Dualizm korpuskularno falowy Fala elektromagnetyczna o długości λ w pewnych zjawiskach zachowuje się jak cząstka (foton) o pędzie p=h/λ i energii E = h = h. c/λ p Cząstki niosą pęd p Cząstce o pędzie p można przyporządkować falę o długości λ=h/p λ
Postulat o falowej naturze elektronów (1924, Nagroda Nobla 1929) ν Louis-Victor, 7 e duke de Broglie Louis de Broglie (1892-1987)
Jak jest długość fali elektronu o energii 10 ev? (V=2000000 m/s) λ = h p 2 p Ek = p = 2mE 2m K
Jak jest długość fali piłki tenisowej? (V=50 km/s) λ = h p = 6 34 34.63 10 J s 50 0.058kg m s = 2.28 10 m
Fale ulegają dyfrakcji i interferują Elektrony zachowują się jak fale? Thomas Young (1773-1829)
Doświadczenie Younga S 2 S 1 θ Δr r 1 θ d r 2 P O y Warunek maksimum d sin θ = mλ Warunek minimum d sin θ = ( m + 1 2 λ) D Δr = r2 -r1 = d sin θ E1 = E0 sin( kr1 ωt) E2 = E0 sin( kr2 ωt) E = E 1 + E 2 = 2E 0 sin(k r - ωt) Warunkiem interferencji jest spójność (koherencja) żródeł światła S 1 i S 2, czyli stałość różnicy faz
Postulat o falowej naturze elektronów (1924) Udowodniony już w roku 1927 Clinton Davisson, Lester Germer (nierelatywistyczne elektrony) George Thomson (relatywistyczne elektrony) Ekran, film Wiązka padająca prom. X elektrony Dyfrakcja elektronów niskoenergetycznych na powierzchni kryształu niklu Folia metalowa Pierścień dyfrakcyjny
Dualizm korpuskularno falowy Fala elektromagnetyczna o długości λ w pewnych zjawiskach zachowuje się jak cząstka (foton) o pędzie p=h/λ i energii E = h = h. c/λ p Cząstki niosą pęd p Cząstce o pędzie p można przyporządkować falę o długości λ=h/p λ
Jak opisać matematycznie fale materii? Równanie klasycznej fali Najprostsze rozwiązanie Fala biegnąca o dokładnie określonej częstotliwości istniejąca w całej przestrzeni
= h 2π Jak opisać fale materii? W najprostszym przybliżeniu: 2π k = = λ p ω = E Ψ( x, t) = Asin( kx ω t + ϕ) p E = Asin( x t + ϕ) zbyt szczególne, ogólniej w postaci zespolonej: Ψ( x, t) = A[sin( kx ω t + ϕ) + i cos( kx ωt + ϕ)] Ψ( x, t) = Ae i( kx ωt+ ϕ ) = Ae i( p x E t+ ϕ ) Funkcja falowa opisująca cząstkę o pędzie dokładnie = p O takiej cząstce możemy powiedzieć, że się znajduje wszędzie Uwaga! Liczby zespolone
Opis fal przy pomocy liczb zespolonych Pole elektryczne fali świetlnej o częstości ω można opisać: Ψ(x,t) = A cos(kx ωt ϕ) Ponieważ exp(iϕ) = cos(θ) + i sin(θ) (formuła Eulera ): lub Ψ (x,t) = Re { A exp[i(kx ωt ϕ)]} Ψ (x,t) = 1/2 A exp[i(kx ωt ϕ)] + c.c. gdzie + c.c. oznacza plus sprzężenie zespolone wszystkiego, co jest przed plusem.
Przypomnienie: liczby zespolone Każdą liczbę zespoloną z, można zapisać: Tak więc: i z = Re{ z } + i Im{ z } Re{ z } = 1/2 ( z + z* ) Im{ z } = 1/2i ( z z* ) gdzie z* jest liczbą sprzężoną liczby z ( i i ) Wielkość z (moduł), liczby zespolonej: z 2 = z z* = Re{ z } 2 + Im{ z } 2 Liczbę z zapisać można w postaci polarnej: A exp(iϕ). z A 2 = Re{ z } 2 + Im{ z } 2 tan(ϕ) = Im{ z } / Re{ z }
Fale zapisane przy pomocy zespolonych amplitud W opisie fal wygodnie jest dopuścić zespolone amplitudy: Ψ (x,t) = A exp[i(kx ωt ϕ)] Ψ (x,t) = { Aexp(-i ϕ )} exp[i(kx ωt] Ψ 0 (x,t) = Aexp(-i ϕ) (Stała amplituda zespolona) Ψ (x,t) = Ψ 0 exp [i(kx ωt)] Szybko-zmienne części zostały odseparowane od części stałych
Liczby zespolone ułatwiają życie Dodawanie fal o tych samych częstościach i różnych fazach początkowych daje falę o tej samej częstości. Nie jest to takie oczywiste w zapisie z użyciem funkcji trygonometrycznych, a jest natychmiastowe z użyciem funkcji wykładniczych Ψ tot (x,t) = Ψ 1 exp [i(kx ωt)] + Ψ 2 exp [i(kx ωt)]+ Ψ 3 exp [i(kx ωt)]= = (Ψ 1 + Ψ 2 + Ψ 3 ) exp [i(kx ωt)] wszystkie fazy początkowe zostały włączone w E 1, E 2, i E 3. Ψ tot (x,t) Ψ 1 Ψ 2 Ψ 3
Interpretacja funkcji falowej Klasyczna fala świetlna Klasyczna fala świetlna f.f. opisuje natężenie pola e-mag, a jej kwadrat natężenie światła. Ale obraz interferencyjny obserwowany jest też jeśli na szczelinę padają pojedyncze fotony. Wtedy: Obraz dyfrakcyjny należy interpretować jako obraz prawdopodobieństwa wykrycia fotonu w danym miejscu Podobnie dla fal materii
Interpretacja funkcji falowej Klasyczne cząstki Fale materii Fala materii funkcja falowa związana jest z prawdopodobieństwem tego, że cząstka znajduje się w danym miejscu.
Interpretacja funkcji falowej (Max Born, 1926) Przykład: funkcja falowa cząstki o stałym pędzie dokładnie = p (cząstka swobodna poruszająca się w przestrzeni bez żadnych ograniczeń) Ψ p E i( x t) (, ) = x t Ae = Ae ikx e iωt Separacja zmiennych przestrzennych i czasowych = Ψ( x) e iωt Interpretuję się nie funkcję falową (zespolona), ale jej kwadrat P( x) dx = Ψ( x, t) 2 dx P(x) jest gęstością prawdopodobieństwa P(x)dx jest prawdopodobieństwem znalezienia cząstki w obszarze (x, x + dx) Prawdopodobieństwo znalezienia cząstki w skończonym obszarze (x 1, x 2 ) Uwaga! Liczby zespolone * Ψ 2 P x = 2 = Ψ Ψ Ψ ( x, t) x 1 2 dx
Interpretacja funkcji falowej 2 Dla cząstki swobodnej: p E i( x t) p E i( x t) Ψ( x, t) = Ae Ae = A 2 Gęstość prawdopodobieństwa Ψ( x, t) 2 Dla cząstki swobodnej: Gęstość prawdopodobieństwa jest w przestrzeni stała Warunek normalizacji: prawdopodobieństwo znalezienia cząstki gdziekolwiek = 1 Ψ( x, t) 2 dx = 1
Cząstki oddziałują (nie są swobodne) Np. elektrony w krysztale, ale także swobodny elektron który docierając do ekranu zostaje zarejestrowany Jak wygląda funkcja falowa elektronu, którego położenie jest lepiej określone? Na przykład tak: Pakiet falowy (paczka falowa)
Pakiet falowy jest wynikiem superpozycji wielu fal o różnych częstościach i długościach Najprostszy przypadek dwie fale Zdudnienia
Pakiet falowy jest wynikiem superpozycji wielu fal o różnych częstościach i długościach. Δk Δx Pakiet falowy jest wynikiem superpozycji wielu fal o różnych częstościach i długościach. Im szerszy jest zakres liczb falowych fal składowych (Δk), tym mniejsza jest szerokość pakietu Δx
PhET Interactive Simulations Copyright 2004-2011 University of Colorado. Some rights reserved. Visit http://phet.colorado.edu Symulacja
Można udowodnić że: k p p p x 1 Zasada nieoznaczoności Heisenberga x y z x y z 2π k = = λ p Iloczyn nieokreśloności pędu cząstki i nieokreśloności jej położenia w danym kierunku równy co najmniej od stałej Plancka. Oznacza to, że im dokładniej mierzymy pęd, to znaczy zmniejszamy np. Δp x, tym bardziej rośnie nieoznaczoność położenia Δx. Podobnie: E t Jeżeli cząstka posiada energię E, to dokładność jej wyznaczenia ΔE zależy od czasu pomiaru Δt. Im dłużej cząstka jest w stanie o energii E tym dokładniej można tę energię wyznaczyć.
Mechanika kwantowa Erwin Schrödinger (1887-1961) Werner Heisenberg 1901-1976