Zmienne losowe i ich rozkłady. Momenty zmiennych losowych. Wrocław, 10 października 2014
Zmienne losowe i ich rozkłady
Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe
Doświadczenie losowe: Rzut monetą Rzut kostką Wybór losowy n kart z talii 52 Gry losowe Z wynikiem doświadczenia losowego wiąże się w naturalny sposób pewną liczbę albo ciąg liczb. Funkcję przekształcająca wynik eksperymentu losowego na liczbę rzeczywistą nazywamy zmienną losową.
Zmienna losowa Niech (Ω, F, P) oznacza podstawową przestrzeń probabilistyczną. Definicja: Zmienna losowa Zmienną losową nazywamy funkcję określoną na przestrzeni zdarzeń elementarnych Ω o wartościach ze zbioru liczb rzeczywistych X : Ω R, taką że dla każdego a R {ω : X (ω) a} F
Zmienna losowa Niech (Ω, F, P) oznacza podstawową przestrzeń probabilistyczną. Definicja: Zmienna losowa Zmienną losową nazywamy funkcję określoną na przestrzeni zdarzeń elementarnych Ω o wartościach ze zbioru liczb rzeczywistych X : Ω R, taką że dla każdego a R {ω : X (ω) a} F Mniej formalnie mówiąc, zmienna losowa to taka funkcja X określona na zbiorze zdarzeń elementarnych o wartościach liczbowych, dla której dane są prawdopodobieństwa przyjmowania przez X wartości z dowolnego zbioru.
Zmienna losowa Zmienne losowe: dyskretne (typu skokowego) - zmienna przyjmuje dowolne wartości ze zbioru skończonego albo przeliczalnego typu ciągłego -zmienna przyjmuje dowolne wartości z określonego przedziału
Zmienna losowa Zmienne losowe: dyskretne (typu skokowego) - zmienna przyjmuje dowolne wartości ze zbioru skończonego albo przeliczalnego typu ciągłego -zmienna przyjmuje dowolne wartości z określonego przedziału Zmienne losowe oznaczamy dużymi literami, np.: X, Y, Z, natomiast małymi literami (x, y, z) oznaczamy wartości zmiennych losowych.
Rozkład zmiennej losowej Definicja: Rozkład zmiennej losowej Dystrybuantą rozkładu zmiennej losowej X nazywamy funkcję F X (t) zdefiniowaną dla wszystkich t jako F X (t) = P(ω : X (ω) t)
Rozkład zmiennej losowej Definicja: Rozkład zmiennej losowej Dystrybuantą rozkładu zmiennej losowej X nazywamy funkcję F X (t) zdefiniowaną dla wszystkich t jako F X (t) = P(ω : X (ω) t) Własności dystrybuanty F X jest niemalejąca lim t F X (t) = 1 lim t F X (t) = 0 F X jest prawostronnie ciągła
Rozkład zmiennej losowej Warto zauważyć, że dla ciągłej zmiennej losowej i dowolnych liczb a, b R P(X a) = F X (a) P(X a) = 1 F X (a) P(a X b) = F X (b) F X (a)
Gęstość zmiennej losowej Definicja: Funkcją gęstości rozkładu dyskretnej zmiennej losowej X nazywamy funkcję f X (t) zdefiniowaną dla wszystkich t jako f X (t) = P(ω : X (ω) = t) Definicja: Funkcją gęstości rozkładu ciągłej zmiennej losowej X nazywamy funkcję f X (t) zdefiniowaną dla wszystkich t jako F X (t) = t f X (t)dt
Własności gęstości zmiennej losowej Uwaga! d dt F X (t) = f X (t) Każda funkcja, będąca gęstością prawdopodobieństwa, wyznacza jednoznacznie pewną dystrybuantę, a tym samym rozkład prawdopodobieństwa pewnej zmiennej.
Własności gęstości zmiennej losowej Uwaga! d dt F X (t) = f X (t) Każda funkcja, będąca gęstością prawdopodobieństwa, wyznacza jednoznacznie pewną dystrybuantę, a tym samym rozkład prawdopodobieństwa pewnej zmiennej. Twierdzenie 2.1 Funkcja f (x) jest gęstością pewnej zmiennej losowej wtedy i tylko wtedy, gdy 1. f (x) 0 2. f (t)dt = 1
Własności gęstości zmiennej losowej Przykład Dobrać stałe a i b > 0 tak, aby funkcja { a cos x dla x [0, b] f (x) = 0 dla x / [0, b] była gęstością pewnej zmiennej losowej. Należy dobrać stałe tak aby były spełnione warunki 1 i 2 z Twierdzenia 2.1. A zatem, aby f (x) 0 musi zachodzić a 0 oraz 0 b π/2. Aby był spełniony warunek 2 musi zachodzić równość: b 0 a cos xdx = 1
Własności gęstości zmiennej losowej Obliczając całkę b 0 a cos xdx = a sin x b 0 = a sin b a sin 0 = a sin b dostajemy warunek a sin b = 1, a stąd b = arc sin(1/a). Zatem aby dana funkcja była gęstością, stałe muszą spełniać warunki: a 0, b = arc sin(1/a).
Interpretacja graficzna zależności pomiędzy funkcją gęstości a rozkładem prawdopodobieństwa
Funkcje zmiennych losowych Przykład Niech X będzie nieujemną zmienną losową o gęstości f X. Znaleźć gęstość zmiennej losowej Y = X. Dla x 0 zachodzi: F Y (t) = P( X t) = P(X t 2 ) = F X (t 2 ) = a stąd: f Y (t) = df Y (t) dt = 2tf X (t 2 )I (0, ) (t) t 2 0 f X (u)du
Transformacje zmiennych losowych Twierdzenie 2.2 Niech X będzie zmienną losową o rozkładzie z gęstością f X (x) oraz niech Y = g(x ), gdzie g jest funkcją ściśle monotoniczną. Załóżmy, że f X (x) jest funkcją ciągłą oraz że g 1 (y) jest funkcją z ciągłą pochodną. Wtedy gęstość rozkładu zmiennej losowej Y jest postaci: f Y (y) = f X (g 1 (y)) d dy g 1 (y)
Transformacje zmiennych losowych Przykład Niech X oznacza zmienną losową o gęstości: f X (x) = e x I (0, ) (x). Chcemy znaleźć gęstość zmiennej losowej Y = ln X. Funkcją g jest tutaj g(x) = ln(x), a zatem dla y R, g 1 (y) = e y d. Dalej dy g 1 (y) = e y. Korzystając z Twierdzenia 2.2 otrzymujemy f Y (y) = e ey e y
Transformacje zmiennych losowych Przykład Niech X będzie daną zmienną losową. Znaleźć gęstość zmiennej losowej Y = ax + b, a, b R + Sposób I: ( F Y (t) = P(aX +b t) = P(ax t b) = P X t b ) = a ( ) t b = F X a zatem f Y (t) = df Y (t) = 1 ( ) t b dt a f X a
Transformacje zmiennych losowych Sposób II g(x) = ax + b, a stąd g 1 (y) = 1 a (y b), a następnie d dy g 1 (y) = 1 a. Zatem f Y (y) = f X (g 1 (y)) d dy g 1 (y) = 1 ( ) y b a f X a
Momenty zmiennych losowych
Wartość oczekiwana W wielu zagadnieniach praktycznych istnieje potrzeba istniej potrzeba opisania zmiennej losowej przez jedną charakterystykę liczbową oddającą jej najbardziej typowe, przeciętne wartości. Np.: jak długo przeciętnie czekamy na przystanku na autobus na ile średnio dni deszczowych może liczyć rolnik w miesiącu kwietniu jakie są oczekiwane zbiory danych owoców/warzyw
Wartość oczekiwana Definicja: Niech X będzie daną zmienną losową. Jeżeli X jest zmienną losową dyskretną oraz i x i P(X = x i ) <, to istnieje wartość oczekiwana EX dana wzorem: EX = i x i P(X = x i ) Jeżeli X jest zmienną losową z ciągłą gęstością f oraz x f (x)dx <, to istnieje wartość oczekiwana EX dana wzorem EX = xf (x)dx
Wartość oczekiwana Niech g będzie funkcją dla której istnieje wartość oczekiwana. Wówczas dla zmiennej losowej X typu dyskretnego: E[g(X )] = i g(x i )P(X = x i ), dla zmiennej losowej X typu ciągłego EX = g(x)f (x)dx.
Własności wartości oczekiwanej Niech będą dane zmienne losowe X i Y oraz stała a E(a) = a E(aX ) = ae(x ) E(X Y ) = EX EY E(X + Y ) = EX + EY Jeżeli X i Y są niezależnymi zmiennymi losowymi, to: E(XY ) = EX EY
Momenty Wartość oczekiwana EX jest pierwszym momentem rozkładu zmiennej losowej X Definicja: Momentem rzędu n rozkładu zmiennej losowej X nazywamy: µ n = EX n Momentem centralnym rzędu n rozkładu zmiennej losowej X nazywamy: m n = E[X EX ] n
Momenty Szczególnym przypadkiem momentu centralnego jest wariancja zmiennej losowej, którą będziemy oznaczać Var : Definicja: Moment centralny rzędu 2 rozkładu zmiennej losowej X nazywamy wariancją: Var(X ) = E[X EX ] 2 = EX 2 (EX 2 )
Momenty Szczególnym przypadkiem momentu centralnego jest wariancja zmiennej losowej, którą będziemy oznaczać Var : Definicja: Moment centralny rzędu 2 rozkładu zmiennej losowej X nazywamy wariancją: Var(X ) = E[X EX ] 2 = EX 2 (EX 2 ) Wariancja zmiennej losowej (błąd średniokwadratowy) jest to miara rozproszenia wartości zmiennej wokół wartości średniej. Im wariancja jest mniejsza tym bardziej wartości zmiennej skupiają się wokół średnie EX.
Momenty Twierdzenie 2.3 Jeżeli zmienna losowa X ma skończoną wariancję to dla dowolnych stałych a i b zachodzi: Var(aX + b) = a 2 Var(X ) Jeżeli zmienne losowe X i Y są niezależne i mają skończone wariancje to Var(X + Y ) = Var(X ) + Var(Y ) Dowód na ćwiczeniach.
Momenty W statystyce znaczenie mają równiez momenty centralne rzędów trzeciego i czwartego, za pomoca których wyznacza się znane miary statystyczne: Definicja: wskaźnik asymetrii (wskaźnik skośności) γ 1 = E[X EX ]3 [Var(X )] 3/2 = m 3 m 2/3 2 wskaźnik spłaszczenia (kurtoza, eksces) γ 2 = E[X EX ]4 [Var(X )] 2 3 = m 4 m2 2 3