Materiały do wykładu Logiczne podstawy kognitywistyki

Podobne dokumenty
O pewnych zgadnieniach optymalizacyjnych O pewnych zgadnieniach optymalizacyjnych

INSTRUKCJA. - Jak rozwiązywać zadania wysoko punktowane?

PODSTAWY BAZ DANYCH Wykład 3 2. Pojęcie Relacyjnej Bazy Danych

Kodowanie liczb. Kodowanie stałopozycyjne liczb całkowitych. Niech liczba całkowita a ma w systemie dwójkowym postać: Kod prosty

ZADANIA OTWARTE. Są więc takie same. Trzeba jeszcze pokazać, że wynoszą one 2b, gdyż taka jest długość krawędzi dwudziestościanu.

Równania i nierówności kwadratowe z jedną niewiadomą

PODSTAWY BAZ DANYCH Wykład 2 2. Pojęcie Relacyjnej Bazy Danych

Realizacje zmiennych są niezależne, co sprawia, że ciąg jest ciągiem niezależnych zmiennych losowych,

Wartość bezwzględna. Proste równania i nierówności.

STYLE. TWORZENIE SPISÓW TREŚCI

Zbiory wyznaczone przez funkcje zdaniowe

PEWNIK DEDEKINDA i jego najprostsze konsekwencje

Całki niewłaściwe. Rozdział Wprowadzenie Całki niewłaściwe I rodzaju

W. Guzicki Zadanie 19 z Informatora Maturalnego poziom rozszerzony 1

Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna

Redukcja układów sił działających na bryły sztywne

Prace Koła Matematyków Uniwersytetu Pedagogicznego w Krakowie (2014)

Maciej Grzesiak. Iloczyn skalarny. 1. Iloczyn skalarny wektorów na płaszczyźnie i w przestrzeni. a b = a b cos ϕ. j) (b x. i + b y

Rozwiązania maj 2017r. Zadania zamknięte

Wykład 6 Dyfrakcja Fresnela i Fraunhofera

f(x)dx (1.7) b f(x)dx = F (x) = F (b) F (a) (1.2)

Macierz. Wyznacznik macierzy. Układ równań liniowych

Analiza matematyczna i algebra liniowa

WYZNACZANIE OGNISKOWEJ SOCZEWEK CIENKICH ZA POMOCĄ ŁAWY OPTYCZNEJ

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

Wektor kolumnowy m wymiarowy macierz prostokątna o wymiarze n=1 Wektor wierszowy n wymiarowy macierz prostokątna o wymiarze m=1

Zadania. I. Podzielność liczb całkowitych

4. RACHUNEK WEKTOROWY

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

Algebra Boola i podstawy systemów liczbowych. Ćwiczenia z Teorii Układów Logicznych, dr inż. Ernest Jamro. 1. System dwójkowy reprezentacja binarna

Wybrane zagadnienia z geometrii płaszczyzny. Danuta Zaremba

VI. Rachunek całkowy. 1. Całka nieoznaczona

WEKTORY skalary wektory W ogólnym przypadku, aby określić wektor, należy znać:

Wyk lad 1 Podstawowe wiadomości o macierzach

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

RACHUNEK CAŁKOWY. Funkcja F jest funkcją pierwotną funkcji f na przedziale I R, jeżeli. F (x) = f (x), dla każdego x I.

Wyrównanie sieci niwelacyjnej

Wprowadzenie: Do czego służą wektory?

Wymagania edukacyjne matematyka klasa 2 zakres podstawowy 1. SUMY ALGEBRAICZNE

1 Definicja całki oznaczonej

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki oznaczone. lim δ n = 0. σ n = f(ξ i ) x i. (1)

MATeMAtyka 3 inf. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Dorota Ponczek, Karolina Wej

Kombinowanie o nieskończoności. 4. Jak zmierzyć?

Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski

KONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania

RACHUNEK RÓŻNICZKOWY I CAŁKOWY WSB-NLU 2006/7 3

KONKURS MATEMATYCZNY dla uczniów gimnazjów w roku szkolnym 2012/13. Propozycja punktowania rozwiązań zadań

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

CAŁKOWANIE NUMERYCZNE

Małgorzata Żak. Zapisane w genach. czyli o zastosowaniu matematyki w genetyce

O RELACJACH MIĘDZY GRUPĄ OBROTÓW, A GRUPĄ PERMUTACJI

Macierz. Wyznacznik macierzy. Układ równań liniowych

Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa

2. FUNKCJE WYMIERNE Poziom (K) lub (P)

Materiały diagnostyczne z matematyki poziom podstawowy

1. Warunki. 2. Zakładanie konta. 3. Logowanie. 4. Korzystanie z portalu klienta 5. Subkonta 5.1Zakładanie subkonta. 5.

Jest błędem odwołanie się do zmiennej, której nie przypisano wcześniej żadnej wartości.

KOMPENDIUM MATURZYSTY Matematyka poziom podstawowy

ROZWIĄZYWANIE MAŁYCH TRÓJKĄTÓW SFERYCZNYCH

wersja podstawowa (gradient)

Klucz odpowiedzi do zadań zamkniętych oraz schemat oceniania

Programy współbieżne

Grażyna Nowicka, Waldemar Nowicki BADANIE RÓWNOWAG KWASOWO-ZASADOWYCH W ROZTWORACH ELEKTROLITÓW AMFOTERYCZNYCH

zestaw DO ĆWICZEŃ z matematyki

Niewymierność i przestępność Materiały do warsztatów na WWW6

PRÓBNA MATURA Z MATEMATYKI Z OPERONEM LISTOPAD ,0. 3x 6 6 3x 6 6,

Laura Opalska. Klasa 1. Gimnazjum nr 1 z Oddziałami Integracyjnym i Sportowymi im. Bł. Salomei w Skale

Zastosowanie multimetrów cyfrowych do pomiaru podstawowych wielkości elektrycznych

bezkontekstowa generujac X 010 0X0.

1.5. Iloczyn wektorowy. Definicja oraz k. Niech i

WYZNACZNIKI. . Gdybyśmy rozważali układ dwóch równań liniowych, powiedzmy: Takie układy w matematyce nazywa się macierzami. Przyjmijmy definicję:

ELEKTRONIKA CYFROWA. Materiały y pomocnicze do wykład sem.. 1

Uniwersytet Mikołaja Kopernika w Toruniu

usuwa niewymierność z mianownika wyrażenia typu

Matematyka stosowana i metody numeryczne

WYKŁAD 5. Typy macierzy, działania na macierzach, macierz układu równań. Podstawowe wiadomości o macierzach

LISTA02: Projektowanie układów drugiego rzędu Przygotowanie: 1. Jakie własności ma równanie 2-ego rzędu & x &+ bx&

EGZAMIN MATURALNY W ROKU SZKOLNYM 2018/2019 MATEMATYKA

Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych (zakres podstawowy)

DZIAŁ 2. Figury geometryczne

2. PODSTAWY STATYKI NA PŁASZCZYŹNIE

Zaokrąglanie i zapisywanie wyników obliczeń przybliżonych

Wariacje Funkcji, Ich Własności i Zastosowania

R + v 10 R0, 9 k v k. a k v k + v 10 a 10. k=1. Z pierwszego równania otrzymuję R 32475, Dalej mam: (R 9P + (k 1)P )v k + v 10 a 10

Oznaczenia: K wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające

O SZEREGACH FOURIERA. T (x) = c k e ikx

Rachunek prawdopodobieństwa i statystyka matematyczna.

< f g = fg. f = e t f = e t. U nas: e t (α 1)t α 2 dt = 0 + (α 1)Γ(α 1)

N(0, 1) ) = φ( 0, 3) = 1 φ(0, 3) = 1 0, 6179 = 0, 3821 < t α 1 e t dt α > 0. f g = fg. f = e t f = e t. U nas: g = t α 1 g = (α 1)t α 2

Od lewej: piramida Chefrena, Wielki Sfinks, piramida Cheopsa.

Algorytmy graficzne. Filtry wektorowe. Filtracja obrazów kolorowych

Przechadzka Bajtusia - omówienie zadania

Matematyka. Poziom rozszerzony Próbna Matura z OPERONEM. Modelowe etapy rozwiązywania zadania

EGZAMIN MATURALNY W ROKU SZKOLNYM 2018/2019 MATEMATYKA

nazywamy odpowiednio dolną oraz górną sumą Darboux funkcji f w przedziale [a, b] wyznaczoną przez podział P.

Szkice rozwiązań zadań zawody rejonowe 2019

Ćwiczenie 42 Wyznaczanie ogniskowych soczewek

RBD Relacyjne Bazy Danych

Piotr Stefaniak. Materiały uzupełniające do wykładu Matematyka

MATURA 2014 z WSiP. Zasady oceniania zadań

Transkrypt:

Andrzej Pietruszczk Mteriły do wykłdu Logiczne podstwy kognitywistyki Część 6 1. Logik, czyli bstrhownie od rozwżnych pojęć Poprzednią część wykłdu zkończyliśmy dedukcją, w której z dwóch przesłnek wyprowdziliśmy wniosek: Kżdy wieloryb jest sskiem (1) Żden ssk nie jest rybą. (2) Żden wieloryb nie jest rybą. (3) Zuwżyliśmy przy tym, że: 1. Dedukcj t nie skłdł się tylko z ciągu wnioskowń. 2. W przeprowdzonej dedukcji istotne znczeni mił również sposób jej konstrukcji. Minowicie to, że gdy wniosek jest zdniem ogólnym, to musimy zstosowć tzw. regułę uogólnini. ) W związku z tym wybrliśmy dowolnego wieloryb. A przez to przyjęliśmy dodtkową przesłnkę ( ): Ten wybrny obiekt jest wielorybem b) Z trzech przesłnek, dwóch wyjściowych (1), (2) orz tej dodtkowej ( ), wyciągnęliśmy wniosek ( ): Ten wybrny wieloryb nie jest rybą. c) posłużyliśmy się dwom nstępującymi wnioskownimi (kolejność przesłnek jest nieistotn): Kżdy wieloryb jest skiem Ten wybrny wieloryb jest wielorybem Ten wybrny wieloryb jest sskiem Żden sk nie jest rybą Ten wybrny wieloryb jest sskiem Ten wybrny wieloryb nie jest rybą d) A skoro to był dowolnie wybrny wieloryb, więc otrzymny wniosek ( ) uogólniliśmy do (3). 3. Wniosek ( ) wyprowdzono posługując się (obok reguły uogólnini) wnioskownimi, których poprwność był niezleżn zrówno od wyboru wieloryb, jk i od treści użytych nzw: wieloryb, ssk i ryb. Wzięło się to z tego, że wniosek ( ) zostł wyprowdzony z przesłnek (1), (2) i ( ) z pomocą wnioskowń, które podpdły pod nstępujące schemty poprwnych rozumowń: jest P-em nie jest P-em Ich poprwność poleg n tym, że nie może się zdrzyć, by jednocześnie nd kreską (po dokonniu podstwieni) stły zdni prwdziwe, pod kreską występowło zdnie nieprwdziwe. O tkich schemtch wnioskowni mówi się też, że są niezwodne, gdyż w kżdym przypdku, gdy przesłnki są prwdziwe prwdziwy będzie tkże wniosek. Powyższe uwgi pokzują, że skoro w dedukcji w ogóle nie było istotne użycie nzw wieloryb, ssk i ryb, więc równie dobrze przeprowdzimy ją posługując się schemtmi zdń, nie smymi zdnimi. W schemtch zdń będziemy używć tych smych schemtycznych liter nzwowych, które poprzednio używliśmy w schemtch wnioskowń. Minowicie przyjmiemy, że: c 2016 Prw utorskie do cłości mteriłów do wykłdu z Logicznych podstw kognitywistyki m wyłącznie utor. 72

Andrzej Pietruszczk: Mteriły do wykłdu LPK 2016/20017 część 6 73 Wielkie pochyłe litery S, P, M i Q będą reprezentowć dowolne nzwy generlne. 1 Młe pochyłe litery, b i c będą reprezentowć dowolne nzwy jednostkowe. 2 Uwg 1.1. Powyżej przyjęliśmy różne kryteri wyróżnini nzw odnośnie ich reprezentowni przez wielkie i młe litery. Przypomnijmy, że nzwy generlne (ogólne) to tkie, które mją ogólnie odnosić się do obiektów poprzez swoją treść. 3 Mówiąc zś, że dn nzw jest jednostkow nie interesuje ns to, czy jest to nzw włsn, czy generln, czy też deskrypcj. Może to być również nzw typu ten wybrny S. Wżne jest tylko to, że m on wskzywć n dokłdnie jeden obiekt, tj. m mieć dokłdnie jeden desygnt. Zpisując w sposób schemtyczny dne zgdnienie musimy przyjąć nstępującą zsdę: Różne nzwy będziemy zstępowć różnymi litermi nzwowymi, których ktegori m odpowidć ktegorii zstępownych nzw. Przykłdowo, rozptrując schemtycznie dedukcję dotyczącą wyprowdzeni wniosku (3) z dwóch przesłnek (1) i (2) możemy posłużyć się nstępującymi schemtmi zdniowymi: Kżdy S jest M-em Żden M nie jest P-em Ztem nzwy generlne wieloryb, ssk i ryb zstąpiliśmy odpowiednio litermi nzwowymi S, M i P. Mogliśmy tkże dokonć innej wyminy nzw n reprezentujące je litery nzwowe. Trdycj nkzuje jednk, by we wniosku w miejscu podmiotu widnił liter S (z łciny: subject podmiot), w miejscu orzeczeni występowł liter P (z łciny: predictum orzeczenie, orzecznik). Trdycj nkzuje też, by literą M (z łciny: medium średni, środek, pośrednik) zstąpić trzecią nzwę, któr występuje w obu przesłnkch. Oczywiście, nikt nm nie nkzuje trzymć się tej trdycji. W orzeczenich dodjemy końcówkę -em po to, by włśnie podkreślić, że mmy do czynieni z orzeczenimi imiennymi, nie jkimiś równości (np. typu jest b, czyli = b, co jeszcze gorsze, bezsensownymi z reguły zpismi typu =S, np. u=pies, x=pies itp.). Terz postępując nlogicznie, jk poprzednio, gdy używliśmy konkretnych zdń pokżemy, że złożenie, iż jest tk, jk głoszę poniższe przesłnki: pozwl n uznni (wyprowdzenie) wniosku: Kżdy S jest M-em Żden M nie jest P-em Przyjmujemy przy tym oczywiście, że w kżdym z trzech rozwżnych schemtów zdniowych dn liter zstępuje tę smą nzwę generlną. 4 Tk, jk w poprzedniej części wykłdu rozwżmy dw przypdki: 1. S jest nzwą pustą. Wówczs prwdą jest, że żden S nie jest P-em. Otrzymliśmy więc zdnie o schemcie (s3), przy czym w ogóle nie potrzebowliśmy przesłnek (s1) i (s2). Istotnie, wówczs nie m tkiego obiektu, który zrzem byłby S -em i P-em. 2. S jest nzwą niepustą. Ztem możemy wybrć jkiegoś dowolnego S -. Oznczmy go przez u. 5 Ztem n mocy przyjętej umowy u jest S -em. Przez to mmy dodtkową przesłnkę. Rzem z nią stosujemy wyjściową przesłnkę (s1) i przeprowdzmy nstępujące poprwne wnioskownie: Kżdy S jest M-em u jest S -em u jest M-em (s1) (s2) (s3) (s1) (s2) (s3) 1 To m znczyć, że litery te będą występowć zmist nzw generlnych. Innymi słowy, litery te będą zstępowć w miejscu tych nzw. W tym celu wolno nm też używć innych wielkich liter, o ile nie będzie to prowdzić do nieporozumień. Przykłdowo, nzwę wieloryb wolno zstąpić wielką literą W itd. 2 Por. poprzedni przypis. 3 Mogą one być puste (bez desygntu), bądź jednostkowe (z dokłdnie jednym desygntem), bądź mogą mieć więcej niż jeden desygnt. 4 Oczywiście sme schemty zdniowe niczego nie głoszą. Nleży jednk wyobrzić sobie, że użyte w nich litery reprezentują jkieś nzwy generlne. 5 Trktujemy literę u jko pomocniczą («okzjonlną») nzwę włsną tego dowolnie wybrnego S -.

Andrzej Pietruszczk: Mteriły do wykłdu LPK 2016/20017 część 6 74 Otrzymujemy pomocniczy wniosek u jest M-em, który będzie jedną z dwóch przesłnek w kolejnym rozumowniu. Drugą będzie (s2): Żden M nie jest P-em u jest M-em u nie jest P-em Otrzymujemy ztem: u nie jest P-em. N koniec stosujemy regułę uogólnini. Skoro o u złożyliśmy jedynie to, że jest S -em (bstrhując od indywidulnych cech obiektu u), więc to, co udło nm się stwierdzić o u przenosimy n wszystkie S -y. W ten sposób otrzymliśmy (s3): żden S nie jest P-em. Resumując: bez względu n to, czy S reprezentuje nzwę pustą, czy niepustą, zkłdjąc prwdziwość zdń o schemtch (s1) i (s2) otrzymmy prwdziwość zdni o schemcie (s3); przy tym: Jeśli S reprezentuje jkąś nzwę pustą, to zdnie o schemcie «utomtycznie» jest prwdziwe (niezleżnie od przyjętych przesłnek). Z tego też względu przypdek ten w prktyce zostje pomijny. Rozwżmy tylko przypdek, w którym liter S reprezentuje jkąś niepustą nzwę; czyli gdy możn wybrć jkiegoś S -. Przeprowdzone powyżej wnioskowni, które dotyczyły schemtów zdniowych, nie konkretnych zdń, tkże są poprwne. Przecież w tych schemtch zdniowych wielkie litery grły role jkichś dowolnie wybrnych nzw generlnych. Możn nwet wyobrzić sobie, że są to to po prostu nzwy generlne. Niestety, wnioskowni dotyczące schemtów zdniowych mją postć schemtów wnioskowń dotyczących konkretnych zdń. Możemy jednk stworzyć tkie schemty wnioskowń, które będą już dotyczyć zrówno konkretnych zdń, jk i do ich schemtów zdniowych. Minowicie, możemy w schemtch wnioskowń używć tkich symboli, które będą odnosić się zrówno do odpowiednich nzw, jk i odpowiednich liter nzwowych. Tkimi symbolmi mogą być np. podkreślone litery nzwowe z odpowiednich ktegorii. A ztem jeśli potrktujemy litery schemtyczne tk jk nzwy, to możemy powiedzieć, że dw powyżej użyte wnioskowni podpdją odpowiednio pod jeden z poniższych schemtów: jest P-em nie jest P-em Terz zuwżmy, że przeprowdzon powyżej dedukcj pokzuje, iż poprwny jest nstępujący schemt wnioskowni: Kżdy S jest M-em Żden M nie jest P-em Istotnie, skoro przy złożeniu, że przesłnki są prwdziwe orz stosując jedynie metody, które zchowują prwdę (tutj: regułę uogólnini i dw poprwne wnioskowni), otrzymliśmy prwdziwość wniosku, więc nie może się zdrzyć, by jednocześnie przesłnki reprezentowły zdni prwdziwe, wniosek reprezentowł zdnie nieprwdziwe. Mówimy, że jest to schemt w tym sensie, że w kżdym przypdku (tj. przy dowolnym włściwym podstwieniu nzw), gdy przesłnki będą prwdziwe, to prwdziwy będzie tkże wniosek. 6 2. Reguł uogólnini dl ogólnych wniosków twierdzących Poprzednio zprezentowliśmy stosownie reguły uogólnini dl wniosków przeczących postci Żden S nie jest P-em. Tę smą regułę stosuje się tkże do ogólnych wniosków twierdzących postci Kżdy S jest P-em. W tym przypdku jednk,, gdy nzw S będzie pust, to może powstć problem interpretcyjny związny ze zdnimi tkiego typu. Minowicie poprzednio, gdy wniosek mił postć, to był «nieczuły» n to, czy nzw S jest pust, czy niepust. W tym pierwszym przypdku wniosek po prostu był prwdziwy, gdyż głosił to smo, co m.in. zdni postci: Nie jest tk, że jkiś obiekt jest S -em i P-em, czy też Nie istnieje S, który jest P-em. Gdy mmy zś do czynieni ze zdniem postci, w którym nzw S jest pust, to powstje problem interpretcyjny. Minowicie jk pmiętmy z poprzedniej części wykłdu w tkich przypdkch możliwe są dwie interpretcję zdń postć : 6 Niezwodność tego schemtu możn zbdć tkże innymi metodmi nie tylko poprzez przeprowdzoną dedukcji.

Andrzej Pietruszczk: Mteriły do wykłdu LPK 2016/20017 część 6 75 1. potoczn przy pustej nzwie S zdnie jest pozbwione wrtości logicznej, czyli nie jest ni prwdziwe, ni fłszywe; 2. mtemtyczn (nukow) przy pustej nzwie S zdnie m być prwdziwe. To drugie rozwiąznie przyjmuje się w mtemtyce orz logice mtemtycznej, stąd tkże w twierdzenich innych nuk. Jest to brdzo wygodne rozwiąznie, gdyż w ten sposób możemy w nszych rozwżnich stosowć wszelkie zdni ogólne pozostjąc w obrębie zdń mjących wrtość logiczną. Okzuje się być wygodne przypisnie prwdziwości zdniu typu Kżde S jest P-em, gdy S jest puste (jk pmiętmy, nie możn w tkim przypdku przypisć fłszywości). Pokżemy, że przy obu interpretcjch, zkłdjąc prwdziwość zdń o schemtch: Kżdy S jest M-em Kżdy M jest P-em potrfimy wyprowdzić z nich prwdziwość zdni o schemcie: 7 (s1) (s4) (s5) Innymi słowy, drogą dedukcji udowodnimy, że przy obu interpretcjch poprwny () jest poniższy schemt wnioskowni: 8 Kżdy S jest M-em Kżdy M jest P-em Pierwsze podejście (przy którym wszystkie twierdzące zdni ogólne z pustym podmiotem nie mją wrtości logicznej). Złóżmy, że obie przesłnki są prwdziwe. Ztem obie nzwy S i M muszą być niepuste (w przeciwnym rzie przesłnki nie miłyby wrtości logicznej, czyli nie byłyby prwdziwe). A więc istnieje co njmniej jeden S. Wybiermy dowolnego S - i oznczmy go przez u. 9 Ztem n mocy przyjętej umowy u jest S -em. Przez to mmy dodtkową przesłnkę. Rzem z nią stosujemy wyjściową przesłnkę (s1) i przeprowdzmy nstępujące poprwne wnioskownie: Kżdy S jest M-em u jest S -em u jest M-em Otrzymujemy więc pomocniczy wniosek u jest M-em, który będzie stnowić przesłnkę w kolejnym rozumowniu. Drugą przesłnką tego rozumowni będzie schemt zdniowy (s4): Kżdy M jest P-em u jest M-em u jest P-em Ztem otrzymujemy: u jest P-em. N koniec stosujemy regułę uogólnini. Skoro o u złożyliśmy jedynie to, że jest S -em (bstrhując od indywidulnych cech obiektu u), więc to, co udło nm się stwierdzić o u przenosimy n wszystkie S -y. Ztem otrzymliśmy schemt zdniowy (s5): kżdy S jest P-em. Podkreślmy, przy pierwszym podejściu istotne było to, że prwdziwość pierwszej przesłnki wymuszł niepustość podmiotu we wniosku, czyli wymuszł: Istnieje co njmniej jeden S. A to włśnie umożliwiło nm wybór dowolnego S -. Drugie podejście (gdy wszystkie zdni ogólne z pustym podmiotem są prwdziwe). Rozptrujemy dw przypdki. 1. S jest nzwą pustą. Wówczs prwdziwy jest wniosek. Otrzymliśmy więc zdnie o schemcie (s5), przy czym w ogóle nie potrzebowliśmy przesłnek (s1) i (s4). 2. S jest nzwą niepustą. Ztem możemy wybrć jkiegoś dowolnego S -. Dlej dosłownie powtrzmy rozumownie z pierwszego podejści. Powtórzmy je. 7 Przyjmujemy przy tym oczywiście, że w kżdym z trzech rozwżnych tu schemtów dn liter zstępuje tę smą nzwę generlną. 8 W poprzednio rozwżnym schemcie wnioskowni występowł przesłnk postci Kżdy S jest M-em. Jednkże sposób jej interpretcji przy pustej nzwie S nie mił żdnego wpływu n bdnie poprwność schemtu. Minowicie, poprzednio jeśli S było nzwą pustą, to wniosek Żden S jest P-em był «utomtycznie» prwdziwy; bez względu n to, jkie były obie przesłnki. 9 Ponownie trktujemy literę u jko pomocniczą («okzjonlną») nzwę włsną tego dowolnie wybrnego S -.

Andrzej Pietruszczk: Mteriły do wykłdu LPK 2016/20017 część 6 76 Oznczmy tego dowolnie wybrnego S - przez u. Ztem n mocy przyjętej umowy u jest S -em. Przez to mmy dodtkową przesłnkę. Rzem z nią stosujemy przesłnkę (s1) i przeprowdzmy nstępujące poprwne wnioskownie: Kżdy S jest M-em u jest S -em u jest M-em Otrzymujemy więc pomocniczy wniosek u jest M-em, który będzie jedną z dwóch przesłnek w kolejnym rozumowniu. Drugą będzie (s4): Kżdy M jest P-em u jest M-em u jest P-em Ztem otrzymujemy: u jest P-em. N koniec stosujemy regułę uogólnini. Skoro o u złożyliśmy jedynie to, że jest S -em (bstrhując od indywidulnych cech obiektu u), więc to, co udło nm się stwierdzić o u przenosimy n wszystkie S -y. Otrzymliśmy ztem (s5):. Resumując: przy drugim podejściu, bez względu n to, czy S reprezentuje nzwę pustą, czy niepustą, zkłdjąc prwdziwość zdń o schemtch (s1) i (s4) otrzymmy prwdziwość zdni o schemcie (s5). Pondto: Jeśli S reprezentuje nzwę pustą, to zdnie o schemcie «utomtycznie» jest prwdziwe (niezleżnie od przyjętych przesłnek). Z tego też względu przypdek ten w prktyce zostje pomijny. Rozwżmy tylko przypdek, w którym S reprezentuje jkąś niepustą nzwę; czyli gdy możn wybrć jkiegoś S -. Uwg 2.1. Może ktoś zpytć: Dlczego, zmist przeprowdzni dedukcji, po prostu nie zstosowliśmy nstępującego prw teorii zbiorów dystrybutywnych? Jeśli zbiór S -ów zbiór M-ów orz zbiór M-ów zbiór P-ów, to zbiór S -ów zbiór P-ów. Aby n to odpowiedzieć, wystrczy zuwżyć, że podne prwo otrzymujemy włśnie stosując powyżej przedstwione poprwne wnioskownie orz definicję zwierni się zbiorów dystrybutywnych. Przypomnijmy, to że zbiór S -ów zwier się w zbiorze M-ów m znczyć, że kżdy element zbioru S -ów jest elementem zbioru M-ów. A pondto, to, że coś jest elementem zbioru S -ów znczyć, że to coś jest S -em. Ztem użycie frzy element zbioru S -ów znczy to smo, co użycie smej nzwy S (podobnie jest dl innych liter reprezentujących nzwy generlne). Mmy więc: Zbiór S -ów zwier się w zbiorze P-ów Kżdy element } zbioru {{ S -ów} jest elementem } {{ zbioru P-ów} S P-em Widzimy więc, że podne prwo mówi to smo, co nstępujące prwo logiczne, w którym nie używmy już ni pojęci byci zbiorem, ni pojęci zwierni się zbiorów: Jeśli kżdy S jest M-em orz kżdy M jest P-em, to kżdy S jest P-em. Powyższe prwo odpowid osttnio rozwżnemu poprwnemu schemtowi wnioskowni. Ztem pierwotne jest to prwo logiki, nie prwo teorii mnogości (zbiorów dystrybutywnych), otrzymywne z prw logiki i przyjętej definicji w teorii mnogości. 3. Reguł wyboru W konstrukcji dedukcji stosuje się nie tylko regułę uogólnini, lecz tkże regułę wyboru. Tę drugą stosujemy w tkich przypdkch, gdy jedn z przesłnek jest szczegółow, czyli zczyn się od zwrotów kwntyfikujących jkiś bądź istnieje. Dokłdniej, te regułę stosujemy do tej szczegółowej przesłnki. Uwg 3.1. Przypomnijmy, że regułę uogólnini stosujemy do ogólnego wniosku. Jeśli jednk wniosek jest ogólny orz jedn z przesłnek jest szczegółow, to nleży stosowć regułę uogólnini do wniosku. Minowicie, jeżeli tkie wnioskownie okże się poprwne, to t szczegółow przesłnk będzie nieistotn dl otrzymni ogólnego wniosku.

Andrzej Pietruszczk: Mteriły do wykłdu LPK 2016/20017 część 6 77 Przykłdowo, dodjąc jkąkolwiek przesłnkę do powyżej rozptrywnych ch schemtów wnioskowni, tkże otrzymmy niezwodne schemty: dod. przesłnk Kżdy S jest M-em Żden M nie jest P-em dod. przesłnk Kżdy S jest M-em Kżdy M jest P-em Istotnie, bez względu n to, jk będzie t dodtkow przesłnk, nie znjdziemy tkiego postwieni, które dje prwdziwe wszystkie przesłnki orz nieprwdziwy wniosek. Minowicie, gdyby możn było znleźć tkie podstwienie, to byłoby tk również dl schemtów bez dodnej przesłnki ( wiemy, że tk nie jest). Widzimy więc, że gdyby powyżej dodn przesłnk był szczegółow, to byłoby zupełnie niepotrzebne stosownie do niej reguły wyboru. Ogólnie możn udowodnić, że jeśli dny ogólny wniosek wynik z jkiejś grupy przesłnek, to będzie również wynikć, gdy w tej grupie pozostwimy jedynie ogólne przesłnki. Czsmi wyrż się to w nstępujący lpidrny sposób: ogólny wniosek wynik tylko z ogólnych przesłnek. Jednkże, dokłdniej to ujmując powiemy: dl wyciągnięci ogólnego wniosku istotne są tylko ogólne przesłnki. Przedstwimy dw przykłdy stosowni reguły wyboru. Njpierw bierzemy przesłnki o schemtch: Mmy wyprowdzić z nich wniosek o schemcie: Jkiś M jest S -em Kżdy M jest P-em Jkiś S jest P-em Terz «jedyną drogą» dedukcji jest użycie reguły wyboru. Skoro przyjęliśmy, że jkiś M jest S -em, więc wolno nm (w dowolny sposób) wybrć tkiego M-, który jest S -em. Oznczymy go literą w (od słow wybrny ). 10 Ztem zrównowjest M-em iwjest S -em. Są to nsze dwie dodtkowe przesłnki związne włśnie ze stosowniem reguły wyboru do wyjściowej przesłnki Jkiś M jest S -em. Stosując pierwszą z nich rzem z drugą z wyjściowych przesłnek przeprowdzmy nstępujące poprwne wnioskownie: Kżdy M jest P-em w jest M-em w jest P-em Otrzymujemy więc pomocniczy wniosek w jest P-em, który obok drugiej dodtkowej przesłnki stnowić będzie przesłnkę w kolejnym poprwnym rozumowniu: w jest S -em w jest P-em Jkiś S jest P-em Otrzymliśmy więc wniosek, który jest niezleżny od wybrnego obiektuw. Tylko tkie wnioski wolno nm uznć z poprwnie uzyskne z smych wyjściowych przesłnek, gdy stosujemy regułę wyboru. Uwg 3.2. Tk, jk zznczyliśmy, ob schemty zdniowe w jest M-em i w jest S -em nleży uznć z dwie dodtkowe przesłnki związne użyciem z regułą wyboru, nie z pomocnicze wnioski uzyskne ze szczegółowej przesłnki. Chodzi o to, że nie są przecież poprwne dw poniższe wnioskowni: Jkiś M jest S -em w jest M-em Jkiś M jest S -em w jest S -em Pondto, nie wolno uznć, że schemt zdniowy w jest P wynik z smych wyjściowych przesłnek Jkiś M jest S -em Kżdy M jest P-em w jest P-em Dl tych trzech schemtów może przecież się zdrzyć, że prwdziwe przesłnki ddzą fłszywy wniosek. Stosując regułę wyboru jko końcowy wniosek uzyskny z smych wyjściowych przesłnek wolno nm uznć tylko tki, w którym nie występuje nzw pomocnicz wprowdzon przez regułę wyboru. 10 Ztem terz literę w trktujemy jko pomocniczą («okzjonlną») nzwę włsną tego dowolnie wybrnego M-, który jest jednocześnie S -em.

Andrzej Pietruszczk: Mteriły do wykłdu LPK 2016/20017 część 6 78 Powyższe rozwżni pokzują, że jest nstępujący schemt wnioskowni: Jkiś M jest S -em Kżdy M jest P-em Jkiś S jest P-em Uwg 3.3. Jk widzimy regułę wyboru stosujemy do jkieś szczegółowej przesłnki, gdy złożymy prwdziwość. Niestety niektórzy popełniją ten błąd, że stosują tę regułę do szczegółowego wniosku. A przecież stosownie reguły wyboru m sens jedynie do prwdziwego zdni szczegółowego. Ztem wolno ją stosowć wtedy, gdy złożymy prwdziwość przesłnek. Ztem jeśli ktoś zstosuje regułę wyboru do szczegółowego wniosku, to będzie tk jkby złożył prwdziwość wniosku. A to mmy przecież wykzć przy złożonej prwdziwości przesłnek. Nie wolno więc twierdzić, że regułę wyboru stosujemy wówczs, gdy wniosek jest szczegółowy. Minowicie, zwsze stosujemy ją do jkiejś szczegółowej przesłnki. Jedynie tk się skłd, że jeśli jkś szczegółow przesłnk jest istotn do otrzymni dnego wniosku, to ten wniosek musi być tkże szczegółowy. Pmiętmy przecież (por. uwgę 3.1), że dl wyciągnięci ogólnego wniosku istotne są tylko ogólne przesłnki. Pondto, gdy przesłnki interpretujemy w sensie mtemtycznym, to dl wyciągnięci szczegółowego wniosku wymgn jest szczegółow przesłnk. Przy potocznej interpretcji przesłnek, z tych ogólnych otrzymmy szczegółowe pomocnicze wnioski, do których wolno zstosowć regułę wyboru. Terz bierzemy przesłnki o schemtch: Mmy wyprowdzić z nich wniosek o schemcie: Jkiś S nie jest M-em Kżdy P jest M-em Jkiś S nie jest P-em Ponownie «jedyną drogą» dedukcji jest użycie reguły wyboru. Skoro przyjęliśmy, że jkiś S nie jest M-em, więc wolno nm (w dowolny sposób) wybrć tkiego S -, który nie jest M-em. Oznczymy go literą w. Ztemwjest S -em, leczwnie jest M-em. Są to nsze dwie dodtkowe przesłnki związne z regułą wyboru. Stosując drugą z nich rzem z pozostłą z wyjściowych przesłnek przeprowdzmy nstępujące poprwne wnioskownie: Kżdy P jest M-em w nie jest M-em w nie jest P-em Minowicie, gdyby w był P-em, to skoro kżdy P jest M-em, więc w byłby też M-em, nie jest. Otrzymujemy więc pomocniczy wniosek w nie jest P-em, który obok pierwszej dodtkowej przesłnki stnowić będzie przesłnkę w kolejnym poprwnym rozumowniu: w jest S -em w nie jest P-em Jkiś S nie jest P-em Otrzymliśmy więc wniosek, który jest niezleżny od wybrnego obiektuw. Tylko tkie wnioski wolno nm uznć z poprwnie uzyskne z smych wyjściowych przesłnek, gdy stosujemy regułę wyboru. Powyższe pokzuje, że jest nstępujący schemt wnioskowni: Jkiś S nie jest M-em Kżdy P jest M-em Jkiś S nie jest P-em 4. Logicznie poprwne (niezwodne) schemty wyciągni wniosków W powyżej przeprowdznych dedukcjch, oprócz reguły uogólnini i reguły wyboru, stosowliśmy tkże wyciągnie wniosków z wyjściowych przesłnek bądź z wniosków pośrednich, które stwły się przesłnkmi kolejnych wnioskowń. Chodzi jednk o to, by wyciągnięci dnego wniosku z dnych przesłnek było logicznie poprwne. A tkie będzie, jeśli podpdć będzie pod jkiś logicznie poprwny schemt wyciągni wniosków.

Andrzej Pietruszczk: Mteriły do wykłdu LPK 2016/20017 część 6 79 Przypomnijmy, dny schemt wyciągni wniosków (w skrócie: schemt wnioskowni) jest logicznie poprwny (inczej: jest ) wtedy i tylko wtedy, gdy spełni nstępujący wrunek: nie m tkiego przypdku postwieni, które dje prwdziwe wszystkie przesłnki orz nieprwdziwy wniosek. Inczej mówiąc, dny schemt wnioskowni nie jest logicznie poprwny (inczej: jest ) wtedy i tylko wtedy, gdy spełni nstępujący wrunek: jest tkie postwienie, które dje prwdziwe wszystkie przesłnki orz nieprwdziwy wniosek. Podmy terz kilk prostych przykłdów poprwnych schemtów wnioskowni. Możn przyjąć, że są to «cegiełki logicznego mysleni», w tym sensie, że nie potrzebują one już uzsdnień. Włśnie z pomocą wnioskowń podpdjących pod tkie schemty konstruujemy złożone dedukcje. Pierwszy z tkich schemtów wykorzystliśmy poprzednio przy prezentcji stosowni reguł uogólnini i wyboru: jest P-em Uwg 4.1. Ponownie (jk już wspomnieliśmy w uwdze 2.1) może ktoś pomylić ten schemt z nstępującym prwem teorii mnogości (zbiorów dystrybutywnych): Jeśli zbiór S -ów zbiór P-ów orz zbiór S -ów, to zbiór P-ów. Jednkże ponownie stosując spostrzeżeni podne w uwdze 2.1 otrzymujemy, że frz zbiór S -ów sprowdz się do, frz Zbiór S -ów zwier się w zbiorze P-ów sprowdz się do zdni. Ztem podne prwo teorii mnogości mówi to smo, co nstępujące prwo logiczne, w którym nie używmy już ni pojęci byci zbiorem, ni pojęci zwierni się zbiorów, ni pojęci nleżeni do zbiorów: Jeśli kżdy S jest P-em orz, to jest P-em. Powyższe prwo logiki odpowid osttnio rozwżnemu poprwnemu schemtowi wnioskowni. Ztem pierwotne jest to prwo logiki, nie prwo teorii mnogości, otrzymywne z prw logiki i definicji w teorii mnogości. Uwg 4.2. Tk, jk npisliśmy, poprwność (niezwodność) schemtu wnioskowni jest P-em jko oczywist, nie wymg żdnego uzsdnieni. 11 Jednkże, możn podć rysunki obrzujące poprwność powyższego schemtu wnioskowni. N rysunkch tych będziemy obrzowć dystrybutywne zbiory S -ów i P-ów, czyli zkresy tych nzw generlnych. Z poprzedniej uwgi wiemy, że nie są one dowodem niezwodności tego schemtu, lecz tylko stnowią tego ilustrcję. Wiemy, że nie m przypdku, w którym obie przesłnki są prwdziwe, wniosek fłszywy. Ztem, oczywiście, nie przedstwimy n rysunku przypdku, którego nie m. Ilustrcj m polegć n pokzniu, że w kżdym przypdku, w którym obie przesłnki są prwdziwe, prwdziwy jest tkże wniosek. Jeśli drug przesłnk jest prwdziw, to nzw S nie jest pust. Ztem wtedy pierwsz przesłnk m podmiot niepusty. Stąd nie będzie miło znczeni to, jk interpretujemy zdni ogólne z pustym podmiotem. Mmy dw przypdki, w których obie przesłnki są prwdziwe: S -y P-y P-y S -y W obu tych przypdkch tkże prwdziwy jest wniosek. 11 Przed podniem jkiegokolwiek «kontrmodelu» nleżłoby zstnowić się, czy istotnie obie podne w nim przesłnki są prwdziwe ( nie tylko wskzć n przykłd fłszywego wniosku). Niektórzy próbują dopomóc sobie w znlezieniu tkiego «kontrmodelu» poprzez popełnienie błędu ekwiwokcji. Minowicie, interpretują oni jkieś słowo inczej we wniosku, inczej w przesłnce.

Andrzej Pietruszczk: Mteriły do wykłdu LPK 2016/20017 część 6 80 Oto kolejne dw schemty, których niezwodność jest oczywist: nie jest P-em jest P-em nie jest S -em Uwg 4.3. Ponownie (jk już wspomnieliśmy w uwgch 2.1 i 4.2) może ktoś pomylić ten schemt z nstępującym prwem teorii mnogości (zbiorów dystrybutywnych): Jeśli zbiór S -ów jest rozłączny ze zbiorem P-ów orz zbiór S -ów, to zbiór P-ów. Jednkże ponownie stosując spostrzeżeni podne w uwgch 2.1 i 4.2 otrzymujemy: Zbiór S -ów jest rozłączny ze zbiorem P-ów Żden} element zbioru {{ S -ów} nie jest} elementem {{ zbioru P-ów} S P-em Widzimy więc, że podne prwo mówi to smo, co nstępujące prwo logiczne, w którym nie używmy już ni pojęci byci zbiorem, ni pojęci rozłączności zbiorów, ni pojęci nleżeni do zbiorów: Jeśli żden S nie jest P-em orz, to nie jest P-em. Powyższe prwo odpowid osttnio rozwżnemu poprwnemu schemtowi wnioskowni. Ztem pierwotne jest to prwo logiki, nie prwo teorii mnogości. Uwg 4.4. Chociż poprwność (niezwodność) schemtu wnioskowni nie jest P-em jko jest oczywist nie wymg żądnego uzsdnieni, to tk jk w uwdze 4.2 zilustrujemy to n rysunkch, które przedstwić mją zkresy tych nzw generlnych. Wiemy, że nie m przypdku, w którym obie przesłnki są prwdziwe, wniosek fłszywy. Ztem, oczywiście, nie przedstwimy n rysunku przypdku, którego nie m. Ponownie ilustrcj m polegć n pokzniu, że w kżdym przypdku, w którym obie przesłnki są prwdziwe, prwdziwy jest tkże wniosek. Jeśli drug przesłnk jest prwdziw, to nzw S nie jest pust. Mmy dw przypdki, w których obie przesłnki są prwdziwe: S -y P-y S -y W obu tych przypdkch tkże prwdziwy jest wniosek. nie m żdnego P- W poprzedniej części wykłdu i w pierwszym przykłdzie dotyczącym stosowni reguły wyboru użyliśmy rozumowni, które podpdło pod nstępujący poprwny schemt wnioskowni: jest P-em Jkiś S jest P-em Jego poprwność dje się wyjśnić nstępująco: zkłdjąc prwdziwość obu przesłnek, otrzymujemy, że jkiś S (włśnie ten ) jest P-em, czyli uzyskujemy prwdziwość wniosku. Uwg 4.5. Zupełnie zbędn jest obrzkow ilustrcj poprwności osttniego z przedstwinych schemtów, gdyż różne przypdki, w których prwdziwe są obie przesłnki, nie mją wpływu n relcję zchodzącą pomiędzy zkresmi nzw S i P. Zuwżmy jednk, że jest pewien związek pomiędzy osttnim i przedosttnim z przedstwionych w tym punkcie schemtów wnioskowni. Minowicie, stosując dedukcję nie wprost z poprwności jednego z nich otrzymmy poprwność drugiego. I tk mjąc poprwny osttni ze schemtów, złóżmy, że prwdziwe są przesłnki przedosttniego, czyli, że żden S nie jest P-m orz. Gdyby terz byłby P-em, to stosując rozumownie wedle osttniego schemtu mmy: jkiś S jest P-em. A to przeczy temu, że żden S m nie być P-em.

Andrzej Pietruszczk: Mteriły do wykłdu LPK 2016/20017 część 6 81 Mjąc zś poprwny przedosttni ze schemtów, złóżmy, że prwdziwe są przesłnki osttniego, czyli, że jest S -m orz jest P-em. Gdyby terz nie było tk, że jkiś S jest P-em, to żden S nie byłby P-em. Ztem stosując rozumownie wedle przedosttniego schemtu mmy: nie jest P-em. A to przeczy temu, że m być P-em. W drugim przykłdzie zstosowni reguły wyboru końcowy wniosek otrzymliśmy stosując rozumownie podpdjące pod nstępujący poprwny schemt wnioskowni: nie jest P-em Jkiś S nie jest P-em Jego poprwność dje się wyjśnić nstępująco. Zkłdjąc prwdziwość obu przesłnek, otrzymujemy, że jkiś S (włśnie ten ) nie jest P-em, czyli uzyskujemy prwdziwość wniosku. Uwg 4.6. Ponownie, z tego smego powodu, co poprzednio, zbędn jest obrzkow ilustrcj poprwności osttniego z przedstwinych schemtów. Zuwżmy jednk, że jest pewien związek pomiędzy osttnim i pierwszym z przedstwionych w tym punkcie schemtów wnioskowni. Minowicie, stosując dedukcję nie wprost z poprwności jednego z nich otrzymmy poprwność drugiego. I tk mjąc poprwny pierwszy ze schemtów, złóżmy, że prwdziwe są przesłnki osttniego, czyli, że jest S -m, lecz nie jest P-em. Gdyby terz nie zchodził wniosek tego osttniego schemtu, to nie byłoby tk, że jkiś S nie jest P-em. A to zś znczy, że kżdy S jest P-em. Ztem stosując rozumownie wedle pierwszego schemtu mmy: jest P-em. A to przeczy temu, że złożyliśmy, iż nie jest P-em. Mjąc zś poprwny osttni ze schemtów, złóżmy, że prwdziwe są przesłnki pierwszego, czyli, że kżdy S jest P-m orz. Gdyby terz nie był P-em, to stosując rozumownie wedle osttniego schemtu jkiś S nie byłby P-em. A to przeczy temu, że kżdy S mił być P-em. W drugim przykłdzie stosowni reguły wyboru przeprowdziliśmy rozumownie stosując nstępujący poprwny schemt wnioskowni: nie jest P-em nie jest S -em Jego poprwność uzsdni dedukcj nie wprost i poprwność pierwszego z rozwżnych tu schemtów: jest P-em Istotnie, złóżmy, że obie przesłnki bdnego są prwdziwe, czyli, że kżdy S jest P-em, lecz nie jest P-em. Gdyby terz było tk, że, to byłoby też P-em, skoro kżdy S m być P-em. A to przeczy temu, że nie miło być P-em. 12 Uwg 4.7. Chociż poprwność (niezwodność) schemtu wnioskowni nie jest P-em nie jest S -em zostł wykzn dedukcyjnie, to jednk tkże zilustrujmy ją n rysunkch, które przedstwić mją dystrybutywne zbiory S -ów i P-ów, czyli zkresy nzw generlnych. Złóżmy więc, że obie przesłnki są prwdziwe. W mtemtycznej interpretcji zdń ogólnych to nie gwrntuje nm niepustości nzwy S. Mmy więc nstępujące cztery przypdki, w których obie przesłnki są prwdziwe: S -y P-y P-y S -y P-y nie m żdnego S - nie m żdnego S - nie m żdnego P- W tych czterech przypdkch tkże prwdziwy jest wniosek. 12 Oczywiście, tkże odwrotnie, stosując osttni ze schemtów uzsdnimy poprwność pierwszego tu z rozwżnych. Jednkże jest to zupełnie zbędne, gdyż wydje się, że poprwność tego pierwszego jest «brdziej pierwotn; nturln».

Andrzej Pietruszczk: Mteriły do wykłdu LPK 2016/20017 część 6 82 Przypomnijmy, że by powiedzieć kiedy dny schemt wnioskowni nie jest poprwny nie musimy się wiele wysilć. Wystrczy przecież usunąć słowo nie z wrunku stosownego w określeniu schemtów poprwnych. Ztem to, że dny schemt wyciągni wniosków nie jest poprwny m znczyć: jest tki przypdek postwieni, które dje prwdziwe wszystkie przesłnki orz nieprwdziwy wniosek. Kżde rozumownie (wyciągnie wniosku) podpdjące pod poprwny schemt wnioskowni m nstępującą cechę: mmy gwrncję, że o ile przyjęte przesłnki są prwdziwe, to prwdziwy jest też wyciągnięty wniosek. Innymi słowy, nie może się zdrzyć, by przyjęte przesłnki były prwdziwe, wniosek nie był prwdziwy. Gwrntuje nm to sm definicj schemtu logicznie poprwnego. Pondto, oczywist jest konieczność stosowni w uzsdninich dedukcyjnych wyłącznie tkich rozumowń, które oprte są n ch schemtch wnioskowni. Przecież poprzez tkie uzsdnieni chcemy wykzć, że prwdziwość przesłnek gwrntuje prwdziwość wniosku. A jeśli mmy już wcześniej wykzną prwdziwość przyjętych przesłnek, to w ten sposób uzsdnimy prwdziwość wniosku. Może to być to dl ns nowe odkrycie lbo chcemy komuś to zdemonstrowć. Gdybyśmy ztem w trkcie przeprowdznej dedukcji choć rz posłużyli się wnioskowniem, które podpd pod jkiś schemt, to nie mielibyśmy gwrncji, że wychodząc od prwdziwych przesłnek dojdziemy do prwdziwego wniosku. Ztem nie mmy też gwrncji, że końcowy wniosek będzie prwdziwy przy prwdziwych przesłnkch. Podmy terz trzy przykłdy schemtów wnioskowni, które nie są poprwne, tj. są zwodne. Oto pierwszy z nich: Jkiś S jest P-em jest P-em Wystrczy wskzć chociż jedno tkie postwienie, które dje prwdziwe przesłnki i nieprwdziwy wniosek. Podstwmy: S /ssk, P/pies, /Rubens (jedyny kot córki utor tego tekstu). Mmy prwdziwe przesłnki: Jkiś ssk jest psem i Rubens jest sskiem, lecz fłszywy wniosek: Rubens jest psem. Możn to tkże zobrzowć n rysunku. Robimy to po to, by nie wymyślć słownych kontrprzykłdów. Ztem podny rysunek będzie kontrmodelem, czyli modelem pokzującym, że nie zchodzi wyniknie: P-y S -y Istotnie, rysunek ten przedstwi przypdek, w którym obie przesłnki są prwdziwe, wniosek jest fłszywy. Inny tki kontrmodel dje nstępujący rysunek: P-y S -y Jest on np. ilustrcją dl podstwieni: S /mężczyzn; P/nuczyciel; /Robert Lewndowski (reprezentnt Polski w piłce nożnej). Przykłd 4.1. Z poniższych przesłnek: Jkieś misto leży nd Wisłą Wrszw jest mistem nie wyciągniemy jko poprwnego nstępującego wniosku: Wrszw leży nd Wisłą. Innymi słowy, wniosek ten nie wynik z przyjętych przesłnek. Chodzi o to, że przesłnki i wniosek podpdją pod nlizowny osttnio schemt wnioskowni. Wniosek jest oczywiście prwdziwy, lecz wiemy to z geogrfii, podne przesłnki nie mją tu nic do rzeczy. Minowicie, nie m tu żdnego związku pomiędzy wnioskiem i przesłnkmi (które tkże są prwdziwe; co też tu jest nieistotne).

Andrzej Pietruszczk: Mteriły do wykłdu LPK 2016/20017 część 6 83 Uwg 4.8. Zwodność nlizownego osttnio schemtu pokzuje, że ze szczegółowej przesłnki typu Jkiś S jest P nie d się poprwnie wyciągć żdnego innego wniosku poz nstępującymi: Jkiś P jest S -em, Istnieje co njmniej jeden S i Istnieje co njmniej jeden P. Tego typu przesłnk ndje się wyłącznie od zstosowni reguły wyboru (któr nie jest sposobem wyciągni wniosków, lecz sposobem konstrukcji dedukcji). 13 Ztem zstosujmy w osttnio rozwżnym m schemcie regułę wyboru. Pozwoli to lepiej zrozumieć dziłnie tej reguły. Zgodnie z regułą wyboru wybiermy dowolnego S -, który jest P-em. Oznczmy go przez w. A to dje nm dwie dodtkowe przesłnki:w jest S -em;wjest P-em. Jednkże, nie wolno przyjąć, że ten dowolnie wybrny obiekt w jest tym smym, który był oznczony nzwą jednostkową, tj. nie mmy = w. Ztem nie uzyskmy wniosku jest P-em. Dltego też w pierwszym przykłdzie zstosowni reguły wyboru (zob. s. 77), by z niej skorzystć potrzebowliśmy drugiej ogólnej przesłnki. Uwg 4.9. Niestety czsmi zdrz się u niektórych nierozumienie istoty reguły wyboru. Po niewłściwym jej zstosowniu, by dojść do końcowego wniosku, próbują się «rtowć» użyciem wnioskowni, które podpd pod powyżej omwiny schemt ( tkich wnioskowń po prostu nie wolno przeprowdzć). Przypomnijmy, że stosując tę regułę do wyjściowej przesłnki Jkiś M jest S -em nleży dowolnie wybrć tkiego M-, który jest S -em (zob. s. 77). Nstępnie nleży oznczyć go przez w. A to dje nm dwie dodtkowe przesłnki:w jest M-em;wjest S -em. Niektórzy jednk ogrniczją się jedynie do wyboru dowolnego M-, tj. stosując regułę wyboru przyjmują tylko jedn dodtkową przesłnkę: w jest M-em. Dzięki niej i wyjściowej przesłnce Kżdy M jest P-em poprwnie uzyskują pomocniczy wniosek w jest P-em. Jednkże jk pmiętmy ze strony 77 by otrzymć końcowy wniosek musimy posłużyć się nstępującym wnioskowniem: w jest S -em w jest P-em Jkiś S jest P-em A ztem komuś, kto źle zstosowł regułę wyboru brkuje do tego przesłnki w jest S -em. Wpd więc «n pomysł», by «rtowć się» niepoprwnym wnioskowniem: Jkiś M jest S -em w jest M-em w jest S -em Uwż terz, że skoro uzyskł pomocniczy wniosek w jest S -em, więc może już wyciągnąć końcowy wniosek używjąc jego jedynej pomocniczej przesłnki w jest M-em. Jednkże, cłość rozumowni jest błędn. Po pierwsze, źle zstosowno regułę wyboru. Po drugie, próbując dość do końcowego wniosku, przeprowdzono niepoprwne wnioskownie. Drugi przykłd zwodnego schemtu jest nstępujący: Jkiś S nie jest P-em nie jest P-em Wystrczy wskzć chociż jedno tkie postwienie, które dje prwdziwe przesłnki i nieprwdziwy wniosek. Podstwimy: S /ssk, P/kot, /Rubens (jedyny kot córki utor tego tekstu). Mmy prwdziwe przesłnki: Jkiś ssk nie jest kotem i Rubens jest sskiem. Fłszywy jest jednk wniosek: Rubens nie jest kotem. Możn to tkże zobrzowć nstępującym kontrmodelem: P-y S -y Istotnie, rysunek ten przedstwi przypdek, gdy obie przesłnki są prwdziwe, wniosek jest fłszywy. Inny tki kontrmodel dje nstępujący rysunek: 13 Stosując regułę wyboru tkże te trzy podne wyżej wnioski możn wyprowdzić z Jkiś S jest P-em. I tk wybiermy dowolnego S -, który jest P-em. Oznczmy go przez w, co dje nm dwie dodtkowe przesłnki:wjest S -em;wjest P-em. Z nich odpowiednio otrzymujemy wymienione trzy wnioski. Jednkże możn je tkże przyjąć jko oczywiste.

Andrzej Pietruszczk: Mteriły do wykłdu LPK 2016/20017 część 6 84 P-y S -y Jest on np. ilustrcją dl podstwieni: S /mężczyzn; P/piłkrz; /Robert Lewndowski (piłkrz; reprezentnt Polski). Uwg 4.10. Zwodność nlizownego osttnio schemtu pokzuje, że ze szczegółowej przesłnki typu Jkiś S nie jest P nie d się poprwnie wyciągć żdnego innego wniosku poz nstępującym: Istnieje co njmniej jeden S. Tego typu przesłnk ndje się wyłącznie od zstosowni reguły wyboru. 14 Ztem zstosujmy w osttnio rozwżnym m schemcie regułę wyboru. Pozwoli to lepiej zrozumieć dziłnie tej reguły. Zgodnie z regułą wyboru wybiermy dowolnego S -, który nie jest P-em. Oznczmy go przez w. A to dje nm dwie dodtkowe przesłnki: w jest S -em; w nie jest P-em. Jednkże, nie wolno przyjąć, że ten dowolnie wybrny obiekt w jest tym smym, który był oznczony nzwą jednostkową, tj. nie mmy = w. Ztem nie uzyskmy wniosku nie jest P-em. Dltego też w pierwszym przykłdzie zstosowni reguły wyboru (zob. s. 78), by z niej skorzystć potrzebowliśmy drugiej ogólnej przesłnki. Oczywiście jest poniższy schemt wnioskowni: jest P-em Wystrczy podstwić S /pies, P/ssk, /Rubens (kot). Otrzymmy obie przesłnki prwdziwe: Kżdy pies jest sskiem i Rubens jest skiem (gdyż kżdy kot jest sskiem). Fłszywy jest jednk wniosek Rubens jest psem. Możn to tkże zobrzowć nstępującym kontrmodelem: S -y P-y Istotnie, rysunek ten przedstwi przypdek, w którym obie przesłnki są prwdziwe, wniosek jest fłszywy. Dl tego schemtu nie m innych «rysunkowych» kontrmodeli. Ten sm kontrprzykłd i ten sm kontrmodel pokzuje, że tkże jest poniższy schemt: nie jest S -em nie jest P-em Istotnie, przy podstwieniu S /pies, P/ssk, /Rubens (kot) otrzymmy obie przesłnki prwdziwe: Kżdy pies jest sskiem i Rubens nie jest psem. Fłszywy jest jednk wniosek Rubens nie jest sskiem. Zwodność przedosttniego ze schemtów m oczywisty związek z zwodnością osttniego. Dltego może wydwć się zskkujące to, że niektórzy uznją pierwszy z nich z, lecz stosują drugi jko. A przecież niezwodność tego drugiego wymuszłby niezwodność tego pierwszego. 5. Różnice w dwóch interpretcjch ogólnych zdń twierdzących Pokżemy terz pewne różnice zchodzące przy dwóch interpretcjch ogólnych zdń twierdzących typu. Przypomnijmy, że te interpretcje różniły się jedynie w przypdku, gdy nzw S jest pust, czyli gdy nie istnieje żden S. W tkim przypdku: 1. w potocznej interpretcji: to zdnie jest bez wrtości logicznej; 2. w mtemtycznej interpretcj: to zdnie jest prwdziwe. 14 Stosując regułę wyboru tkże ten podny wyżej wniosek możn wyprowdzić z Jkiś S nie jest P-em. I tk wybiermy dowolnego S -, który nie jest P-em. Oznczmy go przez w, co dje nm dwie dodtkowe przesłnki: w jest S -em; w nie jest P-em. Z pierwszego z nich otrzymujemy wymieniony wniosek. Jednkże możn go tkże przyjąć jko oczywisty.

Andrzej Pietruszczk: Mteriły do wykłdu LPK 2016/20017 część 6 85 Oczywiście, z powyższym podziłem związn jest również interpretcj zdń szczegółowych postci Jkiś S jest P-em i Jkiś S nie jest P-em. Gdy nzw S jest pust, to: 1. w potocznej interpretcji: zdni szczegółowe są bez wrtości logicznej; 2. w mtemtycznej interpretcj: zdni szczegółowe są fłszywe. Po pierwsze, zuwżmy, że w potocznej interpretcji poprwny jest poniższy schemt wnioskowni: Jkiś S jest P-em przy potocznej interpretcji tzn. zwsze gdy przesłnk jest prwdziw, to wniosek tkże jest prwdziwy. Istotnie, gdy złożymy, że prwdziw jest przesłnk, to uzyskujemy to, że istnieje co njmniej jeden S (inczej, przesłnk nie miłby wrtości logicznej). Ztem stosujemy rozumowni: Istnieje co njmniej jeden S przy potocznej interpretcji Do otrzymnego pomocniczego wniosku możemy zstosowć regułę wyboru i wybrć jkiegoś S -. Oznczymy go literą w. Ztem w jest S -em. Jest to nsz dodtkow przesłnk związne z regułą wyboru. Stosując jeszcze rz wyjściową przesłnkę przeprowdzmy nstępujące poprwne wnioskownie: w jest S -em w jest P-em Otrzymujemy więc pomocniczy wniosek w jest P-em, który będzie stnowić przesłnkę w kolejnym wnioskowniu: w jest S -em w jest P-em Jkiś S jest P-em Otrzymliśmy więc wniosek, który jest niezleżny od wybrnego obiektuw. Przy mtemtycznej interpretcji zdń nlizowny schemt jest jednk : Jkiś S jest P-em przy mtemtycznej interpretcji Istotnie, biorą jko S dowolną nzwę pustą, dostjemy prwdziwą przesłnkę i fłszywy wniosek. Aby przy mtemtycznej interpretcji dostć schemt, trzeb dodć przesłnkę mówiącą o tym, że istnieje co njmniej jeden S (gdyż terz nie gwrntuje nm tego wyjściow przesłnk). Ztem musimy wziąć nstępujący schemt wnioskowni: 15 Istnieje co njmniej jeden S Jkiś S jest P-em Istotnie, t dodn przesłnk dje to, co wynikło ze zdni ogólnego w potocznej interpretcji. Złóżmy terz, że obie przesłnki są prwdziwe. N mocy tej dodnej możemy zstosowć regułę wyboru. Wybiermy dowolnego S - i oznczmy go przez w. Ztemwjest S -em. Stąd i z drugiej wyjściowej przesłnki mmy: w jest P-em. Ztem tk jk poprzedniej dedukcji mmy: jkiś S jest P-em. Uzyskne powyżej wyniki wyjśnimy stosując formlny zpis zdń z język nturlnego. Pmiętmy, że przy mtemtycznej interpretcji rozwżne przesłnki i wniosek są jedynie skrótmi odpowiednich zdń formlnych (tj. mjących kwntyfiktorowy zpis). I tk schemt: m nstępujący formlny zpis: Jkiś S jest P-em przy mtemtycznej interpretcji x(x jest S -em x jest P-em) x(x jest S -em x jest P-em) Jest to schemt. Istotnie, biorąc jko S dowolną nzwę pustą otrzymmy prwdziwą przesłnkę i fłszywy wniosek. Skoro nie m tkiego x-, który byłby S -em, więc implikcj mteriln jest prwdziw dl dowolnego x-, gdyż m fłszywy poprzednik. Pondto, nie m tkiego x-, który byłby zrzem S -em i P-em. Ztem mmy prwdziwą przesłnkę orz fłszywy wniosek. 15 Terz nie zznczmy przy jkiej interpretcji jest to schemt, gdyż jest on przy obu interpretcjch. Minowicie, przy potocznej interpretcji pierwsz przesłnk jest zbędn, gdyż wynik z drugiej. Jednkże «zbędność» przesłnki nie psuje niezwodności schemtu wnioskowni.

Andrzej Pietruszczk: Mteriły do wykłdu LPK 2016/20017 część 6 86 Jednkże, powyższego zwodnego formlnego schemtu wnioskowni nie wolno mylić z poniższym m: x Fx x Fx gdzie w miejscu Fx stoi dowoln formln formuł ze zmienną x wiązną przez wskzny kwntyfiktor. Poprzedni schemt wnioskowni nie jest szczególnym przypdkiem tego niezwodnego, osttniego przedstwinego. Minowicie mmy: Fx { }} { x (x jest S -em x jest P-em) x (x jest S -em x jest P-em) } {{ } Gx czyli po kwntyfiktorch występują różne formuły: Fx to implikcj, Gx to koniunkcj. Ntomist schemt wnioskowni: Istnieje co njmniej jeden S Jkiś S jest P-em m nstępujący formlny zpis: x x jest S -em x(x jest S -em x jest P-em) x(x jest S -em x jest P-em) Podobnie jest dl zdń z prtykułą nie przed orzeczeniem. I tk poniższy schemt jest : Jkiś S nie jest P-em Istotnie, biorą jko S dowolną nzwę pustą, dostjemy prwdziwą przesłnkę i nieprwdziwy wniosek (w interpretcji potocznej wniosek nie będzie mieć wrtości, czyli nie będzie też prwdziwy). Ponownie, by dostć schemt, trzeb dodć przesłnkę mówiącą o tym, że istnieje co njmniej jeden S. Ztem musimy brć schemt wnioskowni: Istnieje co njmniej jeden S Jkiś S nie jest P-em Istotnie, złóżmy, że obie przesłnki są prwdziwe. N mocy tej dodnej możemy zstosowć regułę wyboru. Wybiermy dowolnego S - i oznczmy go przez w. Ztemwjest S -em. Stąd i z drugiej przesłnki mmy: w nie jest P-em. A terz wyciągmy wniosek: jkiś S nie jest P-em. Tkże powyżej uzyskne wyniki wyjśnimy stosując mtemtyczny zpis zdń z język nturlnego. Pmiętmy, że przy mtemtycznej interpretcji rozwżne przesłnki i wniosek są jedynie skrótmi odpowiednich zdń formlnych (mjących kwntyfiktorowy zpis). I tk schemt: Jkiś S nie jest P-em m nstępujący formlny zpis: x(x jest S -em x jest P-em) x(x jest S -em x jest P-em) lbo równowżnie: x(x jest S -em x jest P-em) x(x jest S -em x jest P-em) Są to schemty zwodne. Istotnie, dl drugiego z nich biorąc jko S dowolną nzwę pustą otrzymmy prwdziwą przesłnkę i fłszywy wniosek. Skoro nie m tkiego x-, który byłby S -em, więc implikcj mteriln jest prwdziw dl dowolnego x-, gdyż m fłszywy poprzednik. Pondto, nie m tkiego x-, który byłby zrzem S -em i nie był P-em. Ztem mmy prwdziwą przesłnkę orz fłszywy wniosek.

Andrzej Pietruszczk: Mteriły do wykłdu LPK 2016/20017 część 6 87 Jednkże drugiego z powyższych ch formlnych schemtów nie wolno mylić z poniższym m: x Fx x Fx gdzie w miejscu F x stoi dowoln formln formuł ze zmienną x wiązną przez wskzny kwntyfiktor. Jednkże poprzedni schemt wnioskowni nie jest szczególnym przypdkiem tego osttniego, niezwodnego. Minowicie mmy: Fx { }} { x (x jest S -em x jest P-em) x (x jest S -em x jest P-em) } {{ } Gx gdyż po kwntyfiktorch stoją różne formuły: Fx to implikcj, Gx to koniunkcj. Pondto, w pierwszym z dwóch rozwżnych osttnio schemtów w ogóle nie widć związku pomiędzy przesłnką wnioskiem. Ntomist schemt wnioskowni: m nstępujący formlny zpis: Istnieje co njmniej jeden S Jkiś S nie jest P-em x x jest S -em x(x jest S -em x jest P-em) x(x jest S -em x jest P-em) Po drugie, zuwżmy, że przyjmując potoczną interpretcję pr zdń o poniższych schemtch: jest sprzeczn, czyli że nie może skłdć się z dwóch zdń jednocześnie prwdziwych. Istotnie, jeśli pierwsze zdnie jest prwdziwe, to istnieje co njmniej jeden S, pondto dowolnie wybrny S musi być P-em. Ztem drugie zdnie jest wówczs fłszywe. Przyjmując mtemtyczną interpretcję widzimy, że pr zdń o powyżej podnych schemtch nie jest sprzeczn, czyli że może skłdć się z dwóch zdń jednocześnie prwdziwych. Oczywiści, jest tk wtedy i tylko wtedy, gdy nie istnieje żden S. Po pierwsze zuwżmy, że przy mtemtycznej interpretcji mmy dw poniższe niezwodne schemty wnioskowni: Nie istnieje żden S przy mtemtycznej interpretcji Nie istnieje żden S Po drugie zuwżmy, że mmy tkże nstępujący poprwny schemt wnioskowni: Nie istnieje żden S Wykżemy to stosując dedukcję nie wprost orz regułę wyboru. Złóżmy, że obie przesłnki są prwdziwe, lecz istnieje co njmniej jeden S (złożenie nie wprost). Do tego osttniego złożeni możemy więc zstosowć regułę wyboru. Wybiermy tki obiekt, który jest S -em. Oznczmy ten obiekt przez w. Ztem w jest S -em. Stosując więc pierwszą przesłnkę wnioskujemy, że w jest P-em. Stosując zś drugą przesłnkę wnioskujemy, że w nie jest P-em. Otrzymliśmy więc sprzeczność. A to mówi, że nleży odrzucić złożenie nie wprost, czyli przyjęć jko prwdziwy bdny wniosek. Resumując, przy mtemtycznej interpretcji, jeśli twierdzimy, że prwdziwe są ob zdni Kżdy S jest P-em i, to znczy to jedynie tyle, że nie istnieje żden S. A to ostnie stwierdzenie jest «ciekwsze», niż wynikjące z niego dw pierwsze. Dlej będziemy stosowć wyłącznie drugą interpretcję ogólnych zdń twierdzących typu Kżdy S jest P-em. Przypomnijmy, że t interpretcj przyjmown jest w mtemtyce (w tym w logice mtemtycznej), przez to tkże w innych dziedzinch nuki.