MECHANIKA 2 Wykład 3 Podstawy i zasady dynamiki

Podobne dokumenty
MECHANIKA 2 Wykład 7 Dynamiczne równania ruchu

Dynamika ruchu postępowego, ruchu punktu materialnego po okręgu i ruchu obrotowego bryły sztywnej

MECHANIKA 2 Wykład Nr 9 Dynamika układu punktów materialnych

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

Równa Równ n a i n e i ru r ch u u ch u po tor t ze (równanie drogi) Prędkoś ędkoś w ru r ch u u ch pros pr t os ol t i ol n i io i wym

Podstawowy problem mechaniki klasycznej punktu materialnego można sformułować w sposób następujący:

Fizyka 1- Mechanika. Wykład 4 26.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

MECHANIKA 2. Praca, moc, energia. Wykład Nr 11. Prowadzący: dr Krzysztof Polko

Elementy dynamiki klasycznej - wprowadzenie. dr inż. Romuald Kędzierski

Zasady dynamiki Isaak Newton (1686 r.)

Mechanika ogólna. Kinematyka. Równania ruchu punktu materialnego. Podstawowe pojęcia. Równanie ruchu po torze (równanie drogi)

Materiały pomocnicze 5 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.

Przykładowe zdania testowe I semestr,

Zasady dynamiki Newtona. dr inż. Romuald Kędzierski

Zasady dynamiki Newtona. Pęd i popęd. Siły bezwładności

Zasady dynamiki Newtona. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

MECHANIKA 2. Prowadzący: dr Krzysztof Polko

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

ZASADY DYNAMIKI. Przedmiotem dynamiki jest badanie przyczyn i sposobów zmiany ruchu ciał.

DYNAMIKA SIŁA I JEJ CECHY

Mechanika ogólna / Tadeusz Niezgodziński. - Wyd. 1, dodr. 5. Warszawa, Spis treści

MECHANIKA 2. Teoria uderzenia

Fizyka 1- Mechanika. Wykład 4 27.X Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Dynamika: układy nieinercjalne

Zakład Dydaktyki Fizyki UMK

Prawa ruchu: dynamika

2.3. Pierwsza zasada dynamiki Newtona

MECHANIKA 2 RUCH POSTĘPOWY I OBROTOWY CIAŁA SZTYWNEGO. Wykład Nr 2. Prowadzący: dr Krzysztof Polko

Oddziaływania te mogą być różne i dlatego można podzieli je np. na:

DYNAMIKA ZADANIA. Zadanie DYN1

3. KINEMATYKA Kinematyka jest częścią mechaniki, która zajmuje się opisem ruchu ciał bez wnikania w jego przyczyny. Oznacza to, że nie interesuje nas

SIŁA JAKO PRZYCZYNA ZMIAN RUCHU MODUŁ I: WSTĘP TEORETYCZNY

05 DYNAMIKA 1. F>0. a=const i a>0 ruch jednostajnie przyspieszony prostoliniowy 2. F<0. a=const i a<0 ruch jednostajnie opóźniony prostoliniowy 3.

Elementy dynamiki mechanizmów

MECHANIKA 2. Wykład Nr 3 KINEMATYKA. Temat RUCH PŁASKI BRYŁY MATERIALNEJ. Prowadzący: dr Krzysztof Polko

I. DYNAMIKA PUNKTU MATERIALNEGO

MECHANIKA II. Dynamika ruchu obrotowego bryły sztywnej

MECHANIKA II. Dynamika układu punktów materialnych

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc.

Ćwiczenie: "Dynamika"

Zasady dynamiki Newtona

Zasady dynamiki Newtona

Elementy dynamiki mechanizmów

MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko

Zasady dynamiki Newtona. Ilość ruchu, stan ruchu danego ciała opisuje pęd

Plan wynikowy z wymaganiami edukacyjnymi przedmiotu fizyka w zakresie rozszerzonym dla I klasy liceum ogólnokształcącego i technikum

Prawa ruchu: dynamika

Materiały pomocnicze 6 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni

Praca. Siły zachowawcze i niezachowawcze. Pole Grawitacyjne.

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Treści dopełniające Uczeń potrafi:

Wykład FIZYKA I. 3. Dynamika punktu materialnego. Dr hab. inż. Władysław Artur Woźniak

ZASADY DYNAMIKI NEWTONA

Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m.

Fizyka. Kurs przygotowawczy. na studia inżynierskie. mgr Kamila Haule

b) Oblicz ten ułamek dla zderzeń z jądrami ołowiu, węgla. Iloraz mas tych jąder do masy neutronu wynosi: 206 dla ołowiu i 12 dla węgla.

Podstawy fizyki sezon 1 II. DYNAMIKA

Mechanika klasyczna opiera się na trzech podstawowych prawach noszących nazwę zasad dynamiki Newtona. Przykładowe sformułowania tych zasad:

DYNAMIKA dr Mikolaj Szopa

MECHANIKA 2. Drgania punktu materialnego. Wykład Nr 8. Prowadzący: dr Krzysztof Polko

Wykład 10. Ruch w układach nieinercjalnych

Tarcie poślizgowe

Zasada zachowania energii

MECHANIKA II. Praca i energia punktu materialnego

1. Kinematyka 8 godzin

MiBM sem. III Zakres materiału wykładu z fizyki

Wektor położenia. Zajęcia uzupełniające. Mgr Kamila Rudź, Podstawy Fizyki.

Zasady dynamiki przypomnienie wiadomości z klasy I

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.

Dynamika Newtonowska trzy zasady dynamiki

I ZASADA DYNAMIKI. m a

Zasada zachowania pędu

Podstawy fizyki sezon 1 V. Ruch obrotowy 1 (!)

Spis treści. Wstęp Część I STATYKA

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

R o z d z i a ł 2 KINEMATYKA PUNKTU MATERIALNEGO

Mechanika teoretyczna

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

I zasada dynamiki Newtona

PODSTAWY FIZYKI - WYKŁAD 3 ENERGIA I PRACA SIŁA WYPORU. Piotr Nieżurawski. Wydział Fizyki. Uniwersytet Warszawski

Mechanika Analityczna

Oddziaływania Grawitacja

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.

Fizyka I (mechanika), rok akad. 2011/2012 Zadania na ćwiczenia, seria 2

D Y N A M I K A Na początek kilka powodów dla których warto uczyć się dynamiki:

Praca, moc, energia. 1. Klasyfikacja energii. W = Epoczątkowa Ekońcowa

Mechanika teoretyczna

Prawa ruchu: dynamika

WYMAGANIA EDUKACYJNE PRZEDMIOT : FIZYKA ROZSZERZONA

Elementy rachunku różniczkowego i całkowego

Podstawy fizyki. Wykład 2. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, W11, PWr

M2. WYZNACZANIE MOMENTU BEZWŁADNOŚCI WAHADŁA OBERBECKA

Kinematyka: opis ruchu

Transkrypt:

MECHANIKA 2 Wykład 3 Podstawy i zasady dynamiki Prowadzący: dr Krzysztof Polko

Wprowadzenie DYNAMIKA jest działem mechaniki opisującym ruch układu materialnego pod wpływem sił działających na ten układ. Oparta jest na zasadach sformułowanych przez Newtona w traktacie: Philosophiae naturalia principia mathematica (1687).

Zasady dynamiki klasycznej Newtona Zasada pierwsza Punkt materialny, na który nie działają żadne siły lub działają siły wzajemnie równoważące się, pozostaje względem układu odniesienia w spoczynku lub ruchu jednostajnego prostoliniowego.

Zasady dynamiki klasycznej Newtona Zasada druga Zmiana ilości ruchu (pędu) jest proporcjonalna względem siły działającej i ma kierunek prostej, wzdłuż której ta siła działa. Dla m = const

Zasady dynamiki klasycznej Newtona Zasada trzecia (akcji i reakcji) Każdemu działaniu towarzyszy równe, lecz przeciwnie zwrócone oddziaływanie.

Zasady dynamiki klasycznej Newtona Zasada czwarta (prawo superpozycji) Jeśli na punkt materialny o masie m działa jednocześnie kilka sił, to punkt uzyskuje przyspieszenie równe sumie geometrycznej przyspieszeń, jakie uzyskałby w wyniku niezależnego działania każdej z sił.

Zasady dynamiki klasycznej Newtona Zasada piąta (prawo grawitacji) Każde dwa punkty materialne przyciągają się wzajemnie z siłą wprost proporcjonalną do iloczynu mas (m 1, m 2 ) i odwrotnie proporcjonalnie do kwadratu odległości r między nimi. Kierunek siły leży na prostej łączącej te punkty. G - stała grawitacji

Siła bezwładności Rozpędzamy wózek z przyspieszeniem. Musimy więc ρ działać siłą równą ρ F = ma,. Zgodnie z zasadą akcji i reakcji na nasze ręce działa taka sama siła pochodząca od wózka, lecz zwrócona przeciwnie. Jest to siła bezwładności ( d Alemberta ) a ρ D ρ =

Siła bezwładności Ciężarek o masie m obracany na nici wokół punktu 0 poddany jest działaniu siły skierowanej dośrodka 0. ρ F = ρ ma n Nić jest rozciągana siłą bezwładności nazywamy ją czasem siłą odśrodkową D ρ =

Siła bezwładności Niech po dowolnym torze porusza się punkt materialny o masie m. Na punkt ten działa siła F ρ nadając, mu przyspieszenia całkowitego a ρ. Siłę F oraz przyspieszenie a rozłożymy na kierunek styczny i normalny do toru, otrzymamy: siłę styczną do toru F ρ t = siłę normalną do toru F ρ n =

Siła bezwładności ρ ρ Poruszającemu się punktowi przypiszemy siłę bezwładności D = ma, równą co do modułu sile F ρ, lecz zwróconą przeciwnie. Siłę tę możemy również rozłożyć na kierunek styczny i normalny do toru. Styczna siła bezwładności D ρ t = Normalna siła bezwładności D ρ n =

Siła bezwładności Siła bezwładności ma wartość równą iloczynowi masy przez przyspieszenie ruchu. Jej kierunek jest taki jak kierunek przyspieszenia ruchu, zaś zwrot jest zawsze przeciwny niż zwrot przyspieszenia. Siła bezwładności jest równa zeru wtedy, gdy w ruchu nie występuje przyspieszenie. W szczególności, styczna siła bezwładności nie występuje w ruchu jednostajnym punktu, normalna siła bezwładności jest równa zeru w ruchu prostoliniowym.

Zasada D Alemberta W ruchu swobodnego punktu materialnego układ sił czynnych równoważy się z siłą bezwładności.

Zasada D Alemberta W ruchu punktu nieswobodnego siły czynne i reakcje więzów równoważą się z siłą bezwładności. Tak więc wprowadzając do zagadnień dynamiki siłę bezwładności sprowadzamy je do zagadnień statyki. Metodę tę nazywamy metodą kinetostatyki.

Przykład Rozpatrzmy ruch masy m zawieszonej na końcu liny rozwijającej się z bębna. Załóżmy,że przyspieszenie opadającej masy wynosi. a ρ Na rozważaną masę działa siła ciężkości, siła napięcia w linie S ρ i siła bezwładności D ρ, zwróconą przeciw przyspieszeniu. Warunek równowagi: G ρ

Przykład Po podstawieniu stąd Rys. 8 W przypadku swobodnego spadku masy g ρ = a ρ, siła napięcia liny będzie równa zeru. Przy jednostajnym ruchu masy siła w linie będzie równa sile ciężkości.

Pęd punktu materialnego Punkt materialny o masie m porusza się pod wpływem ρ układu sił F F ρ ρ,,..., F 1 2 n Drugą zasadę Newtona zapiszemy w postaci: Wektor v nazywany jest pędem lub ilością ruchu punktu materialnego. m ρ p ρ

Pęd punktu materialnego Po wprowadzeniu pojęcia pędu, drugą zasadę Newtona możemy przedstawić w postaci Pochodna pędu punktu materialnego względem czasu jest równa sumie sił działających na dany punkt.

Zasada zachowania pędu punktu materialnego W przypadku gdy na punkt materialny nie działają siły lub siły działające równoważą się, pęd punktu materialnego jest stały.

Zasada pędu masy i impulsu siły Drugą zasadę Newtona przepiszemy w postaci Po oznaczeniu Elementarny impuls siły otrzymamy Impuls elementarny siły działającej na punkt materialny jest równy przyrostowi elementarnego pędu tego punktu.

Zasada pędu masy i impulsu siły Całkując obustronnie poprzednie równanie otrzymamy t2 ρ Π= F ρ dt t 1 - jest impulsem całkowity siły F w przedziale czasu t 2 -t 1, otrzymamy Przyrost pędu masy poruszającego się punktu jest równy impulsowi całkowitemu sił działających.

PĘD MASY. IMPULS SIŁY Stwierdzamy więc, że dla zmiany pędu masy niezbędny jest określony czas działania siły. Siły działające nieskończenie krótko lub, praktycznie biorąc, mające bardzo krótki czas działania nazywamy siłami chwilowymi (działanie nogi gracza na piłkę, siły przy uderzeniu kul bilardowych) w odróżnieniu od sił ciągłych, do której zaliczamy np. siłę ciężkości. Z równania tego wynika, że zmiana wektora pędu będzie tym intensywniejsza, im większa będzie siła F ρ oraz im mniejsza będzie masa m i pęd początkowy p ρ 1.

KRĘT PUNKTU MATERIALNEGO Po dowolnym torze porusza się punkt o masie m, z prędkością v ρ. Obierzmy dowolny punkt 0 jako początek układu stałego x, y, z i połączmy go z poruszającym się punktem promieniem-wektorem. r ρ Krętem poruszającego się punktu materialnego względem obranego bieguna 0 nazywamy wektor równy iloczynowi wektorowemu promienia, przez pęd poruszającego się punktu. Kręt jest więc momentem pędu względem obranego bieguna.

Pochodna krętu względem czasu Po zróżniczkujemy wektora krętu względem czasu otrzymamy czyli

Pochodna krętu względem czasu v ρ mv ρ = 0 Iloczyn wektorowy wektorów ρ ρrównoległych, natomiast iloczyn r ma przedstawia moment sił działających na poruszający się punkt materialny względem obranego bieguna 0. Tak więc Pochodna wektora krętu względem czasu jest równa momentowi głównemu wszystkich sił działających na dany punkt materialny.

Zasada zachowania krętu Jeżeli moment sił działających na poruszający się punkt materialny jest względem jakiegoś bieguna jest równy zeru, to kręt poruszającego się punktu względem tego bieguna jest wektorem stałym.

DYNAMICZNE RÓWNANIA RUCHU PUNKTU MATERIALNEGO Z drugiej zasady dynamiki Po podstawieniu oraz Otrzymamy dynamiczne równaniami ruchu

DYNAMICZNE RÓWNANIA RUCHU PUNKTU MATERIALNEGO Przy analizie ruchu punktu stosuje się w mechanice oprócz układu kartezjańskiego również inne układy ortogonalne. Równania ruchu w tych układach otrzymamy uwzględniając znane z kinematyki wzory przedstawiające przyspieszenia w tych układach. Tak na przykład w biegunowym układzie współrzędnych dynamiczne równania ruchu maja postać: W układzie współrzędnych walcowych, równania te będą wyglądały następująco:,

DYNAMICZNE RÓWNANIA RUCHU PUNKTU MATERIALNEGO W kinematyce podaliśmy składowe przyspieszenia w naturalnym układzie współrzędnych. Opierając się na tych składowych napiszemy dynamiczne równania ruchu w naturalnym układzie współrzędnych Wreszcie podamy jeszcze dynamiczne równania ruchu we współrzędnych kulistych:

DYNAMICZNE RÓWNANIA RUCHU PUNKTU MATERIALNEGO Rozwiązanie równań dynamicznych sprowadza się do dwóch zagadnień zwanych niekiedy dwoma zadaniami dynamiki. 1. Zadanie pierwsze polega na tym, że mamy parametryczne równania toru, po którym porusza się punkt materialny, czyli mamy określone równania x = x(t), y = y(t), z = z(t) Chcemy natomiast wyznaczyć siłę, pod której wpływem porusza się punkt materialny Zadanie to rozwiązuje się w prosty sposób. Różniczkując dwukrotnie względem czasu równania parametryczne, określamy składowe przyspieszenia, podstawiając je do dynamicznych równań ruchu znajdujemy szukane składowe siły działającej, a więc i wektor siły. F ρ

DYNAMICZNE RÓWNANIA RUCHU PUNKTU MATERIALNEGO 2. Bardziej złożone jest drugie zadanie dynamiki. Polega ono na wyznaczeniu (przy danej masie i sile) przyspieszenia, prędkości i toru poruszającego się punktu. W zadaniu tym musimy mieć określoną siłę działającą. Możemy tu rozróżnić następujące przypadki. a) Siła jest wektorem stałym, np. siła ciężkości, tarcie, b) Siła jest funkcją czasu, np. siła odśrodkowa wahadła, c) Siła zależy od położenia, np. siła sprężystości, siła ciężkości przy uwzględnieniu dużego obszaru, d) Siła zależy od prędkości poruszającego się punktu, np. opór powietrza. W najogólniejszym przypadku równania ruchu w współrzędnych kartezjańskich b miały postać

Całka ogólna tych równań (o ile istnieje) ma postać trzech równań zawierających sześć stałych całkowania. Różniczkując te równania i uwzględniając warunki początkowe dla t=0, x o x = o x x & &=, y o y = o y y & &= z o z = o z z & &=, określimy parametryczne równania toru ),,,,,, ( 1 t z y x z y x f x o o o o o o & & & = ),,,,,, ( 2 t z y x z y x f y o o o o o o & & & = ),,,,,, ( 3 t z y x z y x f z o o o o o o & & & = Ten układ równań określa ruch punktu, na który działają znane siły i który w chwili początkowej zajmował określone położenie i miał określoną prędkość początkową. DYNAMICZNE RÓWNANIA RUCHU PUNKTU MATERIALNEGO

CAŁKOWANIE RÓWNAŃ RUCHU Określenie siły na podstawie parametrycznych równań toru. Masa m = 4 kg porusza się po torze określonym parametrycznymi równaniami 3 2 x= 4t + 2t 6 m, y 3t 2 + 4 =, m. Określić działająca siłę. Różniczkujemy dwukrotnie względem czasu i znajdujemy składowe przyspieszenia Podstawiając je do równań ruchu znajdujemy szukaną siłę lub w postaci wektorowej F ρ =

CAŁKOWANIE RÓWNAŃ RUCHU F ρ = 0 Ruch pod wpływem siły ma postać ma ρ = 0, czyli r &ρ = 0 Po scałkowaniu i przyjęciu,że w chwili t = 0. W tym przypadku równanie dynamiczne &ρ ρ r = v o o Całkując drugi raz i uwzględniając,że dla t = 0 r&ρ ρ o = v o r ρ = ρ r o, otrzymamy, otrzymamy Dochodzimy w ten sposób do znanych równań ruchu jednostajnego i prostoliniowego.

CAŁKOWANIE RÓWNAŃ RUCHU Ruch pod wpływem siły stałej równanie ruchu w postaci F ρ = const. Napiszemy Po dwukrotnym scałkowaniu i przyjęciu warunków początkowych: r&ρ ρ o = v o ρ r = ρ r dla t = 0 oraz dla o będzie r ρ =

CAŁKOWANIE RÓWNAŃ RUCHU Ruch pod wpływem siły, która jest funkcją położenia. Jako przykład rozpatrzmy ruch punktu materialnego o masie m wystrzelonego z planety o masie M (rys. 9). Równanie ruchu ma postać ale lub Po całkowaniu otrzymujemy równanie Rys. 9

CAŁKOWANIE RÓWNAŃ RUCHU Obliczymy, na jaką wysokość H wzniesie się punkt materialny wyrzucony z planety o promieniu R, jeżeli nadano mu prędkość początkową v o. Podstawimy więc v = 0, x = H, x o = R otrzymamy po przekształceniu Zastanówmy się, z jaką prędkością należy wyrzucić punkt materialny z planety, aby na nią nie wrócił, czyli aby stał się satelitą planety. Prędkość tę, zwaną prędkością ucieczki v, otrzymamy, podstawiając do wzoru v o = v oraz H =. Na prędkość ucieczki otrzymamy wyrażenie

CAŁKOWANIE RÓWNAŃ RUCHU Na powierzchni Ziemi siła grawitacji ma wartość Prędkość ucieczki dla Ziemi będzie Przyjmując w szczególności R = 6340 km oraz g = 9,81 m/s 2 otrzymamy v 11,8 km/s 42 500 km/h. Jest to prędkość, jaką należy nadać ciału, aby stało się ono satelitą Ziemi.

RUCH WZGLĘDNY PUNKTU MATERIALNEGO układ ruchomy wykonuje ruch postępowy Względem układu stałego ruch punktu jest określony równaniem oraz W układzie ruchomym ruch określony jest więc równaniem (17) ρ ρ w którym D u = ma u nazywamy siłą bezwładności unoszenia. Jest ona równa iloczynowi masy punktu przez przyspieszenie unoszenia i jest zwrócona przeciwnie niż a ρ u.

RUCH WZGLĘDNY PUNKTU MATERIALNEGO układ ruchomy wykonuje ruch postępowy Równanie ruchu przyjmuje następującą postać: Względem ruchomego układu odniesienia wykonującego ruch postępowy punkt materialny porusza się tak, jakby działała na niego, oprócz sił danych, jeszcze pomyślana siła bezwładności unoszenia. Zasada względności mechaniki klasycznej: Za pomocą żadnych zjawisk mechanicznych nie możemy wykazać istnienia prostoliniowego, jednostajnego ruchu postępowego układu odniesienia.

RUCH WZGLĘDNY PUNKTU MATERIALNEGO układ ruchomy wykonuje ruch postępowy Rys. 8 Ostatecznie: Dla a u < g tg α punkt materialny będzie poruszał się w dół. W przeciwnym przypadku punkt będzie poruszał się do góry. Gdy a u = g tg α, punkt pozostanie w spoczynku lub w ruchu jednostajnym prostoliniowym (względem ruchomej płaszczyzny).

RUCH WZGLĘDNY PUNKTU MATERIALNEGO układ ruchomy wykonuje ruch obrotowy W układzie stałym równanie ruchu będzie następujące: oraz Równanie ruchu w układzie ruchomym przyjmie postać: (18) ρ ρ D u = ma u ρ ρ D c = ma c siła bezwładności unoszenia, siła bezwładności unoszenia Coriolisa.

RUCH WZGLĘDNY PUNKTU MATERIALNEGO układ ruchomy wykonuje ruch obrotowy Względem ruchomego układu odniesienia wykonującego ruch obrotowy punkt materialny porusza się tak jakby działała na niego, oprócz sil danych, jeszcze pomyślana siła bezwładności unoszenia i pomyślana siła bezwładności Coriolisa. W ruchu obrotowym przyspieszenie całkowite jest sumą geometryczną przyspieszenia obrotowego i doosiowego, czyli (19) w związku z tym (20)

RUCH WZGLĘDNY PUNKTU MATERIALNEGO układ ruchomy wykonuje ruch obrotowy ρ ρ D o = ma o obrotowa (styczna) siła bezwładności, ρ ρ D d = ma d poosiowa (normalna) siła bezwładności, przy czym D o = D = = d D c Ruch punktu wzdłuż prostej l opisuje równanie Rozwiązaniem ogólnym będzie wyrażenie Rys. 9

RUCH WZGLĘDNY PUNKTU MATERIALNEGO układ ruchomy wykonuje ruch obrotowy W wielu zagadnieniach praktycznych za układ odniesienia przyjmujemy Ziemię. W ogólności jest to układ nieinercjalny. Jednak z wystarczająco dobrym przybliżeniem Ziemię możemy uważać za układ inercjalny, o ile tylko będziemy rozpatrywać ruch w przedziałach czasu krótkich w porównaniu z okresem ruchu postępowego i obrotowego Ziemi. Szczególnie niewielką rolę odgrywa, przy występujących w praktyce prędkościach, siła Coriolisa.

PRZYKŁAD 1 Człowiek naciska na podłogę windy siłą N 1 = 500 N, jeśli winda jest w spoczynku, natomiast siłą N 2 = 550 N, jeśli winda rusza. Jakie jest przyspieszenie windy? Przyjąć g = 10 m/s 2. spoczynek ruch ρ a =? N ρ 2 N ρ 1 G ρ G ρ

Rozwiązanie Dla spoczynku Z warunków równowagi: Dla ruchu windy Z II zasady dynamiki Newtona: Odp.:

PRZYKŁAD 2 Ciało o masie m 1 porusza się po chropowatej równi pochyłej, tworzącej za poziomem kąt α. Za pomocą nieważkiej, doskonale wiotkiej linki, przerzuconej przez kołek K, wprawia w ruch ciało o masie m 2, znajdujące się na chropowatej płaszczyźnie poziomej. Współczynnik tarcia kinetycznego na obydwu powierzchniach jest równy µ. Znaleźć wartość siły wypadkowej działającej na ciało o masie m 1.

Rozwiązanie N ρ 2 T ρ 2 G ρ 2 T ρ 1 α N ρ 1 G ρ 1 Wartości sił działających na ciało 2:

Rozwiązanie Wartości sił działających na ciało 1: Niech F ρ GN1 wypadkowa sił N 1 i G 1. Wtedy Zatem wypadkowa sił działających na ciało 1 ma wartość:

PRZYKŁAD 3 ZASADA PĘDU Przypadek taki sam, jak w poprzednim zadaniu. Prędkość początkowa ciała o masie m 1 wynosi v 0. Znaleźć czas, po którym prędkość będzie n razy większa.

Zgodnie z zasadą pędu: Rozwiązanie Odp.:

PRZYKŁAD 4 ZASADA ZACHOWANIA PĘDU Z działa o masie M = 1000 kg wystrzelono pocisk o masie m = 1 kg. W chwili wylotu z lufy pocisk ma prędkość o wartości v = 400 m/s. Działo ulega odrzuceniu w przeciwną stronę niż leci pocisk. Obliczyć szybkość odrzutu działa szybkość chwilową w momencie, gdy pocisk opuszcza lufę. u =? v = 400 m s

Rozwiązanie Działo i pocisk tworzą układ zamknięty. Przyjmujemy istnienie wyłącznie oddziaływań między działem i pociskiem (oddziaływania grawitacyjne w chwili wystrzału możemy pominąć). Nie ma oddziaływań zewnętrznych w stosunku do układu działo-pocisk. Ponieważ siły między działem i pociskiem się równoważą, w układzie działo-pocisk obowiązuje zasada zachowania pędu. F ρ F ρ

gdzie p 1 pęd układu w spoczynku; p 2 pęd układu w chwili odrzutu. więc Odp.: Mu ρ mv ρ

PRZYKŁAD 5 Balon opada ze stałą prędkością. Jaką masę balastu należy wyrzucić, alby balon zaczął wznosić się z tą samą prędkością? Masa balonu (z balastem) wynosi M = 300 kg, a siła wyporu F wyp = 2900 N. Dane: M, F wyp Szukane: m =?

Rozwiązanie Na balon działają 3 siły: ciężkości G; wyporu F wyp ; oporu ośrodka R. Balon porusza się ze stałą prędkością, więc na podst. I zasady dynamiki:

Uwaga! Ponieważ szybkość przy opadaniu i wznoszeniu jest taka sama, a siła oporu powietrza R zależy tylko od prędkości, jej wartość przy opadaniu i wznoszeniu również będzie taka sama. Gdy balon wznosi się, również będzie spełniona I zasada dynamiki:

PRZYKŁAD 6 Dwa klocki o masach m 1 i m 2 związane nieważką i nierozciągliwą nicią leżą na poziomym stole. Do drugiego z nich przyłożono siłę F pod kątem α. Współczynniki tarcia między klockami a stołem wynoszą odpowiednio µ 1 i µ 2. Oblicz przyspieszenie klocków i siłę napinającą nić. Dane: m 1, m 2, F,α,µ 1,µ 2 Szukane: a, S

Rozwiązanie Na układ działają siły: G 1, G 2 siły ciężkości; T 1, T 2 siły tarcia; N 1, N 2 siły nacisku (reakcji podłoża); S siła napięcia linki; F dodatkowa siła zewnętrzna. Wykorzystamy fakt, iż oba klocki poruszają się z tym samym przyspieszeniem o wartości a.

Równania ruchu pierwszego klocka: II zasada dynamiki równanie równowagi Równania ruchu drugiego klocka: II zasada dynamiki równanie równowagi

Rozwiązania: Uwaga! Powyższe rozważania mają sens, gdy klocek nie odrywa się od podłoża (tj. gdy G 2 > Fsinα) oraz gdy a > 0, tj. gdy:

PRZYKŁAD 7 W wagonie poruszającym się poziomo ruchem jednostajnie przyspieszonym wisi na nici ciężarek o masie m = 0,1 kg. Nić odchylona jest od pionu o kąt α = 15. Obliczyć przyspieszenie wagonu i siłę napięcia linki. Dane: m,α Szukane: a, S

Rozwiązanie Kulka względem wagonu jest w spoczynku, a względem ziemi porusza się z przyspieszeniem a równym przyspieszeniu wagonu. Na kulkę działają jedynie siły: grawitacji G; napięcia linki S. Obie siły składają się na wypadkową F, która powoduje ruch kulki względem ziemi z przyspieszeniem a. II zasada dynamiki dla kulki:

Skalarnie: Rozwiązanie: