Elektryczność i Magnetyzm
|
|
- Jacek Orzechowski
- 5 lat temu
- Przeglądów:
Transkrypt
1 Elektryczność i Magnetyzm Wykład: Piotr Kossacki Pokazy: Kacper Oreszczuk, Magda Grzeszczyk, Paweł Trautman Wykład siódmy 19 marca 2019
2 Z ostatniego wykładu Siła działająca na okładkę kondensatora Energia pola elektrycznego Rodzaje i budowa kondensatorów Pojemność zależna od napięcia Wnikanie pola elektrostatycznego do przewodnika, warstwa zubożona, warstwa akumulacyjna Dioda pojemnościowa *DLTS (Deep Level Transient Spectroscopy)
3 Czy dioda ma pojemność? Dioda półprzewodnikowa
4 Czy dioda ma pojemność? Dioda półprzewodnikowa Co się stanie jeśli zmienimy temperaturę?
5 Dygresja: od Archimedesa do Gaussa c. 287 BC c. 212 BC
6 Prawo Archimedesa Nie można obecnie wyświetlić tego obrazu.
7 Prawo Archimedesa Nie można obecnie wyświetlić tego obrazu. Wypór Q Ciężar P WP
8 Prawo Archimedesa ( ) Na ciało zanurzone działa siła wyporu równa ciężarowi wypartego płynu
9 Prawo Archimedesa df ρgz nds = df z = ρzg nds z df = pnds ds n S P = ρzg S ρzg ciężar słupa płynu na jednostkę powierzchni
10 Prawo Archimedesa Siła wyporu: Q z dywergencja = df = z S S ( ρz ) = ρg ρ g gdzie Ciężar wypartego płynu: zg nds = Φ ρzg Strumień przez powierzchnię S ciała : = x, y, z V ( ρzg) = ρvg = PWP Całka po objętości V ciała
11 Twierdzenie Gaussa (matematyczne) Archimedes: Φ ρzg = V ( ρzg) Gauss: n W = W V V po brzegu po wnętrzu Dywergencja: gęstość objętościowa strumienia (gęstość źródeł)
12 Prawo Gaussa: ładunek źródłem pola Postać całkowa Φ ε = 1 ε 0 Q czyli n = V ε V 1 ε 0 ρ e Z twierdzenia Gaussa A zatem V n ε ε = = V 1 ε 0 ρ e ε (postać różniczkowa)
13 Przenoszenie ładunku do wnętrza Do wewnątrz skuteczniej niż z zewnątrz!
14 Napięcie przy zdejmowaniu swetra
15 Generator van de Graaffa Robert J. Van de Graaff ( ). The first model was demonstrated in October 1929.
16 Generator van de Graaffa na Hożej 69 Jego konstrukcję rozpoczęto w 1952 roku w Instytucie Fizyki Doświadczalnej Uniwersytetu Warszawskiego pod kierunkiem prof. A. Sołtana. Po jego śmierci w 1959 roku budowę kontynuowano w nowopowstałej Katedrze Fizyki Jądra Atomowego U.W., kierowanej przez prof. Z. Wilhelmiego. Uruchomiony 22 grudnia kev 50μA dla p i d 30μA dla 3 He i 4 He
17 Ekranowanie + Q
18 Ekranowanie
19 Ekranowanie Q Q Ekranowanie pola od źródeł znajdujących się wewnątrz + Q + + i na zewnątrz + + +
20 Prawo Gaussa a prawo Coulomba Załóżmy Wtedy Φ 1 Q r r r ε = 2 4πε 0 ε ε = 1 4π ε 0 Q r α = 4 2 Q Q πr = α 4πε r ε r α Prawo Gaussa nie obowiązywałoby, gdyby wykładnik w prawie Coulomba był różny od 2 Czułość (sprawdzanie prawa Gaussa) zamiast dokładności (wykładnik w prawie Coulomba)
21 Użyteczność praktyczna prawa Gaussa Linia naładowana λ 2 πρlε = l ε = ε 0 2 λ πε 0 ρ ρ ρ płaszczyzna naładowana 2εs = σs ε σ = ε 0 2ε 0 x x Generalnie: przy wysokiej symetrii źródeł
22 Równania Poissona i Laplace a ε = 1 ε 0 ρ e ε = Φ W takim razie Φ + 1 ε 0 ρe = 0 1 ε czyli Φ + = 0 0 ρ e (równanie Poissona) gdzie laplasjan = = x y z 2 2 Bez ładunków równanie Laplace a: Φ = 0
23 Rozwiązywanie zagadnień elektrostatycznych Często dają się sprowadzić do równania Poissona z warunkami brzegowymi. Liniowość tego równania 0 pozwala przy warunku brzegowym sformułowanym np. jako zerowanie się potencjału zasada superpozycji: 1 Φ + ε ρe Rozkład potencjału pola pochodzącego od sumy rozkładów ładunku jest sumą potencjałów pól pochodzących od tych rozkładów ważna w obecności uziemionych przewodników a jednoznaczność rozwiązania pozwala zgadywać jego formę. = 0
24 Metoda obrazów Idea: znajdujemy rozkład ładunków, dla którego powierzchnia ekwipotencjalna pokrywa się z powierzchnią danego przewodnika Płaszczyzna: potencjał znika Kula uziemiona: potencjał znika Kula o zadanym ładunku: dodatkowy ładunek w środku
25 Metoda obrazów Q fikcyjny ładunek d d Q płaszczyzna przewodząca R qq b Q a ab = R 2 kula przewodząca naładowana uziemiona ładunkiem q Q Q = Q b a
26 Przykład uziemiony walec w polu Φ = 0 Daleko E=E 0 Φ = E 0 r = 1 φ ρ + ρ ρ ρ 1 2 ρ 2 φ + 2 ϕ 2 φ 2 z Zgadujemy cos(ϕ) Φ = ρ α (...)
27 Prąd elektryczny Dyfuzja fenoloftaleiny
28 Prąd elektryczny Dyfuzja fenoloftaleiny
29 Prąd elektryczny Dyfuzja + ruch uporządkowany +
Elektryczność i Magnetyzm
Elektryczność i Magnetyzm Wykład: Piotr Kossacki Pokazy: Kacper Oreszczuk, Magda Grzeszczyk, Paweł Trautman Wykład szósty 14 marca 019 Z ostatniego wykładu Doświadczenie Millikana Potencjał i pole od dipola
Elektryczność i Magnetyzm
Elektryczność i Magnetyzm Wykład: Piotr Kossacki Pokazy: Kacper Oreszczuk, Magda Grzeszczyk, Paweł Trautman Wykład ósmy 21 marca 2019 Z ostatniego wykładu Dywergencja pola, Twierdzenie Gaussa Prawo Gaussa
Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie
Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba
Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α
Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest
Elektrostatyka. Potencjał pola elektrycznego Prawo Gaussa
Elektrostatyka Potencjał pola elektrycznego Prawo Gaussa 1 Potencjał pola elektrycznego Energia potencjalna zależy od (ładunek próbny) i Q (ładunek który wytwarza pole), ale wielkość definiowana jako:
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne....................
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 1 Elektrostatyka Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 1 Literatura 3 2 Elektrostatyka 4 2.1 Pole elektryczne......................
Fizyka 2 Wróbel Wojciech. w poprzednim odcinku
Fizyka w poprzednim odcinku Obliczanie natężenia pola Fizyka Wyróżniamy ładunek punktowy d Wektor natężenia pola d w punkcie P pochodzący od ładunku d Suma składowych x-owych wektorów d x IĄGŁY ROZKŁAD
Elektrostatyka, cz. 1
Podstawy elektromagnetyzmu Wykład 3 Elektrostatyka, cz. 1 Prawo Coulomba F=k q 1 q 2 r 2 1 q1 q 2 Notka historyczna: 1767: John Priestley - sugestia 1771: Henry Cavendish - eksperyment 1785: Charles Augustin
Wyprowadzenie prawa Gaussa z prawa Coulomba
Wyprowadzenie prawa Gaussa z prawa Coulomba Natężenie pola elektrycznego ładunku punktowego q, umieszczonego w początku układu współrzędnych (czyli prawo Coulomba): E = Otoczmy ten ładunek dowolną powierzchnią
Podstawy fizyki sezon 2 2. Elektrostatyka 2
Podstawy fizyki sezon 2 2. Elektrostatyka 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Strumień wektora
Wykład 8 ELEKTROMAGNETYZM
Wykład 8 ELEKTROMAGNETYZM Równania Maxwella dive = ρ εε 0 prawo Gaussa dla pola elektrycznego divb = 0 rote = db dt prawo Gaussa dla pola magnetycznego prawo indukcji Faradaya rotb = μμ 0 j + εε 0 μμ 0
Wykład 17 Izolatory i przewodniki
Wykład 7 Izolatory i przewodniki Wszystkie ciała możemy podzielić na przewodniki i izolatory albo dielektryki. Przewodnikami są wszystkie metale, roztwory kwasów i zasad, roztopione soli, nagrzane gazy
Podstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Ładunek elektryczny Grecy ok. 600 r p.n.e. odkryli, że bursztyn potarty o wełnę przyciąga inne (drobne) przedmioty. słowo
RÓWNANIA MAXWELLA. Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego?
RÓWNANIA MAXWELLA Czy pole magnetyczne może stać się źródłem pola elektrycznego? Czy pole elektryczne może stać się źródłem pola magnetycznego? Wykład 3 lato 2012 1 Doświadczenia Wykład 3 lato 2012 2 1
Współczynniki pojemności
napisał Micał Wierzbicki Współczynniki pojemności Rozważmy układ N przewodników. Powierzcnia każdego z nic jest powierzcnią ekwipotencjalną: ϕ i = const, i = 1,,..., N. W obszarze między przewodnikami
Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 2 Specjalne metody elektrostatyki Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 3 Specjalne metody elektrostatyki 3 3.1 Równanie Laplace
Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki
Księgarnia PWN: David J. Griffiths - Podstawy elektrodynamiki Spis treści Przedmowa... 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce?... 13 1. Analiza wektorowa... 19 1.1. Algebra
Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność.
Wykład 4 i 5 Prawo Gaussa i pole elektryczne w materii. Pojemność. Maciej J. Mrowiński mrow@if.pw.edu.pl Wydział Fizyki Politechnika Warszawska 21 marca 2016 Maciej J. Mrowiński (IF PW) Wykład 4 i 5 21
Wykład 8: Elektrostatyka Katarzyna Weron
Wykład 8: Elektrostatyka Katarzyna Weron Matematyka Stosowana Przewodniki i izolatory Przewodniki - niektóre ładunki ujemne mogą się dość swobodnie poruszać: metalach, wodzie, ciele ludzkim, Izolatory
Ładunek elektryczny. Zastosowanie równania Laplace a w elektro- i magnetostatyce. Joanna Wojtal. Wprowadzenie. Podstawowe cechy pól siłowych
6 czerwca 2013 Ładunek elektryczny Ciała fizyczne mogą być obdarzone (i w znacznej większości faktycznie są) ładunkiem elektrycznym. Ładunek ten może być dodatni lub ujemny. Kiedy na jednym ciele zgromadzonych
Równania dla potencjałów zależnych od czasu
Równania dla potencjałów zależnych od czasu Potencjały wektorowy A( r, t i skalarny ϕ( r, t dla zależnych od czasu pola elektrycznego E( r, t i magnetycznego B( r, t definiujemy poprzez następujące zależności
Linie sił pola elektrycznego
Wykład 5 5.6. Linie sił pola elektrycznego Pamiętamy, że we wzorze (5.) określiliśmy natężenie pola elektrycznego przy pomocy ładunku próbnego q 0, którego wielkość dążyła do zera. Robiliśmy to po to,
PROGRAM INDYWIDUALNEGO TOKU NAUCZANIA DLA UCZNIÓW KLASY II
POGAM INDYWIDUALNEGO TOKU NAUCZANIA DLA UCZNIÓW KLASY II Opracowała: mgr Joanna Kondys Cele do osiągnięcia: etapowe udział w olimpiadzie fizycznej udział w konkursie fizycznym dla szkół średnich docelowe
Podstawy fizyki sezon 2 2. Elektrostatyka 2
Podstawy fizyki sezon 2 2. Elektrostatyka 2 Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Zebranie faktów
Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics)
Fizyka współczesna Co zazwyczaj obejmuje fizyka współczesna (modern physics) Koniec XIX / początek XX wieku Lata 90-te XIX w.: odkrycie elektronu (J. J. Thomson, promienie katodowe), promieniowania Roentgena
Fale elektromagnetyczne
Rozdział 7 Fale elektromagnetyczne 7.1 Prąd przesunięcia. II równanie Maxwella Poznane dotąd prawa elektrostatyki, magnetostatyki oraz indukcji elektromagnetycznej można sformułować w czterech podstawowych
Pole elektromagnetyczne. Równania Maxwella
Pole elektromagnetyczne (na podstawie Wikipedii) Pole elektromagnetyczne - pole fizyczne, za pośrednictwem którego następuje wzajemne oddziaływanie obiektów fizycznych o właściwościach elektrycznych i
Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści. Przedmowa 11
Podstawy elektrodynamiki / David J. Griffiths. - wyd. 2, dodr. 3. Warszawa, 2011 Spis treści Przedmowa 11 Wstęp: Czym jest elektrodynamika i jakie jest jej miejsce w fizyce? 13 1. Analiza wektorowa 19
Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C
Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie
Elektrostatyka. Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego
Elektrostatyka Prawo Coulomba Natężenie pola elektrycznego Energia potencjalna pola elektrycznego 1 Prawo Coulomba odpychanie naelektryzowane szkło nie-naelektryzowana miedź F 1 4 0 q 1 q 2 r 2 0 8.85
Wykład 18 Dielektryk w polu elektrycznym
Wykład 8 Dielektryk w polu elektrycznym Polaryzacja dielektryka Dielektryk (izolator), w odróżnieniu od przewodnika, nie posiada ładunków swobodnych zdolnych do przemieszczenia się na duże odległości.
Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 3 Pola elektryczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 4 Pola elektryczne w materii 3 4.1 Polaryzacja elektryczna..................
Ładunki elektryczne. q = ne. Zasada zachowania ładunku. Ładunek jest cechąciała i nie można go wydzielićz materii. Ładunki jednoimienne odpychają się
Ładunki elektryczne Ładunki jednoimienne odpychają się Ładunki różnoimienne przyciągają się q = ne n - liczba naturalna e = 1,60 10-19 C ładunek elementarny Ładunek jest cechąciała i nie można go wydzielićz
WŁAŚCIWOŚCI IDEALNEGO PRZEWODNIKA
WŁAŚCIWOŚCI IDEALNEGO PRZEWODNIKA Idealny przewodnik to materiał zawierająca nieskończony zapas zupełnie swobodnych ładunków. Z tej definicji wynikają podstawowe własności elektrostatyczne idealnych przewodników:
Wykład 14: Indukcja cz.2.
Wykład 14: Indukcja cz.. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 10.05.017 Wydział Informatyki, Elektroniki i 1 Przykład
ŁADUNEK I MATERIA Ładunki elektryczne są ściśle związane z atomową budową materii. Materia składa się z trzech rodzajów cząstek elementarnych:
POLE ELEKTRYCZNE Ładunek i materia Ładunek elementarny. Zasada zachowania ładunku Prawo Coulomba Elektryzowanie ciał Pole elektryczne i pole zachowawcze Natężenie i strumień pola elektrycznego Prawo Gaussa
Wykład 14: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok
Wykład 14: Indukcja Dr inż. Zbigniew zklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Pole magnetyczne a prąd elektryczny Do tej pory omawiano skutki
4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku
Rozdział 4 Pole elektryczne 4.1 Ładunki elektryczne 4.1.1 Elektryzowanie ciał. Zasada zachowania ładunku W niniejszym rozdziale zostaną przedstawione wybrane zagadnienia elektrostatyki. Elektrostatyka
Wykład 15: Indukcja. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok
Wykład 15: Indukcja Dr inż. Zbigniew zklarski Katedra Elektroniki, paw. -1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ 1 Pole magnetyczne a prąd elektryczny Do tej pory omawiano skutki
Fizyka 2 Podstawy fizyki
Fizyka Podstawy fizyki dr hab. inż. Wydział Fizyki e-mail: wrobel.studia@gmail.com konsultacje: Gmach Mechatroniki, pok. 34; środa 13-14 i po umówieniu mailowym http://www.if.pw.edu.pl/~wrobel/simr_f_17.html
Elektrodynamika #
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Nazwa przedmiotu Elektrodynamika Nazwa jednostki prowadzącej przedmiot Kod ECTS 13.2.0052 Instytut Fizyki Teoretycznej
znak minus wynika z faktu, że wektor F jest zwrócony
Wykład 6 : Pole grawitacyjne. Pole elektrostatyczne. Prąd elektryczny Pole grawitacyjne Każde dwa ciała o masach m 1 i m 2 przyciągają się wzajemnie siłą grawitacji wprost proporcjonalną do iloczynu mas,
Elektryczność i magnetyzm
Władysław Tomaszewicz Przemysław Ciesielski Elektryczność i magnetyzm (na prawach rękopisu) Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska 2002 Wstęp Przedmiotem wykładu jest elektrodynamika
Fizyka współczesna. Zmienne pole magnetyczne a prąd. Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego
Zmienne pole magnetyczne a prąd Zjawisko indukcji elektromagnetycznej Powstawanie prądu w wyniku zmian pola magnetycznego Zmienne pole magnetyczne a prąd Wnioski (które wyciągnęlibyśmy, wykonując doświadczenia
Elektryczność i Magnetyzm
Elektryczność i Magnetyzm Wykład: Piotr Kossacki Pokazy: Kacper Oreszczuk, Magda Grzeszczyk, Paweł Trautman Wykład piąty 12 marca 2019 Z ostatniego wykładu Wyładowanie elektryczne Krytyczne natężenie pola
Podstawy elektromagnetyzmu. Wykład 2. Równania Maxwella
Podstawy elektromagnetyzmu Wykład 2 Równania Maxwella Prawa Maxwella opisują pola Pole elektryczne... to zjawisko występujące w otoczeniu naładowanych elektrycznie obiektów lub jest skutkiem zmiennego
Elektrostatyka, cz. 2
Podstawy elektromagnetyzmu Wykład 4 Elektrostatyka, cz. Praca, energia, pojemność i kondensatory, ekrany elektrostatyczne Energia Praca w polu elektrostatycznym dw =F dl=q E dl W = L F d L=q L E d L=q
Przewodniki w polu elektrycznym
Przewodniki w polu elektrycznym Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Przewodniki to ciała takie, po
cz. 2. dr inż. Zbigniew Szklarski
Wykład 14: Pole magnetyczne cz.. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Prąd elektryczny jako źródło pola magnetycznego - doświadczenie Oersteda Kiedy przez
ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE LETNIM 2010/11
ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE LETNIM 2010/11 1. Rachunek niepewności pomiaru 1.1. W jaki sposób podajemy wynik pomiaru? Co jest źródłem rozbieżności pomiędzy wartością uzyskiwaną w eksperymencie
Teoria pola elektromagnetycznego
Teoria pola elektromagnetycznego Odpowiedzialny za przedmiot (wykłady): prof. dr hab. inż. Stanisław Gratkowski Ćwiczenia i laboratoria: dr inż. Krzysztof Stawicki ks@zut.edu.pl e-mail: w temacie wiadomości
Fale elektromagnetyczne
Fale elektromagnetyczne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Analiza pola 2 1.1. Rozkład pola...............................................
Przedmowa do wydania drugiego Konwencje i ważniejsze oznaczenia... 13
Przedmowa do wydania drugiego... 11 Konwencje i ważniejsze oznaczenia... 13 1. Rachunek i analiza wektorowa... 17 1.1. Wielkości skalarne i wektorowe... 17 1.2. Układy współrzędnych... 20 1.2.1. Układ
Elektrostatyczna energia potencjalna U
Elektrostatyczna energia potencjalna U Żeby zbliżyć do siebie dwa ładunki jednoimienne trzeba wykonać pracę przeciwko siłom pola nadając ładunkowi energię potencjalną. Podobnie trzeba wykonać pracę przeciwko
ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE ZIMOWYM Elektronika i Telekomunikacja oraz Elektronika 2017/18
ZAGADNIENIA DO EGZAMINU Z FIZYKI W SEMESTRZE ZIMOWYM Elektronika i Telekomunikacja oraz Elektronika 2017/18 1. Czym zajmuje się fizyka? Podstawowe składniki materii. Charakterystyka czterech fundamentalnych
Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów
Fizyka dla Informatyków Wykład 8 Katedra Informatyki Stosowanej PJWSTK 2008 Spis treści Spis treści 1 Podstawowe równania hydrodynamiki 2 3 Równanie Bernoulliego 4 Spis treści Spis treści 1 Podstawowe
Pojęcie ładunku elektrycznego
Elektrostatyka Trochę historii Zjawisko elektryzowania się niektórych ciał było znane już w starożytności. O zjawisku przyciągania drobnych, lekkich ciał przez potarty suknem bursztyn wspomina Tales z
Równania Maxwella redukują się w przypadku statycznego pola elektrycznego do postaci: D= E
Elektrostatyka Równania Maxwella redukują się w przypadku statycznego pola elektrycznego do postaci: D=ϱ E=0 D= E Źródłem pola elektrycznego są ładunki, które mogą być: punktowe q [C] liniowe [C/m] powierzchniowe
Linia dwuprzewodowa Obliczanie pojemności linii dwuprzewodowej
Linia dwuprzewodowa Obliczanie pojemności linii dwuprzewodowej 1. Wstęp Pojemność kondensatora można obliczyć w prosty sposób znając wartości zgromadzonego na nim ładunku i napięcia między okładkami: Q
kondensatory Jednostkę pojemności [Q/V] przyjęto nazywać faradem i oznaczać literą F.
Pojemność elektryczna i kondensatory Umieśćmy na przewodniku ładunek. Przyjmijmy zero potencjału w nieskończoności. Potencjał przewodnika jest proporcjonalny do ładunku (dlaczego?). Współczynnik proporcjonalności
Fale elektromagnetyczne. Gradient pola. Gradient pola... Gradient pola... Notatki. Notatki. Notatki. Notatki. dr inż. Ireneusz Owczarek 2013/14
dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2013/14 1 dr inż. Ireneusz Owczarek Gradient pola Gradient funkcji pola skalarnego ϕ przypisuje każdemu punktowi
cz. 2. dr inż. Zbigniew Szklarski
Wykład 2: lektrostatyka cz. 2. dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Dygresja matematyczna - operatory Operator przyporządkowuje np. polu skalarnemu odpowiednie
Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 7 Elektrodynamika 3 7.1 Siła elektromotoryczna................ 3 7.2
Wykład FIZYKA II. 3. Magnetostatyka. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 3. Magnetostatyka Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ POLE MAGNETYCZNE Elektryczność zaobserwowana została
Wykład Pole elektryczne na powierzchniach granicznych 8.10 Gęstość energii pola elektrycznego
Wykład 7 8.9 Pole elektryczne na powierzchniach granicznych 8.0 Gęstość energii pola elektrycznego 9. Prąd elektryczny 9. Natężenie prądu, wektor gęstości prądu 9. Prawo zachowania ładunku 9.3 Model przewodnictwa
CIĘŻAR. gdzie: F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg
WZORY CIĘŻAR F = m g F ciężar [N] m masa [kg] g przyspieszenie ziemskie ( 10 N ) kg 1N = kg m s 2 GĘSTOŚĆ ρ = m V ρ gęstość substancji, z jakiej zbudowane jest ciało [ kg m 3] m- masa [kg] V objętość [m
Pole przepływowe prądu stałego
Podstawy elektromagnetyzmu Wykład 5 Pole przepływowe prądu stałego Czym jest prąd elektryczny? Prąd elektryczny: uporządkowany ruch ładunku. Prąd elektryczny w metalach Lity metalowy przewodnik zawiera
Plan Zajęć. Ćwiczenia rachunkowe
Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin
Pole magnetyczne magnesu w kształcie kuli
napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość
Pojemność elektryczna. Pojemność elektryczna, Kondensatory Energia elektryczna
Pojemność elektryczna Pojemność elektryczna, Kondensatory Energia elektryczna Pojemność elektryczna - kondensatory Kondensator : dwa przewodniki oddzielone izolatorem zwykle naładowane ładunkami o przeciwnych
- substancje zawierające swobodne nośniki ładunku elektrycznego:
Pzewodniki - substancje zawieające swobodne nośniki ładunku elektycznego: elektony metale, jony wodne oztwoy elektolitów, elektony jony zjonizowany gaz (plazma) pzewodnictwo elektyczne metali pzewodnictwo
Pojemność elektryczna
Pojemność elektryczna Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Pojemność elektryczna Umieśćmy na pewnym
Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 5 Pola magnetyczne w materii Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 6 Pola magnetyczne w materii 3 6.1 Magnetyzacja.....................
Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne
Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach
Pole elektrostatyczne
Termodynamika 1. Układ termodynamiczny 5 2. Proces termodynamiczny 5 3. Bilans cieplny 5 4. Pierwsza zasada termodynamiki 7 4.1 Pierwsza zasada termodynamiki w postaci różniczkowej 7 5. Praca w procesie
Pojemność elektryczna, Kondensatory Energia elektryczna
Pojemność elektryczna Pojemność elektryczna, Kondensatory Energia elektryczna 1 Pojemność elektryczna - kondensatory Kondensator : dwa przewodniki oddzielone izolatorem zwykle naładowane ładunkami o przeciwnych
dr inż. Zbigniew Szklarski
Wykład 11: Elektrostatyka dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Kwantyzacja ładunku Każdy elektron ma masę m e ładunek -e i Każdy proton ma masę m p ładunek
Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI.
Przykładowe zadania/problemy egzaminacyjne. Wszystkie bezwymiarowe wartości liczbowe występujące w treści zadań podane są w jednostkach SI. 1. Ładunki q 1 =3,2 10 17 i q 2 =1,6 10 18 znajdują się w próżni
Elementy równań różniczkowych cząstkowych
Elementy równań różniczkowych cząstkowych Magdalena Jakubek kwiecień 2016 1 Równania różniczkowe cząstkowe Problem brzegowy i problem początkowy Klasyfikacja równań Rodzaje warunków brzegowych Najważniejsze
Ćwiczenie nr 31: Modelowanie pola elektrycznego
Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko.. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr : Modelowanie pola
1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH
1. BILANSOWANIE WIELKOŚCI FIZYCZNYCH Ośrodki materialne charakteryzują dwa rodzaje różniących się zasadniczo od siebie wielkości fizycznych: globalne (ekstensywne) przypisane obszarowi przestrzeni fizycznej,
Elektryczność i Magnetyzm
Elektryczność i Magnetyzm Wykład: Piotr Kossacki Pokazy: Paweł Trautman, Aleksander Bogucki Wykład osiemnasty 12 maja 2016 Z poprzedniego wykładu Podłużny magnetoopór Prawo Ampèra Bezźródłowość pola B,
Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej
Materiały pomocnicze 10 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej 1. Siła Coulomba. F q q = k r 1 = 1 4πεε 0 q q r 1. Pole elektrostatyczne. To przestrzeń, w której na ładunek
Elektrodynamika. Część 6. Elektrodynamika. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 6 Elektrodynamika Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 7 Elektrodynamika 3 7.1 Siła elektromotoryczna.................. 3
Podstawy fizyki sezon 2 6. Indukcja magnetyczna
Podstawy fizyki sezon 2 6. Indukcja magnetyczna Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Dotychczas
Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe
Fizyka dr Bohdan Bieg p. 36A wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Literatura Raymond A. Serway, John W. Jewett, Jr. Physics for Scientists and Engineers, Cengage Learning D. Halliday, D.
cz.3 dr inż. Zbigniew Szklarski
Wykład : lektrostatyka cz.3 dr inż. Zbigniew zklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.zklarski/ Przykłady Jaka musiałaby być powierzchnia okładki kondensatora płaskiego, aby, przy odległości
Badanie rozkładu pola elektrycznego
Ćwiczenie 8 Badanie rozkładu pola elektrycznego 8.1. Zasada ćwiczenia W wannie elektrolitycznej umieszcza się dwie metalowe elektrody, połączone ze źródłem zmiennego napięcia. Kształt przekrojów powierzchni
Badanie rozkładu pola elektrycznego
Ćwiczenie E1 Badanie rozkładu pola elektrycznego E1.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie rozkładu pola elektrycznego dla różnych układów elektrod i ciał nieprzewodzących i przewodzących umieszczonych
Analiza wektorowa. Teoria pola.
Analiza wektorowa. Teoria pola. Pole skalarne Pole wektorowe ϕ = ϕ(x, y, z) A = A x (x, y, z) i x + A y (x, y, z) i y + A z (x, y, z) i z Gradient grad ϕ = ϕ x i x + ϕ y i y + ϕ z i z Jeśli przemieścimy
Wyznaczanie parametrów linii długiej za pomocą metody elementów skończonych
napisał Michał Wierzbicki Wyznaczanie parametrów linii długiej za pomocą metody elementów skończonych Rozważmy tak zwaną linię Lechera, czyli układ dwóch równoległych, nieskończonych przewodników, o przekroju
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ
METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza
ĆWICZENIE 86 BADANIE ZMIAN ŁADUNKU ELEKTRYCZNEGO ZGROMADZONEGO NA OKŁADKACH KONDENSATORA PODCZAS ROZŁADOWANIA METODĄ CAŁKOWANIA GRAFICZNEGO.
ĆWICZENIE 86 BADANIE ZMIAN ŁADUNKU ELEKTRYCZNEGO ZGROMADZONEGO NA OKŁADKACH KONDENSATORA PODCZAS ROZŁADOWANIA METODĄ CAŁKOWANIA GRAFICZNEGO. ŁADUNKI STATYCZNE. POLE ELEKTROSTATYCZNE. Wprowadzenie Oddziaływaniem
Pole elektryczne. Zjawiska elektryczne często opisujemy za pomocą pojęcia pola elektrycznego wytwarzanego przez ładunek w otaczającej go przestrzeni.
Pole elektryczne Zjawiska elektryczne często opisujemy za pomocą pojęcia pola elektrycznego wytwarzanego przez ładunek w otaczającej go przestrzeni. Załóżmy pewien rozkład nieruchomych ładunków 1,...,
Q t lub precyzyjniej w postaci różniczkowej. dq dt Jednostką natężenia prądu jest amper oznaczany przez A.
Prąd elektryczny Dotychczas zajmowaliśmy się zjawiskami związanymi z ładunkami spoczywającymi. Obecnie zajmiemy się zjawiskami zachodzącymi podczas uporządkowanego ruchu ładunków, który często nazywamy
Indukcja elektromagnetyczna Faradaya
Indukcja elektromagnetyczna Faradaya Ryszard J. Barczyński, 2017 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Po odkryciu Oersteda zjawiska
Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej
Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej rok szkolny 204/205 Warszawa, 29 sierpnia 204r. Zespół Przedmiotowy z chemii i fizyki Temat lekcji
Dielektryki polaryzację dielektryka Dipole trwałe Dipole indukowane Polaryzacja kryształów jonowych
Dielektryki Dielektryk- ciało gazowe, ciekłe lub stałe niebędące przewodnikiem prądu elektrycznego (ładunki elektryczne wchodzące w skład każdego ciała są w dielektryku związane ze sobą) Jeżeli do dielektryka