Elektrostatyka, cz. 1

Podobne dokumenty
Równania Maxwella redukują się w przypadku statycznego pola elektrycznego do postaci: D= E

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α

Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa

Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność.

Podstawy elektromagnetyzmu. Wykład 2. Równania Maxwella

Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie

Wykład 8 ELEKTROMAGNETYZM

Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11

Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki

Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego

Fizyka 2 Wróbel Wojciech. w poprzednim odcinku

Teoria pola elektromagnetycznego

Pole magnetyczne magnesu w kształcie kuli

Podstawy fizyki sezon 2 2. Elektrostatyka 2

ŁADUNEK I MATERIA Ładunki elektryczne są ściśle związane z atomową budową materii. Materia składa się z trzech rodzajów cząstek elementarnych:

Elektrostatyka, cz. 2

Wykład 18 Dielektryk w polu elektrycznym

Różniczkowe prawo Gaussa i co z niego wynika...

Przedmowa do wydania drugiego Konwencje i ważniejsze oznaczenia... 13

Wykład 2. POLE ELEKTROMEGNETYCZNE:

Wyprowadzenie prawa Gaussa z prawa Coulomba

cz. 2. dr inż. Zbigniew Szklarski

Część IV. Elektryczność i Magnetyzm

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 4 Magnetostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C

Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)

Potencjał pola elektrycznego

Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Podstawy fizyki sezon 2 2. Elektrostatyka 2

Elektryczność i Magnetyzm

Wykład 8: Elektrostatyka Katarzyna Weron

Pojęcie ładunku elektrycznego

Pojemność elektryczna, Kondensatory Energia elektryczna

Elektrodynamika. Część 5. Pola magnetyczne w materii. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM

Podstawy fizyki sezon 2 1. Elektrostatyka 1

Linie sił pola elektrycznego

Podstawy fizyki wykład 8

Wykład 2. POLE ELEKTROMEGNETYCZNE:

Równania dla potencjałów zależnych od czasu

znak minus wynika z faktu, że wektor F jest zwrócony

Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych

Pojemność elektryczna. Pojemność elektryczna, Kondensatory Energia elektryczna

Fizyka 2 Podstawy fizyki

Wykład 17 Izolatory i przewodniki

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości:

Bryła sztywna. Fizyka I (B+C) Wykład XXIII: Przypomnienie: statyka

Podstawy elektromagnetyzmu. Wykład 1. Rachunek wektorowy

Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.

Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego

cz.3 dr inż. Zbigniew Szklarski

Elektrodynamika. Część 6. Elektrodynamika. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM

Dielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych

Pole przepływowe prądu stałego

Pole elektromagnetyczne. Równania Maxwella

Fale elektromagnetyczne

Wykład 14: Indukcja cz.2.

Fale elektromagnetyczne

Lekcja 40. Obraz graficzny pola elektrycznego.

Wykład FIZYKA II. 1. Elektrostatyka

cz. 2. dr inż. Zbigniew Szklarski

y i b) metoda różnic skończonych nadal problem nieliniowy 2 go rzędu z warunkiem Dirichleta

Teoria Pola Elektromagnetycznego

Wykład FIZYKA II. 1. Elektrostatyka. Dr hab. inż. Władysław Artur Woźniak

RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?

Wykład 15: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Ładunek elektryczny. Ładunek elektryczny jedna z własności cząstek elementarnych

Elektryczność i magnetyzm

dr inż. Zbigniew Szklarski

Elektrodynamika. Część 2. Specjalne metody elektrostatyki. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM

Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się

WYKŁAD 3 OGÓLNE UJĘCIE ZASAD ZACHOWANIA W MECHANICE PŁYNÓW. ZASADA ZACHOWANIA MASY. 1/15

POLE MAGNETYCZNE Magnetyzm. Pole magnetyczne. Indukcja magnetyczna. Siła Lorentza. Prawo Biota-Savarta. Prawo Ampère a. Prawo Gaussa dla pola

POLE MAGNETYCZNE ŹRÓDŁA POLA MAGNETYCZNEGO. Wykład 9 lato 2016/17 1

ver magnetyzm

Elektrostatyczna energia potencjalna U

Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne

ELEKTRONIKA ELM001551W

Fale elektromagnetyczne. Gradient pola. Gradient pola... Gradient pola... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek 2013/14

Podstawy fizyki sezon 2

Metoda elementów brzegowych

PROGRAM INDYWIDUALNEGO TOKU NAUCZANIA DLA UCZNIÓW KLASY II

MECHANIKA II. Praca i energia punktu materialnego

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

Magnetyzm cz.i. Oddziaływanie magnetyczne Siła Lorentza Prawo Biote a Savart a Prawo Ampera

Część IV. Elektryczność i Magnetyzm Uczyć się bez myślenia to zmarnowana praca, Myśleć bez uczenia się to pustka. Wykłady 10 i 11

Moment pędu fali elektromagnetycznej

kondensatory Jednostkę pojemności [Q/V] przyjęto nazywać faradem i oznaczać literą F.

Obliczanie indukcyjności cewek

Wykład 14: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Zagadnienia brzegowe dla równań eliptycznych

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów

cz. 1. dr inż. Zbigniew Szklarski

Transkrypt:

Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1

Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin de Coulomb - publikacja k= 1 4 0 =c 2 0 4 =c2 10 7 k=8.988 10 9 0 =8.854 10 12 A B q 2 q 1 C q 2 q 2 q 1 q 1 Podstawy elektromagnetyzmu, Wykład 3, slajd 2

Pole elektryczne od pojedynczego ładunku q Q Q q F F=k Q r 2 1 Q q q=q E E E E= F q Definiujemy pole jako siłę działającą na jednostkowy ładunek. (Stacjonarny I punktowy) E od pojedynczego (punktowego) ładunku Q: E= 1 4 0 Q r 2 1 r E=lim q 0 F q Podstawy elektromagnetyzmu, Wykład 3, slajd 3

Pole elektryczne od wielu ładunków Q 1 F 2 F F 1 =k Q 1 r i 2 1 Q 1 q q=q E 1 E q E F 1 F 2 =k Q 2 r i 2 1 Q 2 q q=q E 2 Q 2 F=k q i Q i r i 2 1 Q i q=q E E E generowane przez n punktowych ładunków Q 1...Q n : E= 1 n 4 i=1 0 Q i r i 2 1 r i Podstawy elektromagnetyzmu, Wykład 3, slajd 4

Dipol elektryczny z E=E + E +Q Q d 2 d 2 θ P(r,z) =atan z r E r We współrzędnych walcowych E + = k Q r + 2 [ E = k Q r 2 [ r r +, r r, z d /2 ] r + r + = r 2 z d /2 ] r r = r 2 z d 2 z d 2 2 2 Far Dalekie (r >>d) (r >>d) field pole of dipole dipola in we spherical współrzędnych coordinates: sferycznych: Moment dipola p = d Q E= d Q [2cos,sin ] 4 0 Podstawy elektromagnetyzmu, Wykład 3, slajd 5

Ciągły rozkład ładunku dl......... k= 1 4 π ε 0 Liniowy E E= L k τ r 2 1 r dl Objętościowy...... dv... E= V k ρ r 2 1 r dv Powierzchniowy...... ds...... E E= S E k r 2 1 r ds Podstawy elektromagnetyzmu, Wykład 3, slajd 6

Prawo Gaussa S S D d s= Q Q j Q i S E d s= Q 0 D= Q k E= 0 Podstawy elektromagnetyzmu, Wykład 3, slajd 7

Zastosowanie prawa Gaussa Powierzchnia Gaussa sfera o środku w ładunku Możemy wykorzystać prawo Gaussa do wyznaczenia Rozkładu pola o ile symetria rozkładu ładunków powoduje symetrię rozkładu pola taką, że całka może być sprowadzona do iloczynu stałej wartości D i pewnej liczby (powierzchni). Q r S D d s=q Symetria: D ma tylko jedną składową (prostopadłą do S), Która jest stała na pow. sfery. 4 r 2 D=Q D= Q 4 r 2 E= Q 4 0 r 2 Podstawy elektromagnetyzmu, Wykład 3, slajd 8

Przykład: pole naładowanej objętościowo kuli Powierzchnia Gaussa sfera o środku w środku kuli. ρ r S D d s=q 4 r 2 D=Q D= Q 4 r 2 E= Q 4 0 r 2 Symetria: D ma tylko jedną składową (prostopadłą do sfery), stałą na pow. sfery. Wniosek: zewnętrzny obserwator nie rozróżnia źródła pola to może być ładunek punktowy albo dowolny obiekt (kula, powierzchnia) o symetrycznie rozmieszczonym ładunku Podstawy elektromagnetyzmu, Wykład 3, slajd 9

Przykład: pole naładowanej nici Źródło: nieskończenie długa nić naładowana ład. o gęstości τ [C/m] T S D d s=q=h S D d s= W D d s T D d s B Dd s= = W D d s 0 0= W =2 r h D h =2 r h D B d S Powierzchnia Gaussa cylinder o promieniu r i wysokości h D= 2 r Podstawy elektromagnetyzmu, Wykład 3, slajd 10

Przykład : pole naładowanego cylindra Źródło nieskończeniue długi cylinder o promieniu R naładowany ładunkiem o gęstości ρ [C/m 3 ] T S D d s=q= R 2 h S D d s= W D d s T D d s B Dd s= = W D d s 0 0= W =2 r h D R 2 h =2 r h D B d S Powierzchnia Gaussa cylinder o promieniu r i wysokości h D= R2 2r = ' 2 r '= R 2 Podstawy elektromagnetyzmu, Wykład 3, slajd 11

Elektryczność i materia Izolatory (dielektryki) Przewodniki Ujemne i dodatnie ładunki są związane w cząsteczki (lub atomy) Ujemne i dodatnie ładunki mogą się rozdzielać tworząc ruchomy ładunek. Podstawy elektromagnetyzmu, Wykład 3, slajd 12

Dielektryki: polaryzacja E=0 E 0 E p Podstawy elektromagnetyzmu, Wykład 3, slajd 13

Dielektryki: polaryzacja P=lim v 0 p i v E p D= 0 E P D= E = r 0 = 1 0 r 1,150 Podatność elektryczna Conjugated Sprzężone polymers polimery up do to 10 10 5 5 Podstawy elektromagnetyzmu, Wykład 3, slajd 14

E=0 Indukcja elektryczna w przewodnikach E 0 E ind =E Całkowite pole e przewodniku jest równe zero! Podstawy elektromagnetyzmu, Wykład 3, slajd 15

E 0 Zjawisko indukcji w przewodnikach D= J= d d t D= E J= E E ind =E E = d E d t E d E d t =0 E d E d t =0 E=E 0 e t, = Dla miedzi (ε=8.885e-12, σ=57e6) τ=0.155e-18 s Podstawy elektromagnetyzmu, Wykład 3, slajd 16

Warunki ciągłości pola 2 E 2, D 2 E 1, D 1 1 Lokalny układ współrzędnych 2 n E 2, D 2 t E 1, D 1 1 Podstawy elektromagnetyzmu, Wykład 3, slajd 17

Warunki graniczne dla D S D d s= Q n D 2 =[ D 2t, D 2n ] S D d s= top D 2n ds side2 D 2t ds side1 D 1t ds bottom D 1n ds D 1 =[ D 1t, D 1n ] t 2 1 side2 D 2t ds=0 side1 D 1t ds=0 S D d s= top D 2n ds bottom D 1n ds r 2 D 2n D 1n Q r 2 D 2n D 1n = Podstawy elektromagnetyzmu, Wykład 3, slajd 18

Warunki graniczne dla E L E d l=0 n E 2 =[E 2t, E 2n ] E 1 =[ E 1t, E 1n ] t 2 1 L E d l= top E 2t dt bottom E 1t dt right2 E 2n dn right1 E 1n dn left1 E 1n dn left2 E 2n dn L E d l= top E 2t dt bottom E 1t dt=0 E 2t E 1t =0 Podstawy elektromagnetyzmu, Wykład 3, slajd 19

Wracamy do równań Maxwella H=J D t E= B t D= B=0 D= E J= E B= H B t =0, D t =0 Tylko pole elektryczne, niezmienne w czasie. Interesują nas zjawiska w otoczeniu ładunków nieruchomych lub poruszających się bardzo wolno. Możemy zastąpić wektor polem skalarnym!! E= φ H =J E=0 D= B=0 D= E J= E B= H Podstawy elektromagnetyzmu, Wykład 3, slajd 20

Skalarny potencjał elektryczny E= Potencjał możemy wyliczyć jako całkę liniową wektora E: P = ref gdzie ref to punkt, w którym φ = 0. P E d l A L1 E d L= L2 Ed L= B A L 1 L 2 Napięcie B Q Coulomb Potencjał Coulomba potential r Praca w polu E dw =F dl=q E dl Energia potencjalna W = L F d L=q L E d L=q U AB r =k Q r Podstawy elektromagnetyzmu, Wykład 3, slajd 21

Równania Laplace'a i Poissone'a E=0 D= E D= Matematyla: Laplasjan (operator Laplace'a) W różnych UW Kartezjański Walcowy Sferyczny = 2 = 2 f = 2 f x 2 2 f y 2 2 f z 2 2 f = 1 r 2 f = 1 r 2 r r f r 1 2 f r 2 2 f 2 z 2 f r r2 r 1 r 2 sin sin f 1 2 f r 2 sin 2 2 E= D= H =J = =const B=0 = =0 =0 Równanie Poissone'a Równanie Laplace'a Laplasjan to suma pochodnych cząstkowych i dlatego równania typu L lub P nazywamy cząstkowymi równaniami różniczkowymi. Podstawy elektromagnetyzmu, Wykład 3, slajd 22

Rozwiązywanie CRR? Q 2 = = Równanie opisujące (Poissona) opisuje zachowanie pola w danym punkcie. Pozwala opisać relację pomiędzy polem w sąsiednich punktach, ale nie umożliwia wyznaczenia wartości pola, jeśli nie znamy wszystkich źródeł.. Jeśli ograniczamy analizę do obszaru Ω, to musimy określić na Γ pewne warunki dla φ lub jego pochodnych. Ω obszar zainteresowania Γ brzeg Ω Q,ρ,σ,τ źródła zewnętrzne Podstawy elektromagnetyzmu, Wykład 3, slajd 23

Zagadnienia brzegowe Zagadnienie brzegowe = równanie opisujące + warunki brzegowe n 3 1 2 = n 2 = 1 2 3 Rodzaje warunków brzegowych (wybór): 1) Dirichleta (1-go rodzaju) : 2) Neumanna (2-go rodzaju): 3) Robina (3-go rodzaju): =u on 1 n =q on 2 a b n =v on 3 Podstawy elektromagnetyzmu, Wykład 3, slajd 24

Przykład: pole naładowanego cylindra Źródło nieskończenie długi cylinder o promieniu R naładowany ładunkiem o gęstości ρ [C/m 3 ] r r =? 1 r 1 r ( r r d φ 1(r) ) d r = ρ r<r ε 0 ( r r d φ 1(r) ) =0 r R d r Po dwukrotnym całkowaniu 1 r = r 2 A 4 1 ln r B 1 r R 0 2 r = A 2 ln r B 2 r R Na osi cylindra potencjał pow. mieć skończoną wart. (r=0): A 1 =0, 1 r = r 2 B 4 1 r R 0 Podstawy elektromagnetyzmu, Wykład 3, slajd 25

r Podstawy elektromagnetyzmu, Wykład 3, slajd 26 Przykład: pole naładowanego cylindra (c.d.) Źródło nieskończenie długi cylinder o promieniu R naładowany ładunkiem o gęstości ρ [C/m 3 ] r =? Wygodniej, gdy potencjał jest ciągły: 1 r = 2 r r=r R 2 B 4 1 = A 2 ln R B 2 0 B 2 =B 1 R 2 A 4 2 ln R 0 Indukcja elektryczna D musi być ciągła: d 1 r d 0 = 2 r d r 0 d r 2 R= 0 A 2 R r=r A 2= R2 2 0 Eliminujemy B 2 : 2 r = R2 2 0 ln R r B 1 R2 4 0 r R

r Podstawy elektromagnetyzmu, Wykład 3, slajd 27 Przykład: pole naładowanego cylindra (c.d.) Źródło nieskończenie długi cylinder o promieniu R naładowany ładunkiem o gęstości ρ [C/m 3 ] r =? Wybór potencjału odniesienia: 1 r = r 2 B 4 1 r R 0 2 r = R2 ln R 2 0 r B R2 1 r R 4 0 Wygodnie byłoby przyjąć, że potencjał zanika w nieskończoności czyli φ( )=0, ale nie jest to możliwe, gdyż ln( ) =. Innym szczególnym miejscem jest zewnętrzna pow. cylindra r= R Zadając otrzymamy 1 R = 2 R =0 B 1 = R2 4 1 r = R2 4 0 1 r 2 R 2 r R 2 r = R2 2 0 ln R r r R