kinetyczne Siła pojawiajaca się między dwoma powierzchniami poruszajacymi się względem siebie, dociskanymi siła N. Ścisły opis sił tarcia jest bardzo skomplikowany. T R v Prawo empiryczne: T = µ k i v N i v = v v Siła tarcia kinetycznego: N jest proporcjonalna do siły dociskajacej nie zależy od powierzchni zetknięcia nie zależy od prędkości Prawo empiryczne przybliżone!!! A.F.Żarnecki Wykład IV 18

Tarcie Obraz mikroskopowy Tarcie wywołane jest przez oddziaływanie elektromagnetyczne czastek stykajacych się ciał. Powierzchnie nigdy nie sa idealnie równe na poziomie mikroskopowym czastki jednego ciała blokuja drogę czastkom drugiego ciała musza zostać odepchnięte wypolerowana miedź A.F.Żarnecki Wykład IV 19

Tarcie Zależność od nacisku Powierzchnia rzeczywistego (mikroskopowego) styku ciał jest w normalnych warunkach wiele rzędów wielkości mniejsza niż powierzchnia geometryczna: siła dociskajaca ułamek powierzchni 1 N/cm 2 0.00001 2.5 N/cm 2 0.000025 50 N/cm 2 0.0005 250 N/cm 2 0.0025 (płytki stalowe) efektywna powierzchnia styku proporcjonalna do nacisku liczba oddziaływań na poziomie atomowym proporcjonalna do nacisku A.F.Żarnecki Wykład IV 20

Tarcie Odstępstwa od praw empirycznych Przy dużych prędkościach może się pojawić zależność µ k od prędkości v: stal i miedź Przy dużych siłach dociskajacych moga się pojawić odstępstwa od zależnosci liniowej: miedź i miedż Przy dużym nasisku zniszczeniu ulega warstwa tlenków na powierzchni miedzi... Przy bardzo dużych prędkościach miedź ulega chwilowemy stopieniu... A.F.Żarnecki Wykład IV 21

Tarcie Ścieranie Na poziomie mikroskopowym tarcie prowadzi trwałych zmian w stykajacych się powierzchniach. Smarowanie Tarcie zmniejszamy wprowadzajac smar między poruszajace się powierzchnie. Fragmenty miedzi przyłaczone do powierzchni stali: Powierzchnie nie stykaja się brak tarcia pojawia się jednak nowa siła oporu zwiazana z lepkościa A.F.Żarnecki Wykład IV 22

Tarcie Tarcie statyczne T R Siła działajaca między dwoma powierzchniami nieruchomymi względem siebie, dociskanymi siła N. Maksymalna siła tarcia statycznego TS max jest równa najmniejszej sile F jaka należy przyłożyć do ciała, aby ruszyć je z miejsca. N mg Prawo empiryczne: T max S = µ s i F N i F = F F Ciało pozostaje w równowadze dzięki działaniu tarcia statycznego A.F.Żarnecki Wykład IV 23

Tarcie Tarcie statyczne Póki przyłożona siła F jest mała, tarcie statyczne utrzymuje ciało w spoczynku: T s = F siła tarcia rośnie proporcjonalnie do przyłożonej siły. Gdy przyłożona siła przekroczy wartość TS max = µ s N ciało zaczyna się poruszać tarcie kinetyczne T s Tarcie kinetyczne naogół słabsze od spoczynkowego: µ k < µ s A.F.Żarnecki Wykład IV 24

Tarcie Współczynniki tarcia Przykładowe współczynniki dla wybranych materiałów: Hamowanie samochodu: ważne aby koła nie zaczęły się ślizgać poślizg µ k dobry kierowca lub ABS µ s zysk 40% na drodze hamowania A.F.Żarnecki Wykład IV 25

Tarcie Tarcie toczne Q µ r F R Poza tarciem statycznym i kinetycznym (poślizgowym) mamy tarcie toczne: T t = µ t i F N r Współczynnik tarcia tocznego µ t jest zwykle bardzo mały Toczace się ciało odkształca zawsze powierzchnię po której się toczy. N Przykładowo: drewno + drewno µ t = 0,0005 m stal hartowana + stal µ t = 0,00001 m (wymiar długości!) A.F.Żarnecki Wykład IV 26

Lepkość Ciało poruszajace się po powierzchni cieczy: tarcie wewnętrzne pomiędzy warstwami cieczy poruszajacymi się z różnymi prędkościami. Formuła empiryczna: F L = i V η v S d Warstwa cieczy przylegajaca ciała porusza się wraz z nim. do gdzie: v - prędkość ciała S - powierzchnia styku z ciecza d - głębokość naczynia η - współczynnik lepkości Warstwa cieczy przylegajaca dna spoczywa. do A.F.Żarnecki Wykład IV 27

Lepkość Typowe wartości: eter 0.0002 Ns/m 2 woda 0.001 Ns/m 2 gliceryna 1.5 Ns/m 2 miód 500. Ns/m 2 wodór 0.000009 Ns/m 2 powietrze 0.000018 Ns/m 2 tlen 0.000021 Ns/m 2 Lepkość cieczy maleje z temperatura Lepkość gazów rośnie z temperatura ciecz gaz A.F.Żarnecki Wykład IV 28

Ruch w ośrodku Opór czołowy Siły jakie działaja na ciało poruszajace się w ośrodku możemy podzielić na: siłę oporu czołowego F v siłę nośna F N v Z analizy wymiarowej: F = i v C 2 ρv2 S ÛÞ Ö Æ ÛØÓÒ gdzie: v - prędkość ciała S - powierzchnia poprzeczna ρ - gęstość cieczy C -bezwymiarowy współczynnik zależny od kształtu ciała, jego orientacji względem v oraz bezwymiarowej kombinacji parametrów: Re = v l ρ η Re - liczba Reynoldsa, l - wymiar poprzeczny O.Reynolds (1883): skalowanie przepływów cieczy A.F.Żarnecki Wykład IV 29

Ruch w ośrodku Opór czołowy Dla ciała kulistego i Re 1 istnieje ścisłe rozwiazanie problemu: (G.Stokes 1851) C = 24 Re F = 6πηr v siła oporu proporcjonalna do v Wyniki pomiarów współczynnika C dla kuli: C Re 24 C 4 Re0.3 C 0.45 W obszarze dużych wartości Re C ÓÒ Ø F v 2 A.F.Żarnecki Wykład IV 30

Ruch w ośrodku Prędkość graniczna Równanie ruchu kuli spadajacej w cieczy (Re 1) m a = m g m p g 6πηr v Rozwiazanie (ruch w pionie): v(t) = v gr + (v 0 v gr )exp ( 6πηr m ) t v gr - prędkość graniczna A.F.Żarnecki Wykład IV 31

Ruch w ośrodku Prędkość graniczna Dla kuli spadajacej w cieczy (Re 1) Zależność od kształtu Kula: v gr = 2 9 r 2 g(ρ ρ p ) η F = 6π ηr v 18.8 ηr v Dysk ( v): F = 16 ηr v Dysk ( v): F = 32 3 ηr v A.F.Żarnecki Wykład IV 32

Prawo Bernouliego Ruch w ośrodku Lepkość nie jest jedynym źródłem sił działajacych na ciało w ośrodku. Prawo Bernouliego: ρgh + ρv2 2 + p = const Ciśnienie cieczy (nacisk na jednostkę powierzchni) jest mniejsze w obszarze wiekszych prędkości opływania ciało jest wciagane w obszar wiekszych prędkości Ale można na to spojrzeć też z punktu widzenia praw Newtona! Siła nośna jest siła reakcji! Ciało wymusza zmianę kierunku ruch czasteczek ośrodka, pcha go w dół... A.F.Żarnecki Wykład IV 33

Ruch w ośrodku Zjawisko Magnusa Walec wirujacy w przepływajacej poprzecznie do osi obrotu cieczy lub gazie. zgodne kierunki prędkości: prędkość przepływu wzrasta przyspieszenie dośrodkowe rośnie ciśnienie maleje przeciwne kierunki prędkości: prędkość przepływu maleje przyspieszenie dośrodkowe maleje ciśnienie wzrasta wypadkowa siła nośna F N v A.F.Żarnecki Wykład IV 34

Projekt Fizyka wobec wyzwań XXI w. współfinansowany przez Unię Europejska ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki