Równania różniczkowe: -rozwiązania w bazie funkcyjnej (porzucamy metodę różnic skończonych)



Podobne dokumenty
Równania różniczkowe: poza metodę różnic skończonych -rozwiązania w bazie funkcyjnej

Aproksymacja. funkcji: ,a 2. ,...,a m. - są funkcjami bazowymi m+1 wymiarowej podprzestrzeni liniowej X m+1

Dystrybucje, wiadomości wstępne (I)

y i b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

Inżynierskie metody numeryczne II. Konsultacje: wtorek 8-9:30. Wykład

INTERPOLACJA I APROKSYMACJA FUNKCJI

Egzamin z Metod Numerycznych ZSI, Egzamin, Gr. A

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5

φ(x 1,..., x n ) = a i x 2 i +

POSTULATY MECHANIKI KWANTOWEJ cd i formalizm matematyczny

Algebra liniowa z geometrią

Metody numeryczne I Równania nieliniowe

Z52: Algebra liniowa Zagadnienie: Zastosowania algebry liniowej Zadanie: Operatory różniczkowania, zagadnienie brzegowe.

Informacja o przestrzeniach Hilberta

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

Układy równań liniowych. Krzysztof Patan

Zaawansowane metody numeryczne

Metoda elementów brzegowych

Egzamin z Metod Numerycznych ZSI, Grupa: A

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

Zadania egzaminacyjne

Zaawansowane metody numeryczne

Optymalizacja ciągła

rozwiązanie (bardzo) dokładne MRS: gęsta siatka

Rozwiązywanie równań nieliniowych

Programowanie celowe #1

Metody numeryczne rozwiązywania równań różniczkowych

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku

1 Macierze i wyznaczniki

Wykład 9. Matematyka 3, semestr zimowy 2011/ listopada 2011

Macierze. Rozdział Działania na macierzach

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 24 czerwca 2019 roku

Γ D Γ Ν. Metoda elementów skończonych, problemy dwuwymiarowe. problem modelowy: w Ω. warunki brzegowe: Dirichleta. na Γ D. na Γ N.

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

Analiza funkcjonalna 1.

5. Rozwiązywanie układów równań liniowych

Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 )

Elementy metod numerycznych

15. Macierze. Definicja Macierzy. Definicja Delty Kroneckera. Definicja Macierzy Kwadratowej. Definicja Macierzy Jednostkowej

1. PODSTAWY TEORETYCZNE

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Własności wyznacznika

Zastosowanie MES do rozwiązania problemu ustalonego przepływu ciepła w obszarze 2D

Indukcja matematyczna. Zasada minimum. Zastosowania.

METODY KOMPUTEROWE W MECHANICE

Interpolacja. Marcin Orchel. Drugi przypadek szczególny to interpolacja trygonometryczna

Zaawansowane metody numeryczne

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

MATEMATYKA I SEMESTR ALK (PwZ) 1. Sumy i sumy podwójne : Σ i ΣΣ

Lista. Przestrzenie liniowe. Zadanie 1 Sprawdź, czy (V, +, ) jest przestrzenią liniową nadr :

Analiza numeryczna Lista nr 3 (ćwiczenia) x x 2 n x.

METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer.

Wstęp do metod numerycznych Rozwiazywanie równań algebraicznych. P. F. Góra

Bardzo łatwa lista powtórkowa

Rozwiązywanie układów równań liniowych

Zaawansowane metody numeryczne

Metody rozwiązania równania Schrödingera

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

1 Symulacja procesów cieplnych 1. 2 Algorytm MES 2. 3 Implementacja rozwiązania 2. 4 Całkowanie numeryczne w MES 3. k z (t) t ) k y (t) t )

Definicja macierzy Typy i właściwości macierzy Działania na macierzach Wyznacznik macierzy Macierz odwrotna Normy macierzy RACHUNEK MACIERZOWY

3 1 + i 1 i i 1 2i 2. Wyznaczyć macierze spełniające własność komutacji: [A, X] = B

Drgania poprzeczne belki numeryczna analiza modalna za pomocą Metody Elementów Skończonych dr inż. Piotr Lichota mgr inż.

A A A A A A A A A n n

Kodowanie i kompresja Streszczenie Studia Licencjackie Wykład 11,

numeryczne rozwiązywanie równań całkowych r i

Zadania z Algebry liniowej 4 Semestr letni 2009

Metody Obliczeniowe w Nauce i Technice

Przestrzeń unitarna. Jacek Kłopotowski. 23 października Katedra Matematyki i Ekonomii Matematycznej SGH

Zagadnienia stacjonarne

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

jest rozwiązaniem równania jednorodnego oraz dla pewnego to jest toŝsamościowo równe zeru.

WEKTORY I WARTOŚCI WŁASNE MACIERZY. = λ c (*) problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej

Wprowadzenie Metoda bisekcji Metoda regula falsi Metoda siecznych Metoda stycznych RÓWNANIA NIELINIOWE

Układy równań nieliniowych (wielowymiarowa metoda Newtona-Raphsona) f(x) = 0, gdzie. dla n=2 np.

. : a 1,..., a n F. . a n Wówczas (F n, F, +, ) jest przestrzenią liniową, gdzie + oraz są działaniami zdefiniowanymi wzorami:

KADD Minimalizacja funkcji

Metody numeryczne. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/50

Metoda rozdzielania zmiennych

Wersja testu A 18 czerwca 2012 r. x 2 +x dx

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

Wykład Matematyka A, I rok, egzamin ustny w sem. letnim r. ak. 2002/2003. Każdy zdający losuje jedno pytanie teoretyczne i jedno praktyczne.

A,B M! v V ; A + v = B, (1.3) AB = v. (1.4)

Optymalizacja ciągła

Wstęp do metod numerycznych Faktoryzacja QR i SVD. P. F. Góra

Układy równań i równania wyższych rzędów

Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p.

Równania różniczkowe liniowe II rzędu

Algebra liniowa. 1. Macierze.

Metody numeryczne II. Układy równań liniowych

Metody numeryczne Wykład 4

Matematyka stosowana i metody numeryczne

Aproksymacja. j<k. L 2 p[a, b] l 2 p,n X = Lemat 1. Wielomiany ortogonalne P 0,P 1,...,P n tworza przestrzeni liniowej Π n. Dowód.

KADD Minimalizacja funkcji

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Całkowanie numeryczne przy użyciu kwadratur

1 Formy hermitowskie. GAL (Informatyka) Wykład - formy hermitowskie. Paweł Bechler

Transkrypt:

Równania różniczkowe: -rozwiązania w bazie funkcyjnej (porzucamy metodę różnic skończonych) Plan: metoda kolokacji metoda najmniejszych kwadratów metoda Galerkina formalizm reszt ważonych do metody elementów skończonych metoda wariacyjna Reyleigha-Ritza

Przykład: u(-1)=0 u(1)=0 analityczne: metoda różnic skończonych: układ równań algebraicznych na u(x n ) u znajdujemy wartości u(x) w wybranych punktach x

układ równań algebraicznych na u(x n ) metoda różnic skończonych u znajdujemy wartości u(x) w wybranych punktach x Główna (jedyna) zaleta MRS: prosta dyskretyzacja równań. Wady: niełatwe lokalne zagęszczanie siatki (drobne, lecz ważne) szczegóły : niełatwy opis objętości o konturze odbiegającym od prostokątnego : duże zużycie pamięci (istotne ograniczenie dokładności w trzech (i więcej) wymiarach) 1.00 wyobraźmy sobie, że rozwiązanie jest szybkozmienne powiedzmy, że bliskie sin(6πx) 0.50 0.00-0.50-1.00 0.00 0.20 0.40 0.60 0.80 1.00 sin(6πx) opisany na 20 punktach dokładność użyć bazy funkcyjnej i sin(6πx) włączyć do bazy funkcyjnej w której poszukujemy rozwiązania...

motywacja do pracy z bazą funkcyjną cd. wyobraźmy sobie, że mamy siatkę złożoną z dwóch punktów w metodzie różnic skończonych znamy tylko wartości rozwiązania w węzłach... baza złożona z dwóch funkcji gaussowskich opisuje rozwiązanie również między węzłami siatki... a parametrami bazy (funkcji gaussowskich) można dodatkowo manipulować... znacznie więcej informacji zawartej w bazie... wyniki rachunku zbiegają do dokładnych szybciej w funkcji liczby elementów bazowych niż w funkcji oczek siatki (szczególnie >1D) wyobraźmy sobie, że jako funkcji bazowych użyjemy funkcji sin(nx) - rozwiązanie w takiej bazie da nam automatycznie dyskretną transformatę Fouriera rozwiązania podobnie informacje użyteczne uzyskamy, jeśli funkcje bazowe mają określoną interpretację

Przykład cd.: u(-1)=0 u(1)=0 poszukujemy rozwiązania w bazie funkcyjnej! funkcje bazowe [trafny wybór: dobre przybliżenie przy minimalnym N] wybór bazy: zawęża przestrzeń poszukiwań optymalnego rozwiązania do wektorowej przestrzeni liniowej, którą baza rozpina optymalne rozwiązanie znaczy optymalne współczynniki c i

Przykład cd.: u(-1)=0 u(1)=0 poszukujemy rozwiązania w bazie funkcyjnej! funkcje bazowe [trafny wybór: dobre przybliżenie przy minimalnym N] wybór bazy: zawęża przestrzeń poszukiwań optymalnego v(x) rozwiązania funkcja do wektorowej próbna przestrzeni liniowej, którą baza rozpina (test function, trial function) optymalne rozwiązanie znaczy optymalne współczynniki c i

u(-1)=0 u(1)=0 poszukujemy rozwiązania w bazie analitycznie zadanych funkcji! funkcje bazowe [trafny wybór: dobre przybliżenie przy minimalnym N] wybór bazy: zawęża przestrzeń poszukiwań optymalnego rozwiązania optymalne rozwiązanie znaczy optymalne współczynniki c i błąd rozwiązania przybliżonego v(x):

u(-1)=0 u(1)=0 poszukujemy rozwiązania w bazie analitycznie zadanych funkcji! funkcje bazowe [trafny wybór: dobre przybliżenie przy minimalnym N] wybór bazy: zawęża przestrzeń poszukiwań optymalnego rozwiązania optymalne rozwiązanie znaczy optymalne współczynniki c i błąd rozwiązania przybliżonego v(x): błąd, reszta, residuum jeśli u=v, E=0 tak dobieramy c i aby E był mały Wybór kryterium małości generuje wiele metod. Na laboratorium ćwiczymy 3 : kolokacji, najmniejszych kwadratów, Galerkina

u(-1)=0 u(1)=0 poszukujemy rozwiązania w bazie analitycznie zadanych funkcji! funkcje bazowe [trafny wybór: dobre przybliżenie przy minimalnym N] wybór bazy: zawęża przestrzeń poszukiwań optymalnego rozwiązania optymalne rozwiązanie znaczy optymalne współczynniki c i błąd rozwiązania przybliżonego v(x): jeśli u=v, E=0 tak dobieramy c i aby E był mały Wybór kryterium generuje wiele metod. Na laboratorium ćwiczymy 3 metody: kolokacji, najmniejszych kwadratów, Galerkina dlaczego nie wprowadzić metod w oparciu o bardziej naturalny wybór E= u - v?... bo u w praktycznych zastosowaniach jest nieznane problem minimalizacji u-v gdy u znane, to problem aproksymacji

wybierzmy bazę f i (x)=(x+1)(x-1)x i-1 u(-1)=0 u(1)=0 Każda z funkcji bazowych spełnia warunki brzegowe. niech w bazie będą N =3 funkcje [i=1,2,3] (nawet jeśli rozwiązanie analityczne nie istnieje Znamy E w formie analitycznej jeśli tylko niejednorodność 0.0 równania dana jest wzorem) 0.4-0.4 2 3-0.8 1-1.2-1.0-0.5 0.0 0.5 1.0

wybierzmy bazę f i (x)=(x+1)(x-1)x i-1 u(-1)=0 u(1)=0 Każda z funkcji bazowych spełnia warunki brzegowe. niech w bazie będą N =3 funkcje [i=1,2,3] 0.4 2 metoda kolokacji: niech błąd E znika w N punktach przestrzeni (niech funkcja v spełnia dokładnie równanie różniczkowe w N wybranych punktach) N punktów x i wektor c dany przez warunek E(x i )=0 E(x j )=0 układ N równań na N niewiadomych 0.0-0.4-0.8 3-1.2-1.0-0.5 0.0 0.5 1.0 1

E(x j )=0 układ N równań na N niewiadomych metoda kolokacji x 1 =0 : 2c 1-2c 3 =0 x 2 =1/2 : 2c 1 +3c 2 +c 3 +1=0 x 3 =-3/4 : 2c 1-4.5 c 2 +4.75c 3 -sqrt(2)/2=0 E

E(x j )=0 układ N równań na N niewiadomych metoda kolokacji x 1 =0 : 2c 1-2c 3 =0 x 2 =1/2 : 2c 1 +3c 2 +c 3 +1=0 x 3 =-3/4 : 2c 1-4.5 c 2 +4.75c 3 -sqrt(2)/2=0 E v u-dokładne

E(x j )=0 układ N równań na N niewiadomych metoda kolokacji x 1 =0 : 2c 1-2c 3 =0 x 2 =1/2 : 2c 1 +3c 2 +c 3 +1=0 x 3 =-3/4 : 2c 1-4.5 c 2 +4.75c 3 -sqrt(2)/2=0 E v u-dokładne Uwaga: E(x a )=0 NIE znaczy v(x a )=u(x a ) bo błąd to nie jest odchylenie od wartości dokładnej. W naszym równaniu E(x a )=0 znaczy: v (x a )=u (x a )

metoda kolokacji Jakość rozwiązania : zależy od wyboru punktów kolokacji x 1 =0 : 2c 1-2c 3 =0 x 2 =1/2 : 2c 1 +3c 2 +c 3 +1=0 x 3 =-1/2 : 2c 1-3c 2 +c 3-1=0 c 1 =c 3 = 0 c 2 = -1/3 [symetria odrzuca parzyste elementy bazowe] 0.4 0.0-0.4-0.8-1.2-1.0-0.5 0.0 0.5 1.0 v dokładne wybierzmy bazę f i (x)=(x+1)(x-1)x i-1 lepiej niż poprzednio, mimo że tylko jedna funkcja bazowa pracuje

poprzedni wybór: jedna funkcja bazowa f 2 oraz punkt kolokacji ½ [symetria gwarantuje również znikanie błędu E w 0 i 1/2] metoda kolokacji dwie funkcje bazowe: f 2 oraz f 4, punkty: ½ oraz ¾ [symetria gwarantuje również znikanie błędu E w: 0, -1/2, -3/4] 3 funkcje bazowe: f 2 oraz f 4, f 6 punkty ½, ¾ oraz 1/3

problem z metodą kolokacji: jeśli nawet E znika w wybranych punktach E(x) może znacznie od zera odbiegać w pozostałych pomysł: uznamy za optymalną funkcję próbną v dla której przeciętne E 2 jest minimalne min F(c 1,c 2,...,c N ) 1) odpada wybór punktów kolokacji 2) pojawia się konieczność całkowania [ kolokacja jest jedyną metodą, w której całkować nie trzeba, co okazuje się zaletą gdy problem jest wielowymiarowy i gdy funkcje bazowe i niejednorodność są w całkowaniu trudne [np. baza trygonometryczna] metoda najmniejszych kwadratów dostaniemy znowu układ równań liniowych

wybierzmy bazę f i (x)=(x+1)(x-1)x i-1 metoda najmniejszych kwadratów każda z funkcji bazowych spełnia warunki brzegowe. niech w bazie będą N=3 funkcje [i=1,2,3]

metoda najmniejszych kwadratów odrzucone funkcje bazowe o złej symetrii

dwie funkcje bazowe: f 2 oraz f 4 punkty kolokacji: ½ oraz ¾ [symetria gwarantuje również 0, -1/2, -3/4] min kolokacja metoda najmniejszych kwadratów przy tej samej bazie min okazują się lepsze od kolokacji w sensie przeciętnej wartości u-v

Metoda reszt ważonych aby wyznaczyć N wartości c, wybieramy N liniowo niezależnych funkcji wagowych w j, i żądamy znikania całki błędu z funkcjami wagowymi w j Jeden z możliwych wyborów funkcji wagowych: daje metodę Galerkina: w j =f j (wagi tożsame z funkcjami bazowymi) f i (x)=(x+1)(x-1)x i-1 R j = układ równań na c j

baza 2 funkcji f 2,f 4 porównanie metod min Kolokacja Galerkin jakość rozwiązania

problem istnienia jednoznacznego rozwiązania dla kolokacji metoda kolokacji: wybieramy N punktów x k, układ równań na c i : E(x k )=0 Lv(x k )=g(x k ) załóżmy, że L liniowy Ac=g A ki = L f i (x k ) Lf 1 (x 1 ) Lf 2 (x 1 ) Lf 3 (x 1 ) Lf 1 (x 2 ) Lf 2 (x 2 ) Lf 3 (x 2 ) Lf 1 (x 3 ) Lf 2 (x 3 ) Lf 3 (x 3 ) Aby istniało jednoznaczne rozwiązanie URL, potrzeba aby?

problem istnienia jednoznacznego rozwiązania dla kolokacji metoda kolokacji: wybieramy N punktów x k, układ równań na c i : E(x k )=0 Lv(x k )=g(x k ) załóżmy, że L liniowy Ac=g A ki = L f i (x k ) Lf 1 (x 1 ) Lf 2 (x 1 ) Lf 3 (x 1 ) Lf 1 (x 2 ) Lf 2 (x 2 ) Lf 3 (x 2 ) Lf 1 (x 3 ) Lf 2 (x 3 ) Lf 3 (x 3 ) Aby istniało jednoznaczne rozwiązanie URL, wartości funkcji w kolejnych punktach kolokacji (wiersze) Lf i (x k ) muszą być liniowo niezależne funkcje f i są liniowo niezależne [tak wybieramy bazę] czy mamy gwarancję, że również funkcje Lf i -są niezależne liniowo?

f i =x i [ i=0,1,2,...] u (x)=-ρ(x) [L = druga pochodna], wtedy Lf 0 =Lf 1 =0 (z tak wybraną bazą kolokacja zawiedzie niezależnie od wyboru punktów bo zbiór funkcji Lf nie jest bazą (mimo, że f jest). Czy jest to problem? 1) (ax+b) nie ma wpływu na v. 2) (ax+b) może przydać się przy określeniu warunku brzegowego 3) (ax+b) nie jest potrzebne w bazie, może być wprowadzone poza kolokacją (dodane do rozwiązania kolokacji)

przerabiany przykład: baza f i (x)=(x+1)(x-1)x i-1 u(-1)=0 u(1)=0 f i h i = Lf i (wielomiany różnych stopni) Lf jest bazą

Jeśli Lf i układ funkcji liniowo niezależnych: na pewno istnieje taki wybór punktów kolokacji, że problem (układ równań na c) ma jednoznaczne rozwiązanie nie jest jednak tak, że dla dowolnego wyboru punktów próbkowania problem kolokacji będzie miał jednoznaczne rozwiązanie Np. baza funkcji parzystych oraz symetrycznie względem zera wybrane punkty kolokacji ogólnie baza funkcji, które przyjmują tą samą wartość w dwóch różnych punktach [słaba baza] [jeśli punkty kolokacji wybrane zostały mało szczęśliwie dowiemy się o tym na podstawie wyznacznika macierzy URL będzie bliski zera]

metoda najmniejszych kwadratów, problem istnienia i jednoznaczności rozwiązania Lu=g E(x)=Lv(x)-g(x) minimalne zał: L liniowy

metoda najmniejszych kwadratów, problem istnienia i jednoznaczności rozwiązania Lu=g E(x)=Lv(x)-g(x) minimalne zał: L liniowy oznaczenie iloczyn skalarny w przestrzeni rzeczywistych funkcji całkowalnych z kwadratem

iloczyn skalarny Iloczyn skalarny (u,v) : parze wektorów (funkcji) przyporządkowuje liczbę zespoloną, taką że 1) (u,v)=(v,u) * [przemienny ze sprzężeniem] 2) (u,bv)=b(u,v) [liniowy względem mnożenia przez skalar] 3) (u,v+w)=(u,v)+(u,w) [liniowy względem dodawania wektorów] 4) (u,u) 0 dodatnio określony [równość tylko gdy u=0] np. dla funkcji całkowalnych z kwadratem w V dwie funkcje u oraz v są ortogonalne o ile (u,v)=0

h k :=Lf k problem posiada jednoznaczne rozwiązanie jeśli macierz H kl utworzona z iloczynów skalarnych (h k,h l ) jest macierzą nieosobliwą powinniśmy wybrać f k tak, aby zbiór h k tworzył bazę, czy niezależność liniowa funkcji h k wystarcza aby problem posiadał jednoznaczne rozwiązanie? [wątpliwość stąd, że iloczyn skalarny dwóch różnych par funkcji może być identyczny]

Załóżmy, że mamy dużo szczęścia i h k :=Lf k tworzą bazę ortogonalną [np. L=d 2 /dx 2, f k =sin(kx)] tzn. (h k,h l )=N k δ kl wtedy: Redukuje się do: c k =(g,h k )/(h k,h k ) macierz (h k,h l ) diagonalna i z konieczności nieosobliwa [osobliwa byłaby tylko w sytuacji, gdy jedna z funkcji h k była tożsamościowo równa zeru, lecz wtedy zbiór h k nie tworzyłby bazy

zazwyczaj baza h k nie jest ortogonalna, h (baza zwykła) -> bazę można jednak zortogonalizować u(b.ortonormalna) (stworzyć nowy zbiór funkcji ortogonalnych u k ) (ortonormalizacja Grama-Schmidta): u 2 ma być ortogonalne do u 1 i jest: jako kolejny element bazy ortonormalnej u bierzemy element bazy oryginalnej h, liczymy jego przekrywanie z wcześniej przyjętymi elementami bazy ortonormalnej u i odcinamy odpowiednie przyczynki od orzyjmowanego do bazy u elementu h

Ortogonalizacja Grama-Schmidta Przedział [-1,1]. Mamy zbiór niezależnych liniowo funkcji h 0 =1, h 1 =x, h 2 =x 2, h 3 =x 3,... które nie są ortogonalne [iloczyn skalarny określony z funkcją wagową w(x)]. Chcemy skonstruować bazę wielomianów ortogonalnych. Dostaniemy wielomiany Legendre a. u 0 = 1 u 1 =a+x Jakie a aby (u 0,u 1 )=0?: odp.: a=0 u 1 =x u 2 =x 2 +bx+c (u 2,u 0 )= 2/3+2c=0 (u 2,u 1 )=0 b=0 u 2 =(x 2-1/3) W literaturze wielomiany Legendre a normalizowane tak aby P k (1)=1 : 1,x,3/2 (x 2-1/3) Itd.

ortonormalizacja GS: z jednej bazy przechodzimy do drugiej (ortonormalnej) przestrzeń rozpięta przez obydwie bazy jest identyczna [baza 1,x,x 2 generuje tą samą przestrzeń wielomianów 2 stopnia jak baza L 0 = 1,L 1 =x,l 2 =x 2-1/3 baza nieortonormalna jest mniej wygodna, ale równie elastyczna]

ortonormalizacja GS: z jednej bazy przechodzimy do drugiej (ortonormalnej) przestrzeń rozpięta przez obydwie bazy jest identyczna [przy pomocy 1,x,x 2 można wygenerować przestrzeń wielomianów 2 stopnia tak samo dobrze jak przy pomocy L 0,L 1,L 2 baza nieortonormalna jest mniej wygodna, ale równie elastyczna] E(x)=Lv(x)-g(x) problem znalezienia takiego v aby F minimalny ma to samo rozwiązanie dla bazy przed i po ortonormalizacji

ortonormalizacja GS: z jednej bazy przechodzimy do drugiej (ortonormalnej) przestrzeń rozpięta przez obydwie bazy jest identyczna [przy pomocy 1,x,x 2 można wygenerować przestrzeń wielomianów 2 stopnia tak samo dobrze jak przy pomocy L 0,L 1,L 2 baza nieortonormalna jest mniej wygodna, ale równie elastyczna] E(x)=Lv(x)-g(x) problem znalezienia takiego v aby F minimalny ma to samo rozwiązanie dla bazy przed i po ortonormalizacji w bazie ortonormalnej problem ma niewątpliwie jednoznaczne rozwiązanie...... ma więc je również w każdej innej bazie skonstruowanej przez kombinacje liniowe elementów tej bazy. wniosek: Niezależność liniowa zbioru Lf k wystarczy do istnienia jednoznacznego rozwiązania optymalnego w sensie najmniejszej całki z kwadratu błędu.

Metoda Galerkina problem różniczkowy: Au=f (silna forma równania, równość funkcji) 1) E=Au-f 2) 3) (forma słaba równania. równość N liczb zamiast równości funkcji) A c = F układ równań na c

metoda Galerkina: residuum a przestrzeń wektorowa rozpięta przez wektory wybranej bazy Au=f zamiast wprowadzać błąd E, można po prostu wstawić funkcję próbną do oryginalnego równania a potem wyrzutować lewą i prawą stronę na j-ty element bazowy chcemy znaleźć taki element przestrzeni aby: (Au,v j )=(f,v j ) błąd E=Au-f: ortogonalny do każdego wektora bazowego (E,v j )=0 słaba forma równania błąd (residuum) znajduje się poza przestrzenią generowaną przez wybraną bazę

ilustracja: u e to rozwiązanie dokładne (przekątna sześcianu), u to rozwiązanie przybliżone R tutaj to u e -u od (a) do (c) dodajemy elementy bazowe φ1,φ2,φ3. metoda Galerkina rzutuje rozwiązanie dokładne na wektory wybranej bazy błąd metody: residuum jest ortogonalne do podprzestrzeni wyznaczonej przez wektory bazy metoda Galerkina jest zbieżna: gdy baza obejmie całą przestrzeń nie ma miejsca na residuum

Przykład: z laboratorium u(-1)=0 u(1)=0 Dirichleta analityczne: baza spełniająca Dirichleta -1.0-0.5 0.0 0.5 1.0

Galerkin SY=F baza spełniająca warunki Dirichleta -1.0-0.5 0.0 0.5 1.0 całkowanie przez części z warunków brzegowych dla i oraz j tej samej parzystości

prawa strona: dla j nieparzystych rozwiązanie 0.20 0.10 n=2 n=4 n=6 0.02 0.01 błąd ε (nie residuum tylko różnica dokładne Galerkina): 0.00 0.00-0.10-0.01-0.20-0.02-1.00-0.50 0.00 0.50 1.00-1.00-0.50 0.00 0.50 1.00

ortogonalność residuum do wektorów bazowych zgodnie z naszą wiedzą: ma być (E,v i )=0 E ortogonalne do elementów bazy z i=1,3 oraz 5 bo te są funkcjami parzystymi 0.02 0.01 ortogonalność E do f 2 : tyle iloczynu Ef 2 pod osią x ile nad 0.40 0.00 elementy bazy: 0.00-0.40-0.01-0.80-0.02-0.03-1.00-0.50 0.00 0.50 1.00-1.20-1.00-0.50 0.00 0.50 1.00

Metoda Galerkina - równoważna metodzie wariacyjnej, (gdy ta stosowalna) metoda wariacyjna (Reyleigha-Ritza) Na jednym z poprzednich wykładów pokazaliśmy, że S S używaliśmy jako parametr zbieżności metod iteracyjnego rozwiązywania równania Poissona Warunek minimum funkcjonału + baza funkcyjna = metoda wariacyjna RR

Wariacyjne sformułowanie równania różniczkowego r.różniczkowe na rzeczywistą funkcję u: Au=f w Ω, z jednorodnym warunkiem brzegowym u=0 na brzegu Γ, A liniowy, dodatnio określony, samosprzężony operator różniczkowy: liniowy A(f 1 +f 2 )=Af 1 +Af 2 dodatnio określony samosprzężony (zakładamy, żu funkcje rzeczywiste) wtedy rozwiązanie równania różniczkowego Au=f jest takie, że minimalne

Przykład: A= -d 2 /dx 2 jest operatorem liniowym i dodatnio określonym w przestrzeni funkcji całkowalnych z kwadratem i znikających na granicy pudła obliczeniowego [ u(1)=u(0)=0 ] całkowanie przez części: (fg ) =f g + fg - fg = (fg ) + f g Przykład: A= -d 2 /dx 2 jest operatorem samosprzężonym

metoda wariacyjna Reyleigha-Ritza u(0)=u(1)=0 Au=f iloczyn skalarny w przestrzeni rzeczywistych funkcji całkowalnych z kwadratem

metoda wariacyjna Reyleigha-Ritza Baza: Φ 1,Φ 2,Φ 3,...,Φ N funkcji spełniających jednorodny warunek brzegowy poszukujemy c i dla których S(u) minimalny w wybranej bazie

metoda wariacyjna Reyleigha-Rit baza funkcji rzeczywistych liniowość A liniowość iloczynu skalarnego

metoda wariacyjna Reyleigha-Rit baza funkcji rzeczywistych liniowość A liniowość iloczynu skalarnego sumowanie po deltach

przepisane: metoda wariacyjna Reyleigha-Ritza zmiana indeksu i / j przemienność iloczynu skalarnego+samosprzężoność A A c = F układ równań na c

zastosowanie metody wariacyjnej (wracamy do przerobionego problemu): u(-1)=0 u(1)=0 A c = F wybierzmy bazę Φ i (x)=(x+1)(x-1)x i-1 macierz operatora samosprzężonego - symetryczna c 1 =c 3 =c 5 =0 zera tam, gdzie symetria się nie zgadza

zastosowanie metody wariacyjnej (wracamy do przerobionego problemu): u(-1)=0 u(1)=0 A c = F wybierzmy bazę Φ i (x)=(x+1)(x-1)x i-1 c 1 =c 3 =c 5 =0

wynik dla bazy funkcji F2,Φ4 wynik dokładnie ten sam co w metodzie Galerkina! URL z zasady wariacyjnej: URL identyczny z układem produkowanym przez metodę Galerkina 1) E=Au-f 2) 3)

zapis równania na c w metodzie wariacyjnej Reyleigha- Ritza - identyczny jak w metodzie Galerkina. Gdy podejście funkcjonalne obowiązuje: metody RR i G są tożsame. metoda Galerkina - bardziej ogólna - działa również dla operatorów, które nie są samosprzężone / liniowe / dodatnio określone to jest - dla operatorów, dla których funkcjonał osiągający minimum dla rozwiązania równania nie jest znany

M. Galerkina, a podejście wariacyjne cd.: Funkcja próbna: z naszego przykładu numerycznego zawiera tylko liniowe parametry wariacyjne c: c wyznaczone przez URL Jeśli tylko równanie różniczkowe Jest liniowe Bardziej elastyczny: rachunek z funkcjami bazowymi zależnymi od nieliniowych parametrów wariacyjnych Sposób postępowania: dla ustalonej bazy optymalne c szukamy jak wyżej. Optymalną bazę (optymalne nieliniowe parametry wariacyjne) znajdujemy minimalizując funkcjonał (zadanie nieliniowe). W MES: bazę (podział przestrzeni na elementy będziemy w ten sposób optymalizować.

Metoda Galerkina to szczególny przypadek metody reszt ważonych problem różniczkowy: Au=f (silna forma równania) 1) E=Au-f 2) 3) jeśli jako wag użyjemy funkcji bazowych w k =Φ k mamy m. Galerkina (forma słaba) A c = F układ równań na c

Metoda reszt ważonych: główne punkty (i różnice między różnymi wariantami metody): 1) Wybór podprzestrzeni wektorowej (bazy) Φ j 2) Wybór funkcji wagowych w j 3)... które często wybierane są jako maksymalnie rozłączne przestrzennie wtedy podział przestrzeni jest kolejnym problemem

metoda różnic skończonych dla problemu początkowego w formalizmie reszt ważonych y(t=0)=y 0 rozwiązać na t z przedziału [0,T] Zadanie: znaleźć przybliżone rozwiązanie w (N+1) chwilach czasowych t n =nδt, n=0,1,...,n krok czasowy Δt= T/N. Pochodna szacowana ilorazem centralnym reguła punktu pośredniego [żabiego skoku]

Wyprowadzenie metody różnic skończonych w formalizmie reszt ważonych A) y n określone na równoodległych punktach. Zakładamy, że między punktami t n rozwiązanie zmienia się liniowo z t. B) Ω=[0,T], i dyskretyzacja na przedziały czasowe τ m =[t m-1,t m ] C) baza ma zapewniać odcinkowo liniową zmienność przybliżonego rozwiązania

funkcje bazowe wybieramy tak, aby każda rozwinięta w nich funkcja była ciągła i odcinkami liniowa. l n-1 (t) l n (t) l n+1 (t) t n-2 t n-1 t n t n+1 t n+2 każda funkcja bazowa określona na dwóch fragmentach ω m Widzimy, że: l m (t n )=δ nm

Wyliczyć współczynniki rozwinięcia: Współczynniki rozwinięcia c i równe wartościom rozwiązania w węzłach. Tą samą bazę stosujemy do prawej strony równania przepis na y n : Potrzebne dookreślenie funkcji wagowych w j.

D) Wagi: rozwiązanie chcemy znać tylko w chwilach t n - wagi powinny je wyłuskać delta Diraca

dystrybucja delta Diraca 5/2 ciąg funkcji f n : f n (x)= n/2 dla x [-1/n,1/n] i zero poza nim. 3/2 1 1/2 granica tego ciągu funkcja (dystrybucja) delta Diraca: własności: -1.00 0.00 1.00 2.00 jednostkowy impuls konsekwencja, dla ciągłej funkcji g::

uzasadnienie: tw. o wartości średniej, ξ z przedziału całkowania [-1/n, 1/n]

Inne funkcje dążące do delty Diraca 300.00 200.00 a= 1/8 1/64 1/512 100.00 0.00-0.20-0.10 0.00 0.10 0.20 200.00 150.00 100.00 50.00 0.00-50.00-0.20-0.10 0.00 0.10 0.20

delta Diraca = nachylenie funkcji Heavyside a 1 H 0 0 t dwa i więcej wymiary

D) Wagi: rozwiązanie chcemy znać tylko w chwilach t n - wagi powinny je wyłuskać delta Diraca

l(t)... nie jest różniczkowalna w punktach węzłowych...

l(t) nie jest różniczkowalna w punktach węzłowych... l ma nieciągłą pochodną... A f(x) x=a B (tzw. główna wartość pochodnej)

główna wartość pochodnej (średnia z lewo i prawostronnej pochodnej) metoda różnic skończonyc

c j =y j Metoda różnic skończonych jest przypadkiem szczególnym: metody reszt ważonych dla odcinkowo liniowej bazy i funkcji wagowych typu delta Diraca

w stronę metody elementów skończonych metoda ważonych reszt - ogólnie Lu=f (na Ω) Bu=g (na d Ω) Rozwiązanie dokładne (silnej postaci równania) jest trudne. szukamy rozwiązania przybliżonego w bazie funkcji Działając operatorami L i B na rozwiązanie przybliżone dostajemy funkcje resztkowe (rezydualne) zamiast zera: (rozwiązanie w podprzestrzeni wektorowej rozpiętej przez wektory bazy) zależy nam, aby reszty r i s były jak najmniejsze c wyznaczamy z ważenia reszty: dla metody Galerkina bierzemy funkcje bazowe jako wagi: w j =v j

Silna forma równania: Lu=f (równość funkcji w każdym punkcie obszaru całkowania) ważone reszty: słaba forma równania, (równość N liczb)

żargon MES: macierz sztywności i wektor obciążeń S ij =(Lv i,v j ) F j =(f,v j ) SY=F stiffness matrix macierz sztywności load vector wektor obciążeń

powyższy przykład: baza wielomianów określonych na całym pudle obliczeniowym. Z wielu powodów jest to zły pomysł. Wysokie potęgi wielomianów niewygodne w użyciu: całkowanie, efekt Rungego, powód najważniejszy: macierz S byłaby gęsta, problem nie do rozwiązania przy dużym N. SY=F Galerkin z bazą odcinkami wielomianowych funkcji zdefiniowanych w sposób rozłączny przestrzennie metoda elementów skończonych Metoda elementów skończonych: funkcje rozłączne tak, żeby S = rzadka najprostszy wybór funkcji kształtu(*): baza funkcji odcinkami liniowych zbieżność dostaniemy w przestrzeni funkcji odcinkami liniowych (*) trzecie pojęcie z żargonu MES

Zobaczymy w działaniu metodę elementów skończonych, ale na razie: bez jej charakterystycznych narzędzi: bez lokalnych macierzy sztywności związanych z każdym elementem bez ich składania do macierzy globalnej bez mapowania przestrzeni fizycznej do przestrzeni referencyjnej będziemy mówili o metodzie z punktu widzenia węzłów: tak najłatwiej wprowadzić metodę, ale dla 2D i 3D takie podejście okazuje się niepraktyczne podejście związane z elementami zobaczymy później

1 v i (x) fcja kształtu Element(*), węzły(*), funkcje kształtu węzły x i-1 element K i długości h i =x i -x i-1 x i x i+1 x element K i+1 długości h i+1 = x i+1 -x i W każdym elemencie: mamy 2 funkcje, każda z innym węzłem związana funkcje bazowe i brzeg Dla (jednorodnych) warunków Dirichleta mamy y pierwsze =y ostatnie =0

- niezerowe tylko dla i=j, i=j-1 oraz i=j+1 [bez przekrywania całka znika]

niech j = i+1 - gdy jedna pochodna dodatnia druga ujemna i-1 i i+1 i+2 v i v i+1 długość elementu o numerze większym z dwóch indeksów S

SY=F Macierz sztywności dla n węzłów + warunek y 1 =y n =0 1 2 3 4 h 2 h 3 h 4 wiersz n-1 F i =(v i,f) po elemencie K i po K i+1

SY=F Macierz sztywności dla n węzłów + warunek y 1 =y n =0 1 2 3 4 h 2 h 3 h 4 wiersz n-1 F i =(v i,f) po elemencie K i po K i+1 dla równoodległych węzłów S jak macierz metody RS (razy h=dx), ale wektor obciążeń F nie! w MRS mielibyśmy F i =f(x i ) dx

dla f(x) = - sin (πx) warunki brzegowe (jednorodne Dirichleta): forma S oraz F 1 =F n =0 ten URL wygląda prawie jak dla MRS... zobaczmy wyniki

SY=F Układ równań z macierzą trójprzekątniową przypomnienie. Jak rozwiązac?

Dekompozycja LU mecierzy trójprzekątniowej SY=F S=LU (LU trójkątne) (LU)Y=F UY=x Lx=F - najpierw rozwiązujemy ten układ dwuprzekątniowe bez zmian dla i>1

Wynik: równoodległe węzły 0.20 0.01 0.10 dokładny 0.01 Błąd: 0.00 0.00-0.10 MES -0.01-0.20-1.00-0.50 0.00 0.50 1.00-0.01-1.00-0.50 0.00 0.50 1.00

MES (równoodległe węzły) a MRS (węzły w tych samych punktach): 0.20 0.10 MES dla laplasjanu bez pochodnej z funkcjami liniowymi: w węzłach wynik dokładny!!! 0.00 błąd MRS i MES 0.01-0.10 0.01 0.00-0.20-0.01-1.00-0.50 0.00 0.50 1.00 1.50-0.01-1.00-0.50 0.00 0.50 1.00

znikanie błędu MES (1D, liniowe f.kształtu) w węzłach zachodzi również dla nierównomiernego rozkładu węzłów: 0.10 0.05 0.00-0.05 przesuwamy węzeł -0.10-1.00-0.50 0.00 0.50 1.00 0.01 błąd: 0.01 0.00 Dla MRS: dla nierównomiernej siatki musielibyśmy używać niesymetrycznych ilorazów o [jak widzieliśmy] niższej dokładności -0.01-0.01-1.00-0.50 0.00 0.50 1.00

0.01 błąd: Równanie Poissona, funkcje kształtu liniowe 0.01 wynik MES dokładny w węzłach 0.00-0.01 MES: produkuje oszacowanie wyniku również między węzłami -0.01-1.00-0.50 0.00 0.50 1.00 MRS: tylko w węzłach MRS: wartości w węzłach, są dokładne TYLKO w granicy Δx 0 dowód dokładności MES w tej wersji - za parę folii