Statystyka Iżyerska dr hab. ż. Jacek Tarasuk AGH, WFIS 013 Wykład 3 DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE, PODSTAWY ESTYMACJI Dwuwymarowa, dyskreta fukcja rozkładu rawdoodobeństwa, Rozkłady brzegowe warukowe, Kowaracja wsółczyk korelacj, Korelacja ezależość, Prosta regresj, Regresja ortogoala, Poulacja, Próba losowa, Estymator, Estymacja
Zmea losowa Przez zmeą losową dwuwymarową będzemy rozumel taką arę fukcj (e) Y(e) określoych a rzestrze zdarzeń elemetarych, że dla każdej ary lczb rzeczywstych x, y moża określć rawdoodobeństwo zastea zdarzea A takego że: P A P x, Y y Dwuwymarowa zmea losowa jest zmeą dyskretą jeśl składowe Y mają skończoy lub rzelczaly zbór wartośc. 1.Zmea losowa. Rozkład dystrybuata AGH, Tarasuk 013
Rozkład dystrybuata Rozkładem rawdoodobeństwa dwuwymarowej dyskretej zmeej losowej azywamy zbór rawdoodobeństwa wszystkch zdarzeń (=x, Y=y j ): P Gdze =1, oraz j=1, x, Y y j j Z waruków ormalzacj wyka, że: j j 1.Rozkład dystrybuata Dystrybuatą takej zmeej losowej będze fukcja: F x, y P( x, Y y) 3 AGH, Tarasuk 013
Rozkłady brzegowe Rozkłady brzegowe w rzyadku dwuwymarowej dyskretej zmeej losowej defujemy jako: k k Rozkłady brzegowe określają rawdoodobeństwo, że jeda ze zmeych losowych rzyjme jakąś wartość, ezależe od tego jaką wartość rzyjmuje druga zmea losowa. x j kj k P j P Y y j. Rozkład dystrybuata 3.Rozkłady brzegowe 4 AGH, Tarasuk 013
Rozkłady warukowe Rozkłady warukowe w rzyadku dwuwymarowej dyskretej zmeej losowej defujemy jako: P x Y P Y y Rozkłady brzegowe określają rawdoodobeństwo, że jeda ze zmeych losowych rzyjme jakąś wartość, w sytuacj gdy druga rzyjmuje kokretą wartość (odaą w waruku). j y x k k k k kj k. Rozkład dystrybuata 4.Rozkłady warukowe 5 AGH, Tarasuk 013
Charakterystyk Mometem zwykłym rzędu r+s dwuwymarowej zmeej losowej (,Y) azywamy wartość oczekwaą loczyu zmeych losowych r Y s : Gdy s=0 r=1 to 10 =E, czyl jest to wartość oczekwaa zmeej. Gdy s=1 r=0 to 01 =EY, czyl jest to wartość oczekwaa zmeej Y. rs E r s Y j x r y s j j. Rozkład dystrybuata 5.Charakterystyk Pukt ( 10, 01 ) azywamy środkem masy rozkładu rawdoodobeństwa dwuwymarowej zmeej losowej (,Y). Gdy E(Y)=EEY to zmee Y są ezależe. 6 AGH, Tarasuk 013
Charakterystyk Mometem cetralym rzędu r+s dwuwymarowej zmeej losowej (,Y) azywamy wartość oczekwaą loczyu zmeych losowych (-E) r (Y-EY) s : rs rs E r E Y EY j r x E y EY Gdy s=0 r= to 0 =D, czyl jest to waracja zmeej. Gdy s= r=0 to 0 =D Y, czyl jest to waracja zmeej Y. s s j. Rozkład dystrybuata 5.Charakterystyk Gdy s=1 r=1 to 11 =cov(,y) co azywamy kowaracją zmeych losowych,y. Pomędzy owyższym welkoścam steją bardzo użytecze zwązk: D =E( )-(E) D Y=E(Y )-(EY) cov(,y)=e(y)-eey 7 AGH, Tarasuk 013
Charakterystyk Wsółczykem korelacj dwuwymarowej zmeej losowej (,Y) azywamy: Oczywśce D a D Y e mogą być rówe zeru. Jeżel =1 to zaczy, że zmee Y zwązae są ścsłą relacją Y=a+b, rzy czym a jest dodate. Podobe, gdy =-1, tylko a jest wówczas ujeme. cov D, Y D Y. Rozkład dystrybuata 5.Charakterystyk Im wartość jest blższa 1 lub -1 tym częścej zmee losowe Y sełają relację lowej zależośc. Mówmy wówczas, że zmee są sle lub słabo skorelowae. Wartość wsółczyka =0 ozacza brak korelacj. 8 AGH, Tarasuk 013
Korelacja ezależość Jeżel E(Y)=EEY to zmee Y są ezależe. Poeważ kowaracja: cov(,y)=e(,y)-eey to jeżel zmee są ezależe, to ch kowaracja jest rówa 0, w kosekwecj wsółczyk korelacj =0, czyl zmee są eskorelowae. Jeżel zmee losowe są ezależe to są eskorelowae, ale jeżel są eskorelowae to e muszą być ezależe! Jeżel zmee losowe są skorelowae, to są róweż zależe. Jeżel zmee losowe Y są ezależe, to zachodzą róweż zwązk: F j j x, y F x F y Y. Rozkład dystrybuata 6.Korelacja ezależość Zmee eskorelowae Zmee ezależe 9 AGH, Tarasuk 013
Prosta regresj Prostą regresj drugego rodzaju zmeej losowej Y względem zmeej losowej azywamy rostą o rówau y=ax+b, której wsółczyk a b są tak dobrae, aby średe odchylee kwadratowe zmeej losowej Y od zmeej losowej a+b było ajmejsze: Moża wykazać, że wsółczyk takej rostej dadzą sę wylczyć jako: a a b m E Y D Y D b EY a E Y. Rozkład dystrybuata 7.Prosta regresj 10 AGH, Tarasuk 013
Regresja ortogoala Dla dowolych zmeych Y steje zawsze rzekształcee lowe, srowadzające te zmee do ostac, w której wsółczyk korelacj omędzy zmeym rówa sę zeru. Przekształcee to ma ostać: Y rzy czym: * * E cos Y EY s E s Y EY cos cov, Y tg D D Y. Rozkład dystrybuata 8.Regresja ortogoala y EY tg x E 11 AGH, Tarasuk 013
Próba losowa oulacja Badaa wyczerujące (całkowte) ewyczerujące (częścowe). Poulacja geerala oulacja róba. Próba rerezetatywa: losowy wybór z oulacj geeralej dostatecza lczość róby Ocey arametru oulacj geeralej dokoujemy a odstawe omarów w oulacj róbej. Prawdzwość ocey arametru oulacj geeralej a odstawe róby jest zdarzeem losowym.. Rozkład dystrybuata 9.Próba losowa oulacja Wartość tego rawdoodobeństwa zależy od welkośc róby oraz od dokładośc ocey. 1 Podstawy estymacj AGH, Tarasuk 013
Parametr rozkładu jego Parametr Estymator Wartość oczekwaa E x 1. Rozkład dystrybuata Waracja D x E S * 1 1 Prawdoodobeństwo sukcesu (wskaźk struktury) k ^ k 13 Podstawy estymacj AGH, Tarasuk 013
Estymacja rzedzałowa Jeśl 1 ma rozkład N,, to x ma rozkład Po zormalzowau, zmea rozkładow N(0,1). będze odlegać Możemy zaleźć eskończee wele rzedzałów, w których zmea ta zajdze sę z rawdoodobeństwem 1-α : P U 1 u U u u 1 1 u1 N,. Rozkład dystrybuata 11. Estymacja rzedzałowa P u u 1 u1 u 1 1 P u 1 u 1 u 1 u 1 1 1 14 Podstawy estymacj AGH, Tarasuk 013
AGH, Tarasuk 013 Estymacja rzedzałowa Tylko jede z tych rzedzałów będze symetryczy. Tak dla którego: 1, a wówczas możemy owedzeć, że rzedzał: u1, u1 z rawdoodobeństwem 1-α okrywa rawdzwą wartość oczekwaą µ dla badaego rozkładu. Jeśl e zamy waracj σ to musmy ją estymować: * 1 S x x 1 1 wówczas rzedzał wygląda astęująco: u1 * * S S, u1. Rozkład dystrybuata 11. Estymacja rzedzałowa Oba owyższe rzedzały to tzw. rzedzały ufośc dla wartośc oczekwaej rozkładu a ozome ufośc 1- α.