Wyk lad 3 Wielomiany i u lamki proste

Podobne dokumenty
Wyk lad 12. (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Dowód. Niech st(f) = n i niech a bedzie

Wyk lad 9 Podpierścienie, elementy odwracalne, dzielniki zera

WYK LAD 2: PODSTAWOWE STRUKTURY ALGEBRAICZNE, PIERWIASTKI WIELOMIANÓW, ROZK LAD FUNKCJI WYMIERNEJ NA U LAMKI PROSTE

Wyk lad 11 1 Wektory i wartości w lasne

Wyk lad 14 Cia la i ich w lasności

Wyk lad 1 Podstawowe struktury algebraiczne

1. Wielomiany Podstawowe definicje i twierdzenia

Wielomiany. dr Tadeusz Werbiński. Teoria

13. Cia la. Rozszerzenia cia l.

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

Wyk lad 14 Formy kwadratowe I

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm

Wyk lad 9 Baza i wymiar przestrzeni liniowej

Wyk lad 6 Podprzestrzenie przestrzeni liniowych

Wyk lad 2 Podgrupa grupy

Udowodnimy najpierw, że,,dla dostatecznie dużych x liczby a k x k i a 0 + a 1 x + + a k x k maja ten sam znak. a k

Podstawowe struktury algebraiczne

Ciała i wielomiany 1. przez 1, i nazywamy jedynką, zaś element odwrotny do a 0 względem działania oznaczamy przez a 1, i nazywamy odwrotnością a);

Dziedziny Euklidesowe

Wyk lad 8 macierzy i twierdzenie Kroneckera-Capellego

Wyk lad 4 Warstwy, dzielniki normalne

Pierścień wielomianów jednej zmiennej

Wyk lad 9 Przekszta lcenia liniowe i ich zastosowania

Indeks odwzorowania zmiennej zespolonej wzgl. krzywej zamknietej

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Grupy i cia la, liczby zespolone

Pisemny egzamin dyplomowy. na Uniwersytecie Wroc lawskim. na kierunku matematyka. zadania testowe. 22czerwca2009r. 60 HS-8-8

Wielomiany. XX LO (wrzesień 2016) Matematyka elementarna Temat #2 1 / 1

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Maciej Grzesiak. Wielomiany

i=0 a ib k i, k {0,..., n+m}. Przypuśćmy, że wielomian

Treść wykładu. Pierścienie wielomianów. Dzielenie wielomianów i algorytm Euklidesa Pierścienie ilorazowe wielomianów

0.1 Pierścienie wielomianów

Funkcje wymierne. Jerzy Rutkowski. Teoria. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera

Równania wielomianowe

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

III. Funkcje rzeczywiste

FUNKCJE LICZBOWE. x 1

Skończone rozszerzenia ciał

Wyk lad 7 Metoda eliminacji Gaussa. Wzory Cramera

WIELOMIANY. ZADANIE 1 (5 PKT) Reszta z dzielenia wielomianu x 3 + px 2 x + q przez trójmian (x + 2) 2 wynosi 1 x. Wyznacz pierwiastki tego wielomianu.

DZYSZKOLNE ZAWODY MATEMATYCZNE. Eliminacje rejonowe. Czas trwania zawodów: 150 minut

1 Elementy logiki i teorii mnogości

Wersja testu D 14 września 2011 r. 1. Czy prawda jest, że a) x Z y Z y 2 = 2 ; b) x Z y Z x 2 = 1 ; c) x Z y Z x 2 = 2 ; d) x Z y Z y 2 = 1?

Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym.

Wielomiany i rozszerzenia ciał

Wersja testu A 15 lutego 2011 r. jest, że a) x R y R y 2 > Czy prawda. b) y R x R y 2 > 1 c) x R y R y 2 > 1 d) x R y R y 2 > 1.

1. Liczby zespolone i

Wyk lad 9 Baza i wymiar przestrzeni liniowej

WIELOMIANY. Poziom podstawowy

Algebra i jej zastosowania konspekt wyk ladu, cz

Matematyka dyskretna

z n n=1 S n nazywamy sum a szeregu. Szereg, który nie jest zbieżny, nazywamy rozbieżnym. n=1

Informacje pomocnicze

Liczby zespolone. x + 2 = 0.

1 + x 1 x 1 + x + 1 x. dla x 0.. Korzystając z otrzymanego wykresu wyznaczyć funkcję g(m) wyrażającą liczbę pierwiastków równania.

Wielomiany podstawowe wiadomości

w(x)= P(x) Q(x), (1) x 2 +7x 2 8 Pierwsze z tych wyrażeń jest funkcją wymierną niewłaściwą, a drugie wyrażenie jest funkcją wymierną właściwą.

Wyk lad 11 Przekszta lcenia liniowe a macierze

1. Wykład NWD, NWW i algorytm Euklidesa.

c a = a x + gdzie = b 2 4ac. Ta postać wielomianu drugiego stopnia zwana jest kanoniczna, a wyrażenie = b 2 4ac wyróżnikiem tego wielomianu.

A. Strojnowski - Twierdzenie Jordana 1

1 Wyrażenia potęgowe i logarytmiczne.

Wyk lad 4 Dzia lania na macierzach. Określenie wyznacznika

SZKO LA PODSTAWOWA HELIANTUS WARSZAWA ul. BAŻANCIA 16. Hyperbola 1 x FUNKCJE ELEMENTARNE WYMIERNE POTȨGOWE LOGARYTMICZNE.

Matematyka dyskretna

WIELOMIANY SUPER TRUDNE

RACHUNEK OPERATOROWY MIKUSIŃSKIEGO I JEGO ZASTOSOWANIE DO RÓWNAŃ

Sterowalność liniowych uk ladów sterowania

Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych

PODSTAWOWE W LASNOŚCI W ZBIORZE LICZB RZECZYWISTYCH

Ciała skończone. 1. Ciała: podstawy

Algebra liniowa z geometrią. wykład I

Asymptota pozioma: oṡ x, gdy y = 0 Asymptota pionowa: oṡ y, gdy x = 0. Hyperbola 1 x

Grupy, pierścienie i ciała

Funkcje, wielomiany. Informacje pomocnicze

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJA KWADRATOWA. 1. Definicje i przydatne wzory. lub trójmianem kwadratowym nazywamy funkcję postaci: f(x) = ax 2 + bx + c

12. Wykład 12: Algebraiczne domkniecie ciała. Wielokrotne pierwiastki wielomianów. Rózniczkowanie wielomianów. Elementy rozdzielcze.

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

1 Określenie pierścienia

Wielomiany. El»bieta Sadowska-Owczorz. 19 listopada 2018

g liczb rzeczywistych (a n ) spe lnia warunek

Algebra i jej zastosowania - konspekt wykładu

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:

Niezb. ednik matematyczny. Niezb. ednik matematyczny

Wyk lad 13 Funkcjona ly dwuliniowe

Wielomiany podstawowe wiadomości

Cia la i wielomiany Javier de Lucas

Rachunek zdań - semantyka. Wartościowanie. ezyków formalnych. Semantyka j. Logika obliczeniowa. Joanna Józefowska. Poznań, rok akademicki 2009/2010

25 lutego 2013, godzina 23: 57 strona 1. P. Urzyczyn: Materia ly do wyk ladu z semantyki. Logika Hoare a

LOGIKA ALGORYTMICZNA

Algebra i jej zastosowania - konspekt wykładu

Indukcja matematyczna. Zasada minimum. Zastosowania.

Algebra z Geometrią Analityczną. { x + 2y = 5 x y = 9. 4x + 5y 3z = 9, 2x + 4y 3z = 1. { 2x + 3y + z = 5 4x + 5y 3z = 9 7 1,

Wielomiany. Kurs matematyki w oratorium autorami materiałów są: dr Barbara Wolnik i Witold Bołt. 17 marca 2006

Transkrypt:

Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich wyrazach z P f = (f 0, f 1, f 2,...) (1) takich, że 0 = f k = f k+1 = f k+2 =... dla pewnego k N 0. Elementy zbioru P [x] nazywamy wielomianami zmiennej x o wspó lczynnikach z pierścienia P. Przyjmujemy umowe, że jeśli wielomian nazywa sie g, to g = (g 0, g 1,...), czyli g 0, g 1,... sa jego kolejnymi wspó lczynnikami. Przy tych oznaczeniach dla wielomianów f, g P [x] mamy f = g f i = g i dla każdego i = 0, 1, 2,... (2) Wielomian 0 = (0, 0,...) nazywamy zerowym, zaś 1 = (1, 0, 0,...) nazywamy jedynkowym. Jeżeli 0 = f 1 = f 2 =... to wielomian f nazywamy sta lym. Wyrazem wolnym wielomianu f postaci (1) jest wspó lczynnik f 0. Jeżeli f 0, to istnieje najwieksze n takie, że f n 0 i wówczas n nazywamy stopniem wielomianu f i piszemy st(f) = n, zaś f n nazywamy najstarszym wspó lczynnikiem tego wielomianu. Ponadto przyjmujemy, że st(0) = oraz < n dla n N 0 i ( ) + +n = ( ) + ( ) = dla n N 0. Suma wielomianów f, g P [x] nazywamy ciag f + g określony nastepuj aco: f + g = (f 0 + g 0, g 1 + f 1, f 2 + g 2,...). (3) Latwo wykazać, że dla dowolnych f, g P [x] mamy, że f + g P [x] oraz zachodzi wzór: st(f + g) max{st(f), st(g)}. (4) Jeżeli zaś st(f) < st(g), to oczywiście st(f + g) = st(g). Iloczynem wielomianów f, g P [x] nazywamy ciag f g określony wzorem: Zatem dla każdego n = 0, 1,... f g = (f 0 g 0, f 0 g 1 + f 1 g 0, f 0 g 2 + f 1 g 1 + f 2 g 0,...). (5) (f g) n = n f i g n i = f i g j. (6) i=0 i+j=n Zauważmy, że f g P [x]. Rzeczywiście, istnieja k, l N 0 takie, że f i = 0 dla wszystkich i > k oraz g j = 0 dla wszystkich j > l. Weźmy dowolne n > k + l oraz i, j N 0 takie, że i + j = n. 1

Jeśli i > k, to f i = 0, wiec f i g j = 0; jeśli zaś i k, to j = n i n k > k + l k = l, wiec g j = 0, czyli f i g j = 0. Stad dla n > k + l jest (f g) n = f i g j = 0 i f g P [x]. Jeżeli f i = 0 dla i = 1, 2,... to ze wzoru (5) mamy i+j=n (f 0, 0, 0,...) (g 0, g 1,...) = (f 0 g 0, f 0 g 1, f 0 g 2,...). (7) Jeżeli zaś f 1 = 1 oraz f i = 0 dla i = 0, 2, 3,... to ze wzoru (5) wynika, że (0, 1, 0, 0,...) (g 0, g 1,...) = (0, g 0, g 1,...). (8) Niech teraz f, g P [x] \ {0} i n = st(f), m = st(g). Wtedy z wcześniejszych wyliczeń mamy, że (f g) k = 0 dla wszystkich k > n + m. Stad i z (6) mamy f,g P [x] st(f g) st(f) + st(g). (9) Można udowodnić nastepuj ace twierdzenie: Twierdzenie 3.1. System algebraiczny (P [x], +,, 0, 1) tworzy pierścień. Ten pierścień nazywamy pierścieniem wielomianów zmiennej x o wspó lczynnikach z pierścienia P. Mówimy, że a P jest elementem regularnym pierścienia P, jeżeli dla dowolnego x P z tego, że a x = 0 wynika, że x = 0. Zauważmy, że każdy niezerowy element cia la K jest elementem regularnym. Natomiast 2 nie jest elementem regularnym pierścienia Z 6, bo 2 63 = 0. Pierścień P, w którym 0 1 i każdy niezerowy element jest regularny nazywamy dziedzina ca lkowitości. Przyk ladem dziedziny ca lkowitości, która nie jest cia lem jest pierścień liczb ca lkowitych Z. Stwierdzenie 3.2. Niech f, g P [x]\{0} bed a takie, że najstarszy wspó lczynnik wielomianu f lub najstarszy wspó lczynnik wielomianu g jest elementem regularnym pierścienia P. Wtedy st(f g) = st(f)+st(g) oraz najstarszy wspó lczynnik wielomianu f g jest iloczynem najstarszych wspó lczynników wielomianów f i g. Dowód. Oznaczmy n = st(f), m=st(g). Weźmy dowolne i, j N 0 takie, że i + j = n + m. Jeśli i < n, to j = n + m i > m, skad g j = 0 oraz f i g j = 0. Jeśli i > n, to f i = 0, wiec f i g j = 0. Zatem ze wzoru (5) mamy, że (f g) n+m = f n g m 0, bo f n 0, g m 0 oraz f n lub g m jest elementem regularnym. Stad ze wzoru (8) wynika teza naszego stwierdzenia. Wniosek 3.3. Jeżeli P jest dziedzina ca lkowitości, to st(f g) = st(f) + st(g) dla dowolnych f, g P [x]. Ze wzorów (3) i (6) wynika od razu, że dla dowolnych a, b P : (a, 0, 0,...) = (b, 0, 0,...) a = b, (a, 0, 0,...) + (b, 0, 0,...) = (a + b, 0, 0,...) 2

oraz (a, 0, 0,...) (b, 0, 0,...) = (a b, 0, 0,...). Z tego powodu można dokonać utożsamienia (a, 0, 0,...) a dla a P. (10) Przy takim utożsamieniu P P [x], a nawet P jest podpierścieniem pierścienia P [x]. Wprowadźmy teraz oznaczenie: x = (0, 1, 0, 0,...). (11) Wówczas ze wzoru (8) przez prosta indukcje uzyskamy, że x n = (0, 0,..., 0, n 1, 0,...) dla n = 0, 1,... (12) Niech f P [x] bedzie wielomianem stopnia n 1. Wtedy f n 0 oraz f i = 0 dla każdego i n + 1. Ponadto ze wzorów (6) i (12) mamy, że (f k, 0, 0,...) x k = (0,..., 0, f k k, 0,...) dla k = 1, 2,... wiec f = (f 0, 0, 0,...)+(0, f 1, 0,...)+...+(0, 0,..., f n, 0,...) f 0 +f 1 x++f 2 x 2 +... + f n x n. Ponieważ dla wielomianu sta lego f jest f f 0, wiec dla dowolnego wielomianu f P [x] stopnia n 0 mamy utożsamienie: f f 0 + f 1 x + f 2 x 2 +... + f n x n. (13) Otrzymujemy w ten sposób naturalna notacje dla wielomianów z pierścienia P [x]. Przy tej notacji możemy powiedzieć, że wielomiany f, g P [x] sa równe wtedy i tylko wtedy, gdy st(f) = st(g) oraz f i = g i dla każdego i. Z wniosku 3.3 i tego, że pierścień P jest podpierścieniem pierścienia P [x] wynika od razu nastepuj ace Twierdzenie 3.4. Jeżeli pierścień P jest dziedzina ca lkowitości, to P [x] też jest dziedzina ca lkowitości. Definicja 3.5. Wartościa wielomianu f = f 0 + f 1 x +... + f n x n P [x] w punkcie a P nazywamy f(a) = f 0 + f 1 a +... + f n a n. Definicja 3.6. Pierwiastkiem wielomianu f P [x] nazywamy takie a P, że f(a) = 0. Definicja 3.7. Wielomiany f, g P [x] nazywamy równymi funkcyjnie, jeżeli f(a) = g(a) dla każdego a P. Przyk lad 3.8. Niech P bedzie niezerowym pierścieniem skończonym o n elementach oraz P = {a 1,..., a n }. Ponieważ 0 1 w P, wiec 1 jest elementem regularnym w P i na mocy stwierdzenia 1 mamy, że wielomian f = (x a 1 ) (x a 2 )... (x a n ) P [x] ma stopień n. Ponadto f(a) = 0 dla każdego a P, wiec wielomiany f i 0 sa równe funkcyjnie, chociaż f 0. Z tego powodu wielomiany nad dowolnym pierścieniem P nie moga być traktowane jako funkcje wielomianowe z pierścienia P w pierścień P. Twierdzenie 3.9. Jeżeli P jest nieskończona dziedzina ca lkowitości oraz wielomiany f, g P [x] sa równe funkcyjnie, to f = g. 3

2 Dzielenie wielomianów Definicja 3.10. Niech P bedzie pierścieniem, który może nie być dziedzina ca lkowitości. Powiemy, że w pierścieniu P [x] jest wykonalne dzielenie z reszta przez wielomian f P [x], jeżeli dla każdego wielomianu g P [x] istnieje dok ladnie jedna para (q, r) wielomianów q, r P [x] taka, że g = q f + r oraz st(r) < st(f). Uwaga 3.11. Ponieważ st(0) =, wi ec dla powyższych f jest f 0. Uwaga 3.12. Wielomian r nazywamy reszta, zaś q nazywamy niepe lnym ilorazem z dzielenia wielomianu g przez wielomian f. Twierdzenie 3.13. Dla dowolnego pierścienia P i dla dowolnego wielomianu f P [x] równo-ważne sa warunki: (i) w pierścieniu P [x] jest wykonalne dzielenie z reszta przez wielomian f; (ii) najstarszy wspó lczynnik wielomianu f jest elementem odwracalnym w P. Uwaga 3.14. lgorytm dzielenia wielomianów z reszta znany ze szko ly średniej jest dobry dla dowolnego pierścienia wielomianów. Uwaga 3.15. Wielomian f P [x] o najstarszym wspó lczynniku równym 1 nazywamy wielomianem unormowanym. Z twierdzenia 3.1 w pierścieniu P [x] jest wykonalne dzielenie z reszta przez wielomiany unormowane. Twierdzenie 3.16. (Bezout). Dla dowolnego wielomianu g P [x] i dla dowolnego a P reszta z dzielenia wielomianu g przez dwumian x a jest równa g(a), tzn. istnieje wielomian q P [x] taki, że g = q (x a) + g(a). Dowód. Z uwagi 3.15 istnieja q, r P [x] takie, że g = q (x a) + r i st(r) < 1 = st(x a). Stad r P i g(a) = q(a) (a a) + r = r, czyli r = g(a) i g = q (x a) + g(a). Definicja 3.17. Niech f, g P [x]. Powiemy, że wielomian f dzieli wielomian g w pierścieniu P [x] i piszemy f g, jeżeli istnieje wielomian h P [x] taki, że g = f h. Wniosek 3.18. Dla dowolnego wielomianu f P [x] i dla dowolnego a P mamy x a g w pierścieniu P [x] g(a) = 0. Dowód. Jeżeli x a g w pierścieniu P [x], to istnieje q P [x] takie, że g = q (x a), skad g(a) = q(a) (a a) = 0. Na odwrót, niech g(a) = 0. Wtedy z twierdzenia Bezout istnieje q P [x] takie, że g = q (x a), czyli x a g. Stwierdzenie 3.19. Niech a 1,..., a n bed a parami różnymi elementami dziedziny ca lkowitości P. Wówczas dla dowolnego wielomianu f P [x] równoważne sa warunki: (i) (x a 1 )... (x a n ) f w pierścieniu P [x]; (ii) f(a 1 ) =... = f(a n ) = 0. Dowód. (i) (ii) Z za lożenia istnieje h P [x] taki, że f = h (x a 1 )... (x a n ), skad f(a i ) = h(a i ) (a i a 1 )... (a i a i )... (a i a n ) = 0 dla i = 1,..., n. 4

(ii) (i) Stosujemy indukcje wzgledem n. Dla n = 1 teza wynika od razu z wniosku 3.18. Za lóżmy, że teza zachodzi dla pewnego naturalnego n i niech a 1,..., a n+1 bed a parami różnymi elementami pierścienia P takimi, że f(a 1 ) =... = f(a n+1 ) = 0. Wtedy z za lożenia indukcyjnego istnieje g P [x] takie, że f = g (x a 1 )... (x a n ). le 0 = f(a n+1 ) = g(a n+1 ) (a n+1 a 1 )... (a n+1 a n ), wiec ponieważ P jest dziedzina ca lkowitości, to g(a n+1 ) = 0 i z wniosku 3.3 istnieje h P [x] taki, że g = h (x a n+1 ). Zatem f = (x a 1 )... (x a n ) (x a n+1 ), czyli (x a 1 )... (x a n+1 ) f. Wniosek 3.20. Niech P bedzie dziedzina ca lkowitości i niech n N. Wówczas każdy wielomian f P [x] stopnia n posiada co najwyżej n różnych pierwiastków w pierścieniu P. Twierdzenie 3.21. (Wzory Viety). Niech K bedzie cia lem i niech f = c 0 + c 1 x +... + c n x n K[x], gdzie c n 0. Jeżeli a 1, a 2,..., a n sa wszystkimi (niekoniecznie różnymi) pierwiastkami wielomianu f w ciele K, to zachodza nastepuj ace wzory zwane wzorami Viety: a i1... a ik = ( 1) k cn k dla k = 1, 2,..., n. (14) c n 1 i 1 <...,<i k n. Definicja 3.22. Niech P bedzie dziedzina ca lkowitości i k N. Mówimy, że a P jest pierwiastkiem k-krotnym wielomianu f P [x], jeżeli istnieje g P [x] takie, że g(a) 0 oraz f = (x a) k g. Z zasadniczego twierdzenia algebry oraz z twierdzeń podanych na tym wyk ladzie można w prosty sposób wyprowadzić nastepuj ace twierdzenia: Twierdzenie 3.23. Niech f C[x] bedzie wielomianem stopnia n N o najstarszym wspó lczynniku a. Wówczas istnieja s, k 1,..., k s N i istnieja różne liczby zespolone a 1,..., a s takie, że f = a(x a 1 ) k 1 (x a 2 ) k 2... (x a s ) ks. Twierdzenie 3.24. Każdy wielomian dodatniego stopnia o wspó lczynnikach rzeczywistych jest iloczynem skończonej liczby wielomianów stopnia 1 lub 2 o wspó lczynnikach rzeczywistych. Uwaga 3.25. Wielomian f = ax 2 + bx + c R[x] stopnia 2 nie jest iloczynem wielomianów stopnia 1 o wspó lczynnikach rzeczywistych wtedy i tylko wtedy, gdy < 0, gdzie = b 2 4ac. Twierdzenie 3.26. Niech f = a 0 + a 1 x +... + a n x n Z[x]. Jeżeli liczba wymierna q = k m, gdzie k, m Z i NW D(k, m) = 1, jest pierwiastkiem f, to k a 0 i m a n. 3 U lamki proste Definicja 3.27. Funkcja wymierna rzeczywista nazywamy iloraz dwóch wielomianów rzeczywistych, przy czym dzielnik nie jest wielomianem zerowym. Funkcja wymierna zespolona nazywamy iloraz dwóch wielomianów zespolonych, przy czym dzielnik nie jest wielomia- 5

nem zerowym. Funkcje wymierna nazywamy w laściwa, jeżeli stopień wielomianu w liczniku u lamka określajacego te funkcje jest mniejszy od stopnia wielomianu w mianowniku. Uwaga 3.28. Z twierdzenia o dzieleniu z reszta wynika, że każda funkcja wymierna jest suma wielomianu oraz funkcji wymiernej w laściwej. Definicja 3.29. Zespolonym u lamkiem prostym nazywamy funkcje zespolona wymierna postaci, gdzie, a C, 0 oraz k N. (z+a) k Definicja 3.30. Rzeczywistym u lamkiem prostym pierwszego rodzaju nazywamy funkcje rzeczywista wymierna postaci, gdzie, a R, 0 oraz k N. (x+a) k Definicja 3.31. Rzeczywistym u lamkiem prostym drugiego rodzaju nazywamy x+b funkcje rzeczywista wymierna postaci, gdzie, B, p, q R, 0 lub B 0 oraz (x 2 +px+q) k k N, przy czym = p 2 4q < 0. Twierdzenie 3.32. Każda zespolona funkcja wymierna w laściwa jest suma zespolonych u lam-ków prostych. Przedstawienie to jest jednoznaczne. Jeżeli mianownik zespolonej funkcji wymiernej w laściwej w rozk ladzie na czynniki liniowe posiada czynnik (z a) k i a jest k-krotnym pierwiastkiem tego mianownika, to w rozk ladzie tej funkcji na u lamki proste wystepuje suma 1 z a + 2 +... + (z a) 2 k dla pewnych (jednoznacznie wyznaczonych) sta lych (z a) k 1, 2,..., k C. Ponadto, jeżeli u lamek prosty zespolony, gdzie, b C, 0, l N, wystepuje (z b) l w rozk ladzie tej funkcji wymiernej na sume u lamków prostych, to b jest pierwiastkiem mianownika tej funkcji. Twierdzenie 3.33. Każda rzeczywista funkcja wymierna w laściwa jest suma rzeczywistych u lamków prostych. Przedstawienie to jest jednoznaczne. Jeżeli mianownik rzeczywistej funkcji wymiernej w laściwej w rozk ladzie na czynniki liniowe posiada czynnik (x a) k i a jest k-krotnym pierwiastkiem tego mianownika, to w rozk ladzie tej funkcji na u lamki proste wystepuje suma 1 z a + 2 k (z a) k +... + dla pewnych (jednoznacznie wyznaczonych) sta lych (z a) 2 1, 2,..., k R. Ponadto, jeżeli u lamek prosty rzeczywisty, gdzie, b R, 0, l N, wystepuje (z b) l w rozk ladzie tej funkcji wymiernej na sume u lamków prostych, to b jest pierwiastkiem mianownika tej funkcji. Dalej, jeżeli dla pewnych p, q R takich, że = p 2 4q < 0 wielomian (x 2 +px+q) k dzieli mianownik tej funkcji wymiernej, ale wielomian (x 2 + px + q) k+1 już nie dzieli tego mianownika, to w rozk ladzie tej funkcji wymiernej na rzeczywiste u lamki proste wystepuje suma 1 x+b 1 x 2 +px+q + 2x+B 2 +... + kx+b k. Ponadto, jeżeli rzeczywisty u lamek prosty drugiego (x 2 +px+p) 2 (x 2 +px+q) k x+b rodzaju, gdzie 0 lub B 0 wystepuje (x 2 +ax+b) l w rozk ladzie tej funkcji wymiernej na u lamki proste, to (x 2 + ax + b) l dzieli mianownik tej funkcji wymiernej. Przyk lad 3.34. W oparciu o twierdzenie 3.33 znajdziemy teoretyczny rozk lad na rzeczywiste u lamki proste rzeczywistej funkcji wymiernej f(x) = 2 +x 2 x. Zauważmy, że x 3 (x 2 +4x+4)(x 2 +x+1) 2 x 2 + 4x + 4 = (x + 2) 2 oraz wielomian x 2 + x + 1 ma ujemny wyróżnik = 1 4 = 3, wiec x 3 (x 2 + 4x + 4)(x 2 + x + 1) 2 = x 3 (x + 2) 2 (x 2 + x + 1) 2 i wobec tego: f(x) = 1 x + 2 x 2 + 3 x 3 + B 1 x + 2 + B 2 (x + 2) 2 + C 1x + D 1 x 2 + x + 1 + C 2x + D 2 (x 2 + x + 1) 2 6

dla pewnych jednoznacznie wyznaczonych sta lych 1, 2, 3, B 1, B 2, C 1, C 2, D 1, D 2 R. 4 Zadania do samodzielnego rozwiazania Zadanie 3.35. Wyznacz iloraz i reszt e z dzielenia wielomianu f przez g, gdy (a) f = 5x 3 + 2x 2 x 7, g = x 2 + 3x 1 w Z[x], (b) f = 5x 3 + 2x 2 x 7, g = x 2 + 3x 1 w Z 8 [x], (c) f = 3x 6 2x + 4, g = x 4 + 1 w Z 5 [x]. Zadanie 3.36. Czy istnieje wielomian f R[x] stopnia 4 taki, że f(0) = f(1) = f(2) = f(3) = f(4) = 1 i f(5) = 5? Zadanie 3.37. Wyznacz wszystkie pierwiastki wielomianu (a) f = x 5 2x 3 + 1 w pierścieniu Z 6, (b) g = x 2 1 w pierścieniu Z 8. Zadanie 3.38. Wielomian f R[x] daje przy dzieleniu przez x 2 reszte 1, przy dzieleniu przez x 1 reszte 2. Jaka reszte daje f przy dzieleniu przez (x 1)(x 2)? Zadanie 3.39. Wyznacz wszystkie pierwiastki wymierne wielomianu f = 6x 4 +19x 3 7x 2 26x + 12. Zadanie 3.40. Nastepuj ace funkcje wymierne roz lóż na rzeczywiste u lamki proste: (a) 2x3 x 2 +4x 3 x, (b) 2 2x 7 x 4 +2x 2 +9 (x 2 2x+1)(x 2 +2x+5), (c) x6 6x 5 +10x 4 17x 3 +8x 2 5x+1 (x 4 +2x 2 +1)(x 4 3x 3 +3x 2 x), (d) 1 3x (e) 2 +x 2 (x 1) 3 (x 2 +1), (f) x3 2x 2 +5x 8 x 4 +8x 2 +16, (g) 5x3 +3x 2 +12x 12, (h) 4x3 2x 2 +6x 13 17x, (i) 2 x 26 x 4 16 x 4 +3x 2 4 (x 2 1)(x 2 4). x 3 (x 1) 2 (x+1), 7