Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna



Podobne dokumenty
CAŁKI NIEOZNACZONE C R}.

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone

Całki nieoznaczone. 1 Własności. 2 Wzory podstawowe. Adam Gregosiewicz 27 maja a) Jeżeli F (x) = f(x), to f(x)dx = F (x) + C,

Funkcja pierwotna. Całka nieoznaczona. Podstawowe wzory. Autorzy: Konrad Nosek

Całka nieoznaczona, podstawowe wiadomości

Funkcje wymierne. Jerzy Rutkowski. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Zadania z analizy matematycznej - sem. II Całki nieoznaczone

Informacje pomocnicze:

Rozdział 6. Ciągłość. 6.1 Granica funkcji

1 Całki funkcji wymiernych

1 Całki nieoznaczone: całkowanie jako operacja (prawie) odwrotna do różniczkowania

Łatwy dowód poniższej własności pozostawiamy czytelnikowi.

III. Funkcje rzeczywiste

Rozdział 7. Różniczkowalność. 7.1 Pochodna funkcji w punkcie

III. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE

Całka nieoznaczona wykład 7 ( ) Motywacja

Równania różniczkowe. Notatki z wykładu.

Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne.

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2

Wykład 10: Całka nieoznaczona

Matematyka i Statystyka w Finansach. Rachunek Różniczkowy

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),

Funkcje elementarne. Matematyka 1

5. Równania różniczkowe zwyczajne pierwszego rzędu

Dystrybucje, wiadomości wstępne (I)

CAŠKA NIEOZNACZONA. Politechnika Lubelska. Z.Šagodowski. 18 lutego 2016

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Inżynierskie, WDAM, grupy I i II

Skończone rozszerzenia ciał

Funkcja kwadratowa. f(x) = ax 2 + bx + c = a

VI. Równania różniczkowe liniowe wyższych rzędów

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław

Pochodna funkcji odwrotnej

Funkcje wymierne. Funkcja homograficzna. Równania i nierówności wymierne.

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12

Wykład 5. Zagadnienia omawiane na wykładzie w dniu r

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.

Rozwiązania zadań z kolokwium w dniu r. Zarządzanie Licencjackie, WDAM, grupy I i II

Definicja i własności wartości bezwzględnej.

1 Równania różniczkowe drugiego rzędu

Matematyka dyskretna. Andrzej Łachwa, UJ, /15

Sprawy organizacyjne. dr Barbara Przebieracz Bankowa 14, p.568

n=0 (n + r)a n x n+r 1 (n + r)(n + r 1)a n x n+r 2. Wykorzystując te obliczenia otrzymujemy, że lewa strona równania (1) jest równa

Dystrybucje. Marcin Orchel. 1 Wstęp Dystrybucje Pochodna dystrybucyjna Przestrzenie... 5

Podstawy analizy matematycznej II

0.1 Pierścienie wielomianów

Funkcje wymierne. Jerzy Rutkowski. Teoria. Działania dodawania i mnożenia funkcji wymiernych określa się wzorami: g h + k l g h k.

Ciągłość funkcji jednej zmiennej rzeczywistej. Autorzy: Anna Barbaszewska-Wiśniowska

1 Równania różniczkowe zwyczajne

1. Wielomiany Podstawowe definicje i twierdzenia

Treść wykładu. Pierścienie wielomianów. Dzielenie wielomianów i algorytm Euklidesa Pierścienie ilorazowe wielomianów

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

Granice funkcji. XX LO (wrzesień 2016) Matematyka elementarna Temat #8 1 / 21

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone

Wielomiany. dr Tadeusz Werbiński. Teoria

6. Całka nieoznaczona

Wykład 14 i 15. Równania różniczkowe. Równanie o zmiennych rozdzielonych. Definicja 1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie

Rachunek różniczkowy i całkowy 2016/17

1 Wyrażenia potęgowe i logarytmiczne.

Wykład 5. Informatyka Stosowana. 6 listopada Informatyka Stosowana Wykład 5 6 listopada / 28

Wykład 3 Równania rózniczkowe cd

Układy równań i równania wyższych rzędów

Ciągłość funkcji f : R R

Biotechnologia, Chemia, Chemia Budowlana - Wydział Chemiczny - 1

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.

III. Wstęp: Elementarne równania i nierówności

Wykład 4. Określimy teraz pewną ważną klasę pierścieni.

Przykładowe zadania z teorii liczb

1 Pochodne wyższych rzędów

Analiza I.2*, lato 2018

1. Definicja granicy właściwej i niewłaściwej funkcji.

Wykład VI. Badanie przebiegu funkcji. 2. A - przedział otwarty, f D 2 (A) 3. Ekstrema lokalne: 4. Punkty przegięcia. Uwaga!

Całka podwójna po prostokącie

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

ANALIZA MATEMATYCZNA Z ELEMENTAMI STATYSTYKI MATEMATYCZNEJ

Wykład z równań różnicowych

5 Równania różniczkowe zwyczajne rzędu drugiego

Ciała skończone. 1. Ciała: podstawy

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

KLASA II LO Poziom rozszerzony (wrzesień styczeń)

Liczby zespolone. x + 2 = 0.

1 Równania różniczkowe zwyczajne o rozdzielonych zmiennych

W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1

i=0 a ib k i, k {0,..., n+m}. Przypuśćmy, że wielomian

Wykład 1. Na początku zajmować się będziemy zbiorem liczb całkowitych

Pochodna funkcji. Pochodna funkcji w punkcie. Różniczka funkcji i obliczenia przybliżone. Zastosowania pochodnych. Badanie funkcji.

Pierścień wielomianów jednej zmiennej

11. Pochodna funkcji

3a. Wstęp: Elementarne równania i nierówności

7 Twierdzenie Fubiniego

1. Wykład NWD, NWW i algorytm Euklidesa.

Maciej Grzesiak. Wielomiany

1 Funkcje elementarne

Rachunek różniczkowy i całkowy w przestrzeniach R n

Algebra liniowa z geometrią. wykład I

jest ciągiem elementów z przestrzeni B(R, R)

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

Indukcja matematyczna

Transkrypt:

Rozdział 9 Funkcja pierwotna 9. Funkcja pierwotna Definicja funkcji pierwotnej. Niech f będzie funkcją określoną na przedziale P. Mówimy, że funkcja F : P R jest funkcją pierwotną funkcji f w przedziale P, gdy F jest funkcją różniczkowalną i F (x) = f(x) dla x P. Własność 9... Niech P będzie przedziałem oraz niech F : P R będzie funkcją pierwotną funkcji f w przedziale P. Wówczas funkcja F : P R jest funkcją pierwotną funkcji f w przedziale P wtedy i tylko wtedy, gdy F F jest funkcją stałą (w P ). Dowód. Załóżmy, że F jest funkcją pierwotną funkcji f w przedziale P. Wówczas mamy, że F (x) = f(x) = F (x) dla x P. Zatem z wniosku 7.3. dostajemy, że F F jest funkcją stałą. Odwrotnie, jeśli F F iest funkcją stałą, to F (x) = F (x) = f(x) dla x P, czyli F jest funkcją pierwotną funkcji f w przedziale P. Wniosek 9... Jeśli funkcja f ma w przedziale P funkcję pierwotną, to dla każdego x 0 P oraz y 0 R istnieje dokładnie jedna funkcja pierwotna F : P R funkcji f w przedziale P taka, że F (x 0 ) = y 0. Dowód. Weźmy dowolne x 0 P oraz y 0 R. Niech F : P R będzie funkcją pierwotną funkcji f w przedziale P. Kładąc F (x) = F (x) + y 0 F (x 0 ), x P, w myśl własności 9.. mamy, że F jest funkcją pierwotną funkcji f w przedziale P oraz F (x 0 ) = y 0. Pokażemy, że funkcją pierwotna F funkcji f w P taka, że F (x 0 ) = y 0 jest określona jednoznacznie. Istotnie, niech F : P R będzie funkcją pierwotną funkcji f w P taką, że F (x 0 ) = y 0. W myśl własności 9.. mamy, że istnieje C R, że F (x) F (x) = C dla x P. Ponieważ F (x 0 ) F (x 0 ) = 0, więc C = 0. To daje tezę. Z własności pochodnej funkcji dostajemy poniższe własności funkcji pierwotnej. Twierdzenie 9..3. Niech P będzie przedziałem oraz α, β R. Jeśli F, F : P R są funkcjami pierwotnymi odpowiednio funkcji f, f w przedziale P, to αf + βf jest funkcją pierwotną funkcji αf + βf w przedziale P. 07

08 ROZDZIAŁ 9. FUNKCJA PIERWOTNA Dowód. Bezpośrednio z twierdzenia o działaniach na pochodnej funkcji (twierdzenie 7..) dostajemy (αf + βf ) = αf + βf = αf + βf w przedziale P. Uwaga 9..4. Odpowiednik twierdzenia 9..3 dla iloczynu funkcji nie zachodzi. Mianowicie, w punkcie 9. pokażemy że, istnieją funkcje posiadające funkcje pierwotne w przedziale, których iloczyn nie ma funkcji pierwotnej. Twierdzenie 9..5. Niech P będzie przedziałem oraz niech f, g będą funkcjami różniczkowalnymi w przedziale P. Jeśli F : P R jest funkcją pierwotną funkcji f g w przedziale P, to fg F jest funkcją pierwotną funkcji f g w przedziale P. Dowód. Istotnie, bezpośrednio z twierdzenia o pochodnej iloczynu dwóch funkcji (twierdzenie 7..) dostajemy (fg) = f g + fg, więc (fg F ) = f g w przedziale P. Twierdzenie 9..6. Niech P, Q będą przedziałami oraz niech ϕ : Q R będzie funkcją różniczkowalną taką, że ϕ(q) P. Jeśli F : P R jest funkcją pierwotną funkcji f w przedziale P, to F ϕ : Q R jest funkcją pierwotną funkcji f ϕ ϕ w przedziale Q. Dowód. Z twierdzenia 7..3, mamy (F ϕ) = (F ϕ) ϕ = (f ϕ) ϕ w P. Uwaga 9..7. Niech f będzie funkcją różniczkowalną w przedziale P taką, że f(x) > 0 dla x P. Wprost z definicji funkcji pierwotnej mamy (a) Funkcja F (x) = ln f(x), x P jest funkcją pierwotnę funkcji f w przedziale P. f f (b) Funkcja F (x) = f(x), x P jest funkcją pierwotnę funkcji f w przedziale P. Uwaga 9..8. Niech f będzie funkcją różniczkowalną w przedziale P taką, że f(x) < 0 dla x P. Wprost z definicji funkcji pierwotnej mamy (a) Funkcja F (x) = ln f(x), x P jest funkcją pierwotnę funkcji f w przedziale P. f (b) Funkcja F (x) = f(x), x P jest funkcją pierwotnę funkcji f w P. Twierdzenie 9..9. Jeśli funkcja f ma funkcję pierwotną w przedziale P, to f spełnia w P własność Darboux, to znaczy dla każdych x, x P, x < x oraz każdego c R, (a) jeśli f(x ) < c < f(x ), to istnieje x 0 (x, x ), że f(x 0 ) = c, (b) jeśli f(x ) > c > f(x ), to istnieje x 0 (x, x ), że f(x 0 ) = c. Dowód. Niech F : P R będzie funkcją pierwotną funkcji f w przedziale P. Wówczas F (x) = f(x) dla x P i z twierdzenia Darboux 7.3.3 dostajemy, że f spełnia (a) i (b). Uwaga 9..0. W myśl twierdzenia 9..9 mamy, że funkcja f(x) = [x], x R, gdzie [x] oznacza całość z liczby x, nie ma funkcji pierwotnej, bowiem funkcja ta nie spełnia warunków (a) i (b) w twierdzeniu 9..9. Można rẃnież udowodnić, że istnieją funkcje spełniające powyższe warunki (a) i (b), które nie mają funkcji pierwotnych. f

9.. O FUNKCJI PIERWOTNEJ FUNKCJI CIĄGŁEJ 09 Własność 9... Niech P będzie przedziałem, x 0 P będzie takim punktem, że zbiory P = {x P : x x 0 }, P = {x P : x x 0 } są przedziałami. Niech f : P R. Jeśli (i) F : P R jest funkcją pierwotną funkcji f w przedziale P, (ii) F : P R jest funkcją pierwotną funkcji f w przedziale P, (iii) F (x 0 ) = F (x 0 ), to funkcja F : P R określona wzorami F (x) = F (x) dla x P i F (x) = F (x) dla x P jest funkcją pierwotną funkcji f w przedziale P. Dowód. Wobec (iii) mamy, że funkcja F jest poprawnie określona. Weźmy dowolny x P. Jeśli x < x 0, to z (i) mamy F (x) = F (x) = f(x). Jeśli x > x 0, to z (ii) mamy F (x) = F (x) = f(x). Jeśli x = x 0, to z określenia F i z (i) oraz (iii) mamy lim x x 0 F (x) F (x 0 ) x x 0 = lim x x 0 F (x) F (x 0 ) x x 0 = f(x 0 ) oraz z (ii) lim x x + 0 F (x) F (x 0 ) x x 0 = lim x x + 0 F (x) F (x 0 ) x x 0 = f(x 0 ). Zatem F (x 0 ) = f(x 0 ). Reasumując F jest funkcją pierwotną funkcji f w przedziale P. 9. O funkcji pierwotnej funkcji ciągłej Twierdzenie 9... Jeśli ciąg funkcyjny f n : [a, b] R, n N, jest jednostajnie zbieżny do funkcji f : [a, b] R oraz każda funkcja f n, n N ma w przedziale [a, b] funkcję pierwotną F n : [a, b] R, to funkcja f ma funkcję pierwotną w przedziale [a, b]. Jeśli dodatkowo dla pewnego x 0 [a, b], ciąg (F n (x 0 )) n= jest zbieżny, to ciąg (F n ) n= jest jednostajnie zbieżny i jego granica jest funkcją pierwotną funkcji f w przedziale [a, b]. Dowód. Niech x 0 [a, b]. Przyjmując F n (x) = F n (x) F n (x 0 ), x [a, b], z wniosku 9.., mamy, że F n jest funkcją pierwotną funkcji f n dla n N. Zatem ciąg funkcji różniczkowalnych ( F n ) n= jest zbieżny w punkcie x 0 i ciąg jego pochodnych (f n ) n= jest jednostajnie zbieżny do funkcji f w przedziale [a, b]. W myśl twierdzenia 8.5., ciąg ( F n ) n=k jest, więc jednostajnie zbieżny do pewnej funkcji różniczkowalnej F : [a, b] R oraz F (x) = lim n F n (x) = lim n f n (x) = f(x) dla x [a, b]. W konsekwencji F jest funkcją pierwotną funkcji f w przedziale [a, b] oraz Fn F. Jeśli dodatkowo ciąg (F n (x 0 )) n= jest zbieżny, to analogicznie jak powyżej, w myśl twierdzenia 8.5., ciąg (F n ) n=k jest jednostajnie zbieżny do pewnej funkcji różniczkowalnej F : [a, b] R oraz F jest funkcją pierwotną funkcji f w [a, b]. To kończy dowód. Z twierdzenia 9.. dostajemy natychmiast

0 ROZDZIAŁ 9. FUNKCJA PIERWOTNA Wniosek 9... Jeśli szereg funkcyjny n= f n, gdzie f n : [a, b] R, n N, jest jednostajnie zbieżny do funkcji f : [a, b] R oraz każda funkcja f n, n N ma w przedziale [a, b] funkcję pierwotną F n : [a, b] R, to funkcja f ma funkcję pierwotną w przedziale [a, b]. Jeśli dodatkowo dla pewnego x 0 [a, b], szereg n= [a, b]. n= F n (x 0 ) jest zbieżny, to szereg F n jest jednostajnie zbieżny i jego suma jest funkcją pierwotną funkcji f w przedziale W oparciu o twierdzenie 9.., pokażemy, że każda funkcja ciągła w przedziale ma funkcję pierwotną w tym przedziale. Udowodnimy najpierw lemat. Lemat 9..3. Jeśli f : R R jest wielomianem postaci f(x) = n wielomian F (x) = n j=0 j=0 a j j+ xj+, x R jest funkcją pierwotną funkcji f w R. a j x j, x R, to Dowód. Przy oznaczeniach lematu dostajemy F = f w R. To daje tezę. Twierdzenie 9..4. (o istnieniu funkcji pierwotnej funkcji ciągłej). Jeśli P jest przedziałem, to każda funkcja ciągła f : P R ma funkcję pierwotną w przedziale P. Dowód. Niech f : P R będzie funkcją ciągłą. Załóżmy najpierw, że P jest przedziałem domkniętym. Wówczas z twierdzenia Weierstrassa 8.8.7 mamy, że istnieje ciąg wielomianów (W n ) n= zbieżny jednostajnie do funkcji f na przedziale P. W myśl lematu 9..3, każdy wielomian W n, n N ma funkcję pierwotną w P. Zatem z twierdzenia 9.. dostajemy tezę w tym przypadku. Niech teraz P będzie dowolnym przedziałem oraz niech a, b, a < b będą końcami przedziału P. Niech x 0 P będzie ustalonym punktem takim, że a < x 0 < b. Jeśli b P, to z przypadku rozważonego na początku dowodu, istnieje funkcja pierwotna F funkcji f w przedziale [x 0, b]. Ponadto, wobec wniosku 9.., można założyć, że F (x 0 ) = 0. Jeśli b P, to istnieje ciąg rosnący (x n ) n= P taki, że x 0 < x n dla n N oraz lim x n = b. W myśl poprzedniego, w każdym przedziale [x 0, x n ] istnieje funkcja n pierwotna F n : [x 0, x n ] R funkcji f. Ponadto można założyć, że F n (x 0 ) = 0. Wówczas, z własności 9.. mamy F n (x) = F m (x) dla n < m oraz x [x 0, x n ]. Ponieważ [x 0, x n ] = [x 0, b), n N więc funkcja F : [x 0, b) R określona wzorem F (x) = F n (x), jeśli x [x 0, x n ], jest poprawnie określona. Ponadto F (x 0 ) = 0 oraz F (x) = f(x) dla x [x 0, b), czyli dla x P, x x 0. Reasumując istnieje funkcja pierwotna F funkcji f w przedziale {x P : x x 0 } taka, że F (x 0 ) = 0.

9.. O FUNKCJI PIERWOTNEJ FUNKCJI CIĄGŁEJ Analogicznie jak powyżej pokazujemy, że istnieje funkcja pierwotna F funkcji f w przedziale {x P : x x 0 } taka, że F (x0 ) = 0. Ponieważ F (x 0 ) = F (x0 ), więc biorąc funkcję F : P R określoną wzorami F (x) = F (x) dla x P, x x 0 oraz F (x) = F (x) dla x P, x x0, w myśl własności 9.. dostajemy, że F jest funkcją pierwotną funkcji f w przedziale P. Uwaga 9..5. Niech (f n ) n= będzie ciągiem funkcji określonych na przedziale P. Załóżmy, że każda funkcja f n ma w P funkcję pierwotną. W dowodzie twierdzenia 9..4 pokazaliśmy, że jeśli ciąg (f n ) n= jest zbieżny jednostajnie na każdym przedziale domkniętym zawartym w P, to granica ciągu (f n ) n= ma funkcję pierwotną. Uwaga 9..6. Funkcja f : R R określona wzorem f(x) = x sin x cos x dla x 0 oraz f(0) = 0 posiada funkcję pierwotnę F : R R określoną wzorami F (x) = x sin x dla x 0 oraz F (0) = 0. Funkcja f nie jest jednak funkcją ciągłą w punkcie 0. Uwaga 9..7. Istnieją funkcje posiadające funkcje pierwotne w przedziale, których iloczyn nie ma funkcji pierwotnej w tym przedziale. Pokażemy, że funkcja f : R R określona wzorami f(x) = cos dla x 0 oraz f(0) = 0. x ma funkcję pierwotną w R lecz f nie ma w R funkcji pierwotnej. Niech F : R R, g : R R będą funkcjami określonymi wzorami F (x) = x sin x dla x 0 oraz F (0) = 0, g(x) = x sin dla x 0 oraz g(0) = 0. x Funkcja g, jako funkcja ciągła, ma funkcję pierwotną G : R R (twierdzenie 9..4). Wtedy F (x) = g(x) f(x) dla x R, więc F = G F jest funkcją pierwotną funkcji f w R. Przypuśćmy teraz, że funkcja f ma w R funkcję pierwotną F : R R. Pokażemy, że istnieje C R, że (9.) F (x) = F (x) + x + C dla x R. Istotnie, ponieważ cos α = cos α dla α R, więc (9.) f (x) = f(x) + dla x 0. Funkcja F (x) + x jest w R funkcją pierwotną funkcji f + oraz z twierdzenia 9..6 mamy, że funkcja F (x) jest w R funkcją pierwotną funkcji f (x). Stąd, z (9.) i własności 9.., istnieją C, C R, że F (x) = F (x) + x + C dla x (, 0) oraz F (x) = F (x) + x + C dla x (0, + ). Wobec ciągłości funkcji F, F, przechodząc do granicy przy x 0 dostajemy F (0) = F (0) + C oraz F (0) = F (0) + C. Stąd wynika, że C = C. Reasumując pokazaliśmy (9.). Z (9.) i określenia funkcji F, F mamy 0 = f (0) = F (0) = F (0) + = f(0) + =, co jest niemożliwe. Z otrzymanej sprzeczności wynika, że przypuszczenie o istnieniu w R funkcji pierwotnej funkcji f było fałszywe.

ROZDZIAŁ 9. FUNKCJA PIERWOTNA 9.3 Całka nieoznaczona Dla uproszczenia zapisu wprowadzimy pojęcie całki nieoznaczonej. Definicja całki nieoznaczonej. Niech P będzie przedziałem oraz f funkcją określoną na P. Jeśli funkcja f ma funkcję pierwotną w przedziale P, to zbiór wszystkich funkcji pierwotnych funkcji f w przedziale P nazywamy całką nieoznaczoną funkcji f w przedziale P i oznaczamy fdx lub f(x)dx. Jeśli funkcja f nie ma funkcji pierwotnej w przedziale P, to mówimy, że funkcja ta nie ma całki nieoznaczonej w tym przedziale. Uwaga 9.3.. Jeśli F : P R jest funkcją pierwotną funkcji f w przedziale P, to wobec własności 9.. mamy, że f(x)dx = {G : P R : istnieje stała C R, że G = F +C}. W związku z tym, w dalszym ciągu będziemy pisali f(x)dx = F (x) + C, gdzie C R jest dowolną stałą. Aby wyznaczyć całkę nieoznaczoną funkcji w przedziale wystarczy więc obliczyć jedną funkcję pierwotną tej funkcji w tym przedziale. Uwaga 9.3.. W literaturze wyznaczanie funkcji pierwotnej oraz całki nieoznaczonej nazywa się całkowaniem. Uwaga 9.3.3. Oznaczenie f(x)dx, całki nieoznaczonej funkcji f w przedziale P, pochodzi od Leibniza. W oznaczeniu tym nie występuje oznaczenie przedziału P. Należy jednak pamiętać, że proces szukania całki nieoznaczonej jest ściśle związany z przedziałem. Symbol dx, w oznaczeniu całki, ma ułatwić rozróżnienie po której zmiennej całkujemy funkcję, jeśli funkcja zależy od wielu zmiennych. Podamy teraz twierdzenia o całce nieoznaczonej sumy dwóch funkcji. Zgodnie z definicją będziemy musieli dodawać rodziny funkcji. Przyjmijmy więc następujące oznaczenia. Definicja Dla zbiorów A, B R X, funkcji określonych na zbiorze X, przyjmujemy A + B = {f + g : f A g B}, aa = {af : f A}, gdzie a R. g + A = {g + f : f A}, gdzie g : X R. A ϕ = {f ϕ : f A}, gdzie ϕ : Y R, ϕ(y ) X. Bezpośrednio z twierdzenia 9..3 i powyższej definicji dostajemy Twierdzenie 9.3.4. Jeśli funkcje f i g mają całki nieoznaczone w przedziale P, to funkcje f + g oraz αf, gdzie α R, mają całki nieoznaczone w przedziale P i (f + g)dx = fdx + gdx oraz αfdx = α fdx. Z twierdzenia 9..5 mamy Twierdzenie 9.3.5. (o całkowaniu przez części). Niech P będzie przedziałem oraz niech f, g będą funkcjami różniczkowalnymi w przedziale P. Jeśli funkcja f g ma w przedziale P całkę nieoznaczoną, to funkcja f g ma w przedziale P całkę nieoznaczoną oraz f gdx = fg f g dx.

9.3. CAŁKA NIEOZNACZONA 3 Z twierdzenia 9..6 mamy Twierdzenie 9.3.6. (o całkowaniu przez podstawienie). Niech P, Q będą przedziałami oraz niech ϕ : Q R będzie funkcją różniczkowalną taką, że ϕ(q) P. Jeśli funkcja f ma w przedziale P całkę nieoznaczoną, to funkcja f ϕ ϕ ma w przedziale Q całkę nieoznaczoną oraz ( ) f ϕ(x) ϕ (x)dx = f(t)dt ϕ(x). Bepośrednio z twierdzeń 7.. oraz 7.. dostajemy Twierdzenie 9.3.7. Niech α, a R. Wówczas w odpowiednim przedziale, mamy x α dx = xα+ α+ x α dx = xα+ α+ x α dx = xα+ α+ + C, w (0, + ), gdy α R \ { } + C, w R, gdy α N + C, w (, 0), gdy α Z \ { } x dx = ln x + C, w (0, + ), x dx = ln( x) + C, w (, 0), e x dx = e x + C, w R, a x dx = ax + C, w R, gdy a > 0, a, ln a sin xdx = cos x + C, w R, cos xdx = sin x + C, w R, cos x dx = tg x + C, w ( π + kπ, π + kπ), gdzie k Z, dx = ctg x + C, w (kπ, π + kπ), gdzie k Z, sin x +x dx = arctg x + C, w R x dx = arcsin x + C, w (, ). gdzie C R jest dowolną stałą. Przykład 9.3.8. Bezpośrednio z definicji całki nieoznaczonej sprawdzamy, że ln xdx = x ln x x + C w przedziale (0, + ),

4 ROZDZIAŁ 9. FUNKCJA PIERWOTNA gdzie C R jest dowolną stałą. Z punktu widzenia obliczania całek nieoznaczonych ważny jest również sposób w jaki można taką całkę zgadnąć. Stosując mianowicie twierdzenie o całkowaniu przez części 9.3.5, dla funkcji f(x) = x, g(x) = ln x, x (0, + ), dostajemy ln xdx = x ln x dx = x ln x x + C w przedziale (0, + ), gdzie C R jest dowolną stałą. Przykład 9.3.9. Z definicji całki nieoznaczonej sprawdzamy łatwo, że (9.3) e x sin xdx = ex (sin x cos x) + C, w zbiorze R, gdzie C R jest dowolną stałą. Stosując zaś dwa razy twierdzenie o całkowaniu przez części 9.3.5, dostajemy e x sin xdx = e x sin x e x cos xdx = e x sin x e x cos x e x sin xdx w zbiorze R, przy czym całki w powyższym wzorze istnieją. Oznaczając przez F : R R dowolną funkcję pierwotną funkcji e x sin x dostajemy, że istnieje C 0 R, że Stąd dostajemy (9.3). F (x) = e x (sin x cos x) F (x) + C 0, x R. Przykład 9.3.0. Z definicji całki nieoznaczonej sprawdzamy łatwo, że (9.4) arcsin xdx = x arcsin x + x + C, w przedziale (, ), gdzie C R jest dowolną stałą. Stosując zaś twierdzenie o całkowaniu przez części mamy (9.5) arcsin xdx = x arcsin x x dx, w przedziale (, ). x Przyjmując ϕ(x) = x, x (, ) dostajemy ϕ(x) (0, ] oraz x x = ϕ(x) ϕ (x) dla x (, ). Ponadto t dt = t + C w przedziale (0, ], gdzie C R jest dowolną stałą. Zatem stosując twierdzenie o całkowaniu przez podstawienie 9.3.6 dostajemy x dx = x ϕ(x) ϕ (x)dx = ϕ(x) + C = x + C w przedziale (, ), gdzie C R jest dowolną stałą. Stąd i z (9.5) wynika (9.4).

9.4. INFORMACJE O OBLICZANIU FUNKCJI PIERWOTNYCH 5 9.4 Informacje o obliczaniu funkcji pierwotnych W punkcie 9. pokazaliśmy istnienie funkcji pierwotnych funkcji ciągłych w przedziale. W tym punkcie podamy metody efektywnego obliczania funkcji pierwotnych pewnych funkcji. Podamy najpierw metodę obliczania funkcji pierwotnych funkcji wymiernych a następnie pokażemy, jak sprowadzić pewne inne rodziny funkcji do tego przypadku. Wszystkie rozważane tutaj funkcje będą miały funkcje pierwotne, które można zapisać przy użyciu funkcji elementarnych. Na uwagę zasługuje fakt, że nie wszystkic funkcje elementarne mają funkcje pierwotne będące funkcjami elementarnymi. Można na przykład pokazać (lecz nie jest to łatwe), że funkcje określone wzorami f(x) = + x 3, x, g(x) = sin x x, x > 0, h(x) = ln x, x >, p(x) = e x, x R, mają funkcje pietrwotne, które jednak nie są funkcjami elementarnymi. Dla uproszczenia zapisu będziemy w tym punkcie stosowali całki nieoznaczone. 9.4. Całkowanie ułamków prostych Definicja ułamków prostych. Niech n N oraz a, b, c, d, p, q R. Ułamkami prostymi nazywamy funkcje wymierne postaci (9.6) f(x) = a (x b) n, x b, (9.7) g(x) = cx + d (x + px + q) n, x R, gdzie p 4q < 0. Uwaga 9.4.. Funkcja g w powyższej definicji jest poprawnie określona, bowiem z warunku p 4q < 0 wynika, że x + px + q > 0 dla wszystkich x R. Pokażemy, że funkcje pierwotne ułamków prostych (w odpowiednich przedziałach) są funkcjami elementarnymi. Bezpośrednio z definicji całki nieoznaczonej mamy dwie poniższe własności. Własność 9.4.. Niech a, b R, Wówczas gdzie C R jest dowolną stałą. a dx = a ln(b x) + C, w przedziale (, b), x b a dx = a ln(x b) + C, w przedziale (b, + ), x b

6 ROZDZIAŁ 9. FUNKCJA PIERWOTNA Własność 9.4.3. Niech n N, n > oraz a, b R. Wówczas a (x b) dx = a + C, w przedziale (, b), n ( n)(x b) n a (x b) dx = a + C, w przedziale (b, + ), n ( n)(x b) n gdzie C R jest dowolną stałą. Przejdźmy teraz do ułamków prostych postaci (9.7). Lemat 9.4.4. Niech n N, c, d, p, q R oraz p 4q < 0 oraz niech g(x) = cx + d (x + px + q) n, x R. Wówczas przyjmując mamy, że b > 0 oraz a = p, 4q p b = 4 g(x + a) = c x (x + b) + ca + d n (x + b), x R. n Dowód. Ponieważ x + px + q = ( x + p ) 4q p +, 4 więc przyjmując a = p, b = 4q p 4, dostajemy g(x + a) = xc + ca + d = c x (x + b) n (x + b) + ca + d n (x + b), x R, n co daje tezę. Lemat 9.4.5. Niech g : R R będzie funkcją ciągłą, a R oraz niech funkcja ϕ : R R będzie określona wzorem ϕ(x) = x a, x R. Wówczas ( g(x)dx = ) g(t + a)dt ϕ(x). Dowód. Ponieważ g(x)dx = g(ϕ(x) + a)ϕ (x)dx, więc z twierdzenia o całkowaniu przez podstawienie 9.3.6 dostajemy tezę. Z lematów 9.4.4 i 9.4.5 dostajemy

9.4. INFORMACJE O OBLICZANIU FUNKCJI PIERWOTNYCH 7 Własność 9.4.6. Niech n N, c, d, p, q R oraz p 4q < 0. Wówczas oznaczając mamy a = p, 4q p b = 4 ( cx + d ) c (x + px + q) dx = t n (t + b) dt ϕ + n oraz ϕ(x) = x a, x R ( ) ca + d (t + b) dt ϕ, w R. n W świetle własności 9.4.6 dla obliczania całek nieoznaczonych ułamków prostych wystarczy rozważyć ułamki proste postaci x (x + b) n oraz (x + b) n. Bezpośrednio z definicji całki nieoznaczonej mamy Własność 9.4.7. Niech b R, b > 0. Wówczas x x + b dx = ln(x + b) + C, w zbiorze R, x (x + b) dx = + C, w zbiorze R, gdzie α R \ {}, α ( α)(x + b) α gdzie C R jest dowolną stałą. Pozostaje rozważyć ułamki proste postaci (x +b) n. Własność 9.4.8. Niech b R, b > 0 oraz niech ϕ : R R będzie funkcją określoną wzorem ϕ(x) = x b, x R. Wówczas (x + b) n dx = b b n ( ) (t + ) dt ϕ w zbiorze R. n Dowód. Ponieważ (x + b) n = b b n (( x b ) + ) n b = b b n ((ϕ(x)) + ) n ϕ (x), więc z twierdzenia o całkowaniu przez podstawienie 9.3.6 dostajemy tezę. W świetle powyższej własności pozostaje rozważyć ułamki proste postaci (x +) n. Całki nieoznaczone takich funkcji obliczamy przy pomocy następujących wzorów rekurencyjnych.

8 ROZDZIAŁ 9. FUNKCJA PIERWOTNA Twierdzenie 9.4.9. Oznaczmy Wówczas I n = dx, w zbiorze R, gdzie n N. (x + ) n (9.8) I = arctg x + C w zbiorze R, gdzie C R jest dowolną stałą oraz (9.9) I n+ = x n (x + ) + n n n I n dla n N. Dowód. Z twierdzenia 9.3.7 dostajemy (9.8). Funkcje f n (x) =, x R, gdzie n N, (x + ) n jako funkcje ciągłe mają funkcje pierwotne w R. Niech więc F n : R R będzie funkcją pierwotną funkcji f n dla n N. Wtedy dla x R mamy oraz F n+(x) = f n+ (x) ( x n (x + ) + n ) ( ) n n F x n(x) = + n n (x + ) n n (x + ) = f n+(x). n Z powyższych dwóch równości dostajemy (9.9). Zbierając wyniki tego punktu dostajemy Wniosek 9.4.0. Funkcje pierwotne ułamków prostych (w przedziałach, w których ułamki te są określone) są funkcjami elementarnymi. 9.4. Całkowanie funkcji wymiernych Pokażemy, że każda funkcja wymierna ma funkcję pierwotną w każdym przedziale w którym jest określona i funkcja pierwotna jest funkcją elementarną. W świetle wyników poprzedniego punktu wystarczy pokazać, że zachodzi następujące twierdzenie. Twierdzenie 9.4.. Dla każdej funkcji wymiernej f istnieje wielomian W oraz skończony ciąg ułamków prostych g,..., g k, że w punktach, gdzie funkcja f jest określona. f = W + g + + g k,

9.4. INFORMACJE O OBLICZANIU FUNKCJI PIERWOTNYCH 9 Dowód powyższego twierdzenia jest czysto algebraiczny. Można więc go pominąć, odwołując się do algebray. Przyjmując za znane, że każdy niezerowy wielomian o współczynnikach rzeczywistych jest iloczynem wielomianów pierwszego i drugiego stopnia, podajemy jednak szkic dowodu twierdzenia 9.4.. Kluczowym w dowodzie twierdzenia 9.4. jest następujący fakt algebraiczny. Twierdzenia tego dowodzi się również w Analizie Zespolonej. Lemat 9.4.. Każdy wielomian dodadniego stopnia (o współczynnikach rzeczywistych) jest iloczynem skończonej ilości wielomianów stopnia pierwszego oraz wielomianów stopnia, które nie mają pierwiastków. Następnym ważnym twierdzeniem w dowodzie twierdzenia 9.4. jest poniższy Algorytmu Euklidesa. Lemat 9.4.3. Niech P, Q będą wielomianami niezerowymi. Wówczas istnieją wielomiany W i R takie, że deg R < deg Q oraz (9.0) P = W Q + R. Dowód. Niech P = a m x m + a m x m + a 0, Q(x) = b k x k + b k x k + + b 0, a m 0, b k 0. Wtedy m = deg P, k = deg Q. Jeśli m < k, to kładąc W = 0, R = P dostajemy tezę. Załóżmy, że m k. Oznaczmy m = m 0, R 0 = P oraz α 0 = am b k. Wtedy wielomian R = R 0 α 0 x m k Q ma stopień mniejszy od m 0. Jeśli m = deg R < k, to dla W (x) = αx m k oraz R = R, dostajemy tezę. Jeśli m k, to analogicznie jak powyżej, istnieje α R, że R = R α x m k Q oraz m = deg R < m. Postępując tak dalej znajdziemy skończony ciąg liczb α i R oraz wielomianów R i, że R i = R i α i x mi k Q dla i = 0,..., n oraz m i = deg R i jest ciągiem malejącym, k m n, k > m n. Wtedy dla W = α 0 x m0 k + α x m=k + α n x mn k oraz R = R n dostajemy (9.0). Lemat 9.4.4. Niech P, Q będą wielomianami oraz a R, k N. Jeśli Q(a) 0, to przyjmując A = P (a) Q(a), istnieje wielomian P taki, że (9.) P (x) (x a) k Q(x) = A (x a) k + P (x) (x a) k, gdzie x R, (x a)q(x) 0. Q(x) Dowód. Ponieważ P (a) AQ(a) = 0, więc z twierdzenia Bezouta 3.9.6 istnieje wielomian P taki, że P (x) AQ(x) = (x a)p (x). Dzieląc tę ostatnią równość przez (x a) k Q(x) dostajemy (9.). Definicja. Niech P, Q będą wielomianami. Mówimy, że wielomian Q dzieli wielomian P, gdy istnieje wielomian W, że P = W Q. W przeciwnym razie mówimy, że wielomian Q nie dzieli wielomianu P. Lemat 9.4.5. Niech P, Q będą wielomianami oraz p, q R, k N. Jeśli wielomian x +px+q nie dzieli żadnego z wielomianów P i Q oraz p 4q < 0, to istnieją B, C R oraz istnieje wielomian P taki, że (9.) P (x) (x + px + q) k Q(x) = Bx + C (x + px + q) k + P (x) (x + px + q) k, gdzie x R, Q(x) 0. Q(x) Dowód. Wystarczy pokazać, że istnieją B, C R oraz istnieje wielomian P taki, że (9.3) P (x) (Bx + C)Q(x) = (x + px + q)p (x) dla x R. Z lematu 9.4.3 i założenia, że wielomiany P, Q nie dzielą się przez x + px + q wynika, że istnieją a, b, c, d R oraz wielomiany F, W takie, że a 0 lub b 0 oraz c 0 lub d 0 i dla x R mamy P (x) = (x + px + q)f (x) + (ax + b), Q(x) = (x + px + q)w (x) + (cx + d).

0 ROZDZIAŁ 9. FUNKCJA PIERWOTNA Zatem dla dowolnych B, C R oraz x R mamy (9.4) P (x) (Bx + C)Q(x) = (x + px + q)(f (x) (Bx + C)W (x)) + (ax + b) (Bx + C)(cx + d), ponadto dzieląc (ax + b) (Bx + C)(cx + d) przez x + px + q dostajemy (9.5) (ax + b) (Bx + C)(cx + d) = (x + px + q)( Bc) + (a Bd Cc + Bcp)x + b Cd + Bcq. Zauważmy, że istnieją B, C R, że (9.6) a Bd Cc + Bcp = 0 i b Cd + Bcq = 0. Układ (9.6) jest układem równań liniowych zmiennych B, C o wyznaczniku głównym A równym d cpd + c q. Wyznacznik ten jest różny od zera. Istotnie, jeśli c = 0, to d 0 i wyznacznik A = d jest różny od zera. Jeśli zaś c 0, to A = c [( d c ) + p( d c ) + q] 0, gdyż d c nie może być pierwiastkiem wielomian x + px + q, bo p 4q < 0. Reasumując układ (9.6) ma rozwiącanie (B, C). Biorąc to rozwiązanie, z (9.5) i (9.4) dostajemy P (x) (Bx + C)Q(x) = (x + px + q)(f (x) (Bx + C)W (x)) + (x + px + q)( Bc). Oznaczając więc P = F (x) (Bx + C)W (x) Bc dostajemy (9.). Dowód twierdzenia 9.4.. Niech f = P Q, gdzie P, Q są wielomianami nie posiadającymi wspólnych dzielników (tzn. P i Q nie dzielą się przez ten sam wielomian dodatniego stopnia). Zgodnie, z lematem 9.4. istnieją wielomiany stopnia pierwszego L i (x) = x a i, liczby k i N, i =,..., r oraz wielomiany stopnia drugiego K i (x) = x + p i x + q i, nie posiadające pierwiastków, liczby l i N, i =,..., s oraz α R \ {0}, że Q(x) = α(x a ) k (x a r ) kr (x + p x + q ) l (x + p s x + q s ) ls, przy czym w powyższym wzorze czynniki pierwszego lub drugiego stopnia mogę nie występować, jeśli Q jest iloczynem czynników liniowych lub, gdy jest iloczynem czynników stopnia drugiego. Ponadto czynniki L i są różne między sobą i czynniki K i są różne między sobą. Można założyć, że α =. Stosując teraz k + k r razy lemat 9.4.4 oraz l + + l s razy lemat 9.4.5 dostajemy tezę twierdzenia 9.4.. Z twierdzenia 9.4., wniosku 9.4.0 i faktu, że funkcja pierwotna wielomianu jest wielomianem, dostajemy Wniosek 9.4.6. Funkcje pierwotne funkcji wymiernych (w przedziałach, w których są określone) są funkcjami elementarnymi. Uwaga 9.4.7. Z twierdzenia 9.4. dostajemy algorytm wyliczania całki nieoznaczonej dowolnej funkcji wymiernej f = P. Należy mianowicie przedstawić funkcję f w postaci sumy wielomianu i ułamków prostych, a następnie zastosować algorytmy wyliczania funkcji Q pierwotnych dowolnego ułamka prostego, podane w poprzednim podpunkcie. Główną trudnością w tym algorytmie jest rozłożenie wielomianu Q na iloczyn wielomianów stopnia pierwszego i drugiego. Nie mamy efektywnych metod uzyskiwania tego rozkładu. Metodę rozkładu funkcji wymiernej na ułamki proste przedstawimy na przykładzie. Przykład 9.4.8. Niech (9.7) f(x) = x6 + 4x 4 3x 3 + 5x x +, x R \ {, }. (x + ) (x ) (x + )

9.4. INFORMACJE O OBLICZANIU FUNKCJI PIERWOTNYCH Mianownik jest iloczynem wielomianów pierwszego i drugiego stopnia. Przy czym wielomian x + nie ma pierwiastków rzeczywistych. Przedstawimy funkcję f w postaci sumy ułamków prostych postaci (9.8) f(x) = Ax + B x + + Cx + D (x + ) + E x + H (x ) + T x +, gdzie A, B, C, D, E, H, T R. Sprowadzając prawą stronę (9.8) do wspólnego mianownika, przyjmuje ona postać (Ax + B)(x + )(x ) (x + ) + (Cx + D)(x ) (x + ) + E(x + ) (x )(x + ) (x + ) (x ) (x + ) + H(x + ) (x + ) + T (x + ) (x ). (x + ) (x ) (x + ) Porównując współczynniki przy odpowiednich potęgach liczników w powyższym i (9.7) otrzymujemy układ równań liniowych. Rozwiązując ten układ dostajemy A = 0, B =, C = 0, D =, E =, H =, T =. W konsekwencji z (9.8), (9.9) f(x) = x + + (x + ) + x + (x ) + x +, Przykład 9.4.9. Obliczymy całkę nieoznaczoną funkcji wymiernej z przykładu 9.4.8 w przedziale (, + ). Z twierdzenia 9.4.9 mamy dx = arctg x + C x + oraz (x + ) dx = x x + + x + dx = x x + + arctg x + C, gdzie C R jest dowolną stałą. Ponadto dx = ln(x ) + C, x W konsekwencji z (9.9) mamy f(x)dx = x x + gdzie C R jest dowolną stałą. dx = (x ) x + C i dx = ln(x + ) + C. x + arctg x + ln(x ) + ln(x + ) + C, x 9.4.3 Całkowanie funkcji trygonometrycznych Definicja funkcji wymiernej dwóch zmiennych. Funkcję f : R R R dwóch zmiennych x, y postaci f(x, y) = ax k y l, (x, y) R R, gdzie k, l Z, k, l 0 nazywamy jednomianem dwóch zmiennych. Funkcje W : R R R będące sumami skończonej ilości jednomianów dwóch zmiennych x, y nazywamy wielomianami dwóch zmiennych. Jeśli F, G są wielomianami dwóch zmiennych takimi, że G nie znika tożsamościowo, to funkcję W (x, y) = F (x,y) określoną w zbiorze {(x, y) R R : G(x, y) 0} nazywamy funkcją G(x,y) wymierną dwóch zmiennych.

ROZDZIAŁ 9. FUNKCJA PIERWOTNA Uwaga 9.4.0. Niech W będzie funkcją wymierną dwóch zmiennych oraz ϕ, ψ funkcjami wymiernymi jednej zmiennej. Niech P będzie przedziałem. Bezpośrednio z definicji (jednomianu, wielomianu dwóch zmiennych i funkcji wymiernej) dostajemy, że jeśli funkcje ϕ, ψ są określone w każdym punkcie x P, przy czym punkt (ϕ(x), ψ(x)) należy do dziedziny funkcji W, to funkcja f(x) = W (ϕ(x), ψ(x)), x P jest obcięciem funkcji wymiernej. Pokażemy, że każda funkcja postaci f(x) = W (sin x, cos x), gdzie W jest funkcją wymierną dwóch zmiennych, ma w każdym przedziale w którym jest określona funkcję pierwotnę będącą funkcją elementarną. Lemat 9.4.. Niech ϕ : ( π, π) R będzie funkcją określoną wzorem ϕ(x) = tg x, x ( π, π). Wtedy dla x ( π, π) mamy (9.0) sin x = ( t +t ) ϕ(x), cos x = ( t +t ) ϕ(x), = ( +t ) ϕ(x) ϕ (x). Dowód. Ponieważ dla x ( π, π) zachodzi sin x = tg x + tg x oraz cos x = tg x + tg x, więc mamy pierwsze dwie części (9.0). Podobnie dostajemy ϕ (x) = + ϕ (x), więc mamy ostatnią część (9.0). Twierdzenie 9.4.. Niech (a, b) ( π, π) oraz niech f : (a, b) R będzie funkcją postaci f(x) = W (sin x, cos x), x (a, b), gdzie W jest funkcją wymierną dwóch zmiennych ( ). Jeśli ϕ : (a, b) R jest funkcją określoną wzorem ϕ(x) = tg x, x (a, b), to (9.) f(x) = ) +t W ( t, t +t + t ϕ(x) ϕ (x), x (a, b). W szczególności (9.) f(x)dx = W ( ) t, t +t +t dt ϕ(x) w przedziale (a, b). + t zakładamy oczywiście, że dla każdego x (a, b), punkt (sin x, cos x) należy do dziedziny funkcji W.

9.4. INFORMACJE O OBLICZANIU FUNKCJI PIERWOTNYCH 3 Dowód. Ponieważ dla każdego x (a, b), punkt (sin x, cos x) należy do dziedziny funkcji W, więc z lematu 9.4. dla każdego t ϕ((a, b)), punkt ( t, t ) należy do +t +t dziedziny funkcji W, zatem funkcja W ( t +t, t +t ) jest funkcją wymierną określoną na przedziale ϕ((a, b)). W konsekwencji z lematu 9.4. dostajemy (9.). Z (9.) i twierdzenia o całkowaniu przez podstawienie 9.3.6 dostajemy (9.). Z twierdzenia 9.4. i wniosku 9.4.6 dostajemy natychmiast Wniosek 9.4.3. Niech (a, b) ( π, π) oraz niech f : (a, b) R będzie funkcją postaci f(x) = W (sin x, cos x), x (a, b), gdzie W jest funkcją wymierną dwóch zmiennych. Wówczas każda funkcja pierwotna funkcji f jest funkcją elementarną. Uwaga 9.4.4. Niech (a, b) (0, π) oraz f : (a, b) R będzie funkcją postaci f(x) = W (sin x, cos x), x (a, b), gdzie W jest funkcją wymierną dwóch zmiennych. Jeśli ϕ : (a, b) R jest funkcją określoną wzorem ϕ(x) = ctg x, x (a, b), to analogicznie jak lematu 9.4. dowodzimy, że dla x (a, b) mamy sin x = ( ) t ϕ(x), cos x = + t ( ) + t ϕ(x), + t ( ) = ϕ(x) ϕ (x). + t Zatem, analogicznie jak w twierdzeniu 9.4., ) +t t W (, +t f(x) = +t + t ϕ(x) ϕ (x), x (a, b), w szczególności f(x)dx = W ( t, +t ) +t +t dt ϕ + t w przedziale (a, b). Uwaga 9.4.5. Z uwagi na okresowość funkcji postaci f(x) = W (sin x, cos x), gdzie W jest funkcją wymierną dwóch zmiennych, wystarczy umieć obliczać całki nieoznaczone takich funkcji w przedziałach (a, b) ( π, π) oraz przedziałach (a, b) (0, π). Przykład 9.4.6. Pokażemy, że (9.3) ( ( x cos x dx = ln tg + π )) + C, w przedziale 4 ( π, π ), gdzie C R jest dowolną stałą. Można sprawdzić bezpośrednio, że (9.3) zachodzi. Można również zastosować twierdzenie 9.4.. Biorąc funkcję ϕ : ( π, π ) R określoną wzorem ϕ(x) = tg x, x ( π, π), mamy ϕ(x) (, ) dla x ( π, π ) oraz wobec twierdzenia 9.4., ( ) + t ( ) ( cos x = ϕ(x)ϕ (x) = ϕ(x)ϕ (x) dla x π t + t t, π ).

4 ROZDZIAŁ 9. FUNKCJA PIERWOTNA Ponieważ w przedziale (, ) mamy t dt = t dt + gdzie C R jest dowolną stałą, więc cos x dx = ln + tg x tg x 9.4.4 Podstawienia Eulera + t dt = ln( t) + ln( + t) + C = ln + t t + C, ( ( x + C = ln tg + π )) + C, w przedziale 4 ( π, π ). Niech w tym punkcie: W będzie funkcją wymierną dwóch zmiennych, niech a, b, c będą ustalonymi liczbami rzeczywistymi oraz niech P będzie przedziałem. Załóżmy, że dla każdego x P zachodzi ax + bx + c > 0 oraz punkt (x, ax + bx + c) należy do dziedziny funkcji W. Niech f : P R będzie funkcją postaci (9.4) f(x) = W ( x, ax + bx + c ), x P. Pokażemy, że każda funkcja pierwotna funkcji f w przedziale P jest funkcją elementarną. Twierdzenie 9.4.7. Niech f będzie funkcją postaci (9.4). Jeśli a = 0 i b 0, to funkcja ϕ : P R określona wzorem ϕ(x) = bx + c, x P jest różniczkowalna, ( t ) c (9.5) x = ϕ(x), = b oraz (9.6) f(x)dx = [ W ( t c b ( ) t ϕ(x)ϕ (x) dla x P b ) ] t, t b dt ϕ, w przedziale P. Dowód. Ponieważ dla x P mamy bx + c > 0, więc ϕ(x) > 0 oraz ϕ jest funkcją różniczkowalną, jako złożenie funkcji różniczkowalnych. Ponadto dla x P mamy To daje pierwszą część (9.5). Ponadto ϕ (x) = ϕ (x) = bx + c i dalej x = ϕ (x) c. b b ϕ(x), więc = ϕ (x) dla x P. ϕ(x) b To daje drugą część (9.5). Ponieważ dla każdego x P, punkt (x, bx + c) należy do dziedziny funkcji W, więc dla każdego t ϕ(p ), punkt ( t c, t ) należy do dziedziny b funkcji W i w konsekwencji funkcja W ( t c, t ) t jest wymierna i określona w przedziale b b ϕ(p ). Z (9.5) i twierdzenia o całkowaniu przez podstawienie 9.3.6 dostajemy (9.6).

9.4. INFORMACJE O OBLICZANIU FUNKCJI PIERWOTNYCH 5 Twierdzenie 9.4.8. (I podstawienie Eulera). Niech f będzie funkcją postaci (9.4). Jeśli a > 0 i b 4ac 0, to funkcja ϕ : P R określona wzorem ϕ(x) = ax + bx + c + ax, x P jest różniczkowalna i dla x P mamy (9.7) x = ( t ) c ϕ(x), at + b ( at + bt + c ) a ax + bx + c = ϕ(x), at + b ( at + bt + c ) a (9.8) = ( ϕ(x)ϕ (x). at + b) W szczególności w przedziale P mamy (9.9) f(x)dx = [ W ( t c at + b, at + bt + c a at + b ) at + bt + c ] a ( dt ϕ. at + b) Dowód. Ponieważ funkcja f jest określoną wzorem (9.4), więc ax + bx + c > 0 dla x P. Stąd i z założenia a > 0 wynika, że funkcja ϕ jest różniczkowalna. Dla x P, z określenia funkcji ϕ, mamy zatem ϕ(x) ax = ax + bx + c, więc ϕ (x) axϕ(x) = bx + c, (9.30) x( aϕ(x) + b) = ϕ (x) c. Ponadto (9.3) aϕ(x) + b 0, gdyż w przeciwnym razie z określenia funkcji ϕ mielibyśmy a ax + bx + c = ax b i dalej 4a x + 4abx + 4ac = 4a x + 4abx + b, zatem b 4ac = 0, wbrew założeniu. Reasumując mamy (9.3). Z (9.3) i (9.30) wynika pierwsza część (9.7). Druga część (9.7) wynika z pierwszej i określenia funkcji ϕ. Różniczkując funkcję ϕ i stosując (9.7) dostajemy ϕ ax + b (x) = ax + bx + c + a = [( ) ( a t c at + b + b ) at + b at + bt + c + ] a ϕ(x), a więc po łatwych przekształceniach otrzymujemy (9.8). Podobnie jak w twierdzeniu 9.4.7 pokazujemy, że funkcja podcałkowa po prawej stronie (9.9) jest określona w przedziale ϕ(p ) i z twierdzenia o całkowaniu przez podstawienie dostajemy (9.9).

6 ROZDZIAŁ 9. FUNKCJA PIERWOTNA Uwaga 9.4.9. Niech f będzie funkcją postaci (9.4). Jeśli a > 0 i b 4ac = 0, to istnieje x 0 R, że ax + bx + c = a(x x 0 ). Wówczas z założenia, że ax + bx + c > 0 dla x P mamy, że P (, x 0 ) lub P (x 0, + ). Jśli P (, x 0 ), to przyjmując ϕ(x) = a(x x 0 ), x P, mamy x = ϕ(x) a + x 0, ax + bx + c = ϕ(x) oraz ϕ (x) = a dla x P. Zatem z twierdzenia o całkowaniu przez podstawieniu, (9.3) f(x)dx = [ ( W t ) ] + x 0, t dt ϕ a a Jśli P (x 0, + ), to przyjmując ϕ(x) = a(x x 0 ), x P, mamy x = ϕ(x) a + x 0, ax + bx + c = ϕ(x) oraz ϕ (x) = a dla x P. Zatem (9.33) f(x)dx = [ ( ) ] t W + x 0, t dt ϕ a a Twierdzenie 9.4.30. (III podstawienie Eulera). Niech f będzie funkcją postaci (9.4). Jeśli a < 0 i b 4ac > 0, to istnieją p, q R, p < q, że ax + bx + c = a(x p)(x q) dla x R. Wtedy P (p, q) oraz funkcja ϕ : P R określona wzorem ϕ(x) = ax + bx + c, x P x p jest różniczkowalna i dla x P mamy (9.34) x = ( pt ) aq ϕ(x), t a ( ) a(p q)t ax + bx + c = ϕ(x), t a ( ) a(q p)t (9.35) = ϕ(x)ϕ (x). (t a) W szczególności w przedziale P mamy (9.36) f(x)dx = [ W ( pt ) ] aq a(p q)t a(q p)t, t a t a (t a) dt ϕ. Dowód. Funkcja ϕ jest oczywiście różniczkowalna w przedziale P. Ponadto dla x P mamy ϕ(x)(x p) = a(x p)(x q), więc po podniesieniu do kwadratu, (9.37) x(ϕ (x) a) = ϕ (x)p aq. Ponadto ϕ (x) a, gdyż w przeciwnym razie, po podniesieniu do kwadratu mielibyśmy a(x q) = a(x p), co jest niemożliwe, bo p q. W konsekwencji z (9.37) mamy pierwszą