Biometryczna Identyfikacja Tożsamości
|
|
- Ryszard Wysocki
- 6 lat temu
- Przeglądów:
Transkrypt
1 Biometryczna Identyfikacja Tożsamości Wykład 9: Rozpoznawanie mówiącego Adam Czajka Wykład na Wydziale Elektroniki i Technik Informacyjnych Politechniki Warszawskiej Semestr letni 2015 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 1/40
2 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 2/40 Rozpoznawanie mówiącego jako technika przetwarzania mowy Rozpoznawanie mówiącego jako technika przetwarzania mowy Wstępne przetwarzanie sygnałów mowy
3 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 3/40 Rozpoznawanie mówiącego jako technika przetwarzania mowy Przetwarzanie mowy
4 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 4/40 Rozpoznawanie mówiącego jako technika przetwarzania mowy Przetwarzanie mowy
5 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 5/40 Rozpoznawanie mówiącego jako technika przetwarzania mowy Krótka historia , Gunnar Fant, Szwecja pierwszy model procesu wytwarzania mowy (na bazie zdjęć rentgenowskich w trakcie mówienia) , Joseph Perkell, MIT, USA uszczegółowienie modeli ruchome zdjęcia rentgenowskie , IBM Research Laboratory, San Jose, USA TASS-II/III ( / ) dwudźwięki TASS-IV ( ) synteza mowy
6 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 6/40 Rozpoznawanie mówiącego jako technika przetwarzania mowy Krótka historia , Texas Instruments, MITRE, US Air Force, USA prototyp pierwszego systemu rozpoznawania mówiącego testy na bazie pomiarów od 209 osób , Matsimi Suzuki, Fuji Xerox, Japonia pierwszy opis (i patent) automatycznego systemu rozpoznawania mówiącego
7 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 7/40 Rozpoznawanie mówiącego jako technika przetwarzania mowy Warianty metody 1. Ustalonej treści (ang. fixed-text) rejestracja i uwierzytelnianie na podstawie tego samego, ustalonego tekstu (hasła) tekst może być jednocześnie hasłem łatwość oszustwa po nagraniu/skopiowaniu tekstu 2. Zależne od treści (ang. text-dependent, lub fixed-phrase) uwierzytelnianie na podstawie tekstu podanego przez system (np. odczytanie cyfr w zadanej kolejności) łatwość oszustwa po nagraniu/skopiowaniu części tekstu wystarczających do złożenia całej wypowiedzi
8 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 8/40 Rozpoznawanie mówiącego jako technika przetwarzania mowy Warianty metody 3. Niezależne od treści (ang. text-independent, lub unconstrained-phrase) wybór tekstu pozostawiany użytkownikowi oszustwo wymaga konstrukcji syntezatora mowy dla danego użytkownika 4. Konwersacyjne (ang. conversational) ukrywanie tajnej treści w wypowiedziach analiza semantyczna treści łączenie rozpoznawania mówiącego z rozpoznawaniem mowy oszustwo wymaga konstrukcji syntezatora mowy dla danego użytkownika oraz znajomości tajnych treści
9 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 9/40 Wstępne przetwarzanie sygnałów mowy Rozpoznawanie mówiącego jako technika przetwarzania mowy Wstępne przetwarzanie sygnałów mowy
10 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 10/40 Wstępne przetwarzanie sygnałów mowy 1. Filtracja 1. Filtr preemfazy filtry o skończonej odpowiedzi impulsowej (ang. Finite Impulse Response, FIR) s n = N 1 k=0 a k s n k, n = 0,..., N 1 2. Najczęściej FIR pierwszego rzędu: a 0 = 1, a 1 1, 0.9, a n = 0 dla n > 1
11 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 11/40 Wstępne przetwarzanie sygnałów mowy 2. Detekcja głosu i podział na segmenty 1. Detekcja granic cisza-mowa-cisza, detekcja części dźwięcznych i bezdźwięcznych 2. Podział sygnału na L bloków o długości K (z możliwością nakładania się bloków) s k;l = s k+ml, k = 0,..., K 1, l = 0,..., L 1 gdzie M = K gdy bloki nie nakładają się, lub M K w pozostałych przypadkach.
12 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 12/40 Wstępne przetwarzanie sygnałów mowy 3. Minimalizacja nieciągłości na granicy bloków Okienkowanie sygnału: s k;l = s k;l w k, l = 0,..., L 1 gdzie w k = α (1 α) cos ( ) 2πk K jest rodziną funkcji okna oraz α (0, 1) α = 0.5: okno Hanna α = 0.54: okno Hamminga
13 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 13/40 Wstępne przetwarzanie sygnałów mowy 4. Reprezentacja sygnału 1. W dziedzinie czasu: wykres sygnału lub energii sygnału 2. W dziedzinie częstotliwości (widmo częstotliwościowe) 3. Jednocześnie w dziedzinie czasu i częstotliwości: spektrogram (ang. voiceprint, voicegram, spectral waterfall,...)
14 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 14/40 Rozpoznawanie mówiącego jako technika przetwarzania mowy Wstępne przetwarzanie sygnałów mowy
15 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 15/40 Cechy mówiącego Formanty: częstotliwości charakteryzujące tor akustyczny Uproszczony schemat aparatu mowy człowieka
16 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 16/40 Ciekawy eksperyment Alvin Lucier, I am sitting in a room, 1970 I am sitting in a room different from the one you are in now. I am recording the sound of my speaking voice and I am going to play it back into the room again and again until the resonant frequencies of the room reinforce themselves so that any semblance of my speech, with perhaps the exception of rhythm, is destroyed. What you will hear, then, are the natural resonant frequencies of the room articulated by speech. I regard this activity not so much as a demonstration of a physical fact, but more as a way to smooth out any irregularities my speech might have.
17 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 17/40 Estymacja cech w dziedzinie czasu 1. Predykcja liniowa (LP) modelowanie: wyrażenie próbki dźwięku jako liniowej kombinacji próbek poprzednich (modele autoregresyjne) ŝ n = M a m s n m + e n m=1 gdzie M rząd modelu, e szum o stałej wariancji; w rozpoznawaniu mowy e reprezentuje sygnał pobudzenia (dźwięk strun głosowych) cechy sygnału: współczynniki a m (charakterystyka formantów) wyznaczanie cech: minimalizacja błędu średniokwadratowego odległości pomiędzy s i ŝ (wykorzystanie odległości Itakura-Saito)
18 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 18/40 Estymacja cech w dziedzinie czasu 2. Analiza składowych niezależnych (ang. Independent Component Analysis, ICA) założenie: mowa jest liniową superpozycją niezależnych statystycznie źródeł sygnału zadanie: znaleźć źródła oraz sposób superpozycji źródeł
19 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 19/40 Analiza składowych niezależnych Przykład superpozycji obrazów
20 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 20/40 Analiza składowych niezależnych Przykład superpozycji obrazów
21 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 21/40 Analiza składowych niezależnych Przykład superpozycji obrazów
22 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 22/40 Analiza składowych niezależnych Przykład superpozycji obrazów
23 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 23/40 Analiza składowych niezależnych Przykład superpozycji i separacji dźwięku (tzw. cocktail party problem) Źródło przykładu: Politechnika w Helsinkach,
24 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 24/40 Analiza składowych niezależnych 1. Model ICA gdzie y(t) = As(t) + e(t) s(t) = [s 1 (t),..., s m (t)] T wektor m niezależnych statystycznie i nieznanych źródeł, y(t) = [y 1 (t),..., y n (t)] T wektor n obserwacji y (liniowa mikstura źródeł s), natomiast e(t) jest gaussowskim szumem (w modelu uproszczonym rezygnuje się z szumu)
25 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 25/40 Analiza składowych niezależnych 2. Zadanie znaleźć s (oraz A) mając dane jedynie y i m 3. Założenia ICA niegaussowskie źródła, lub co najwyżej jedno gaussowskie w modelu uproszczonym zwykle n m (liczba niezależnych obserwacji nie mniejsza niż liczba niezależnych źródeł) zadana wariancja źródeł, np. jednostkowa (niejednoznaczność: poszukiwane zarówno s jak i A)
26 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 26/40 Analiza składowych niezależnych Założenia i interpretacja w rozpoznawaniu mówiącego 1. Dana (zakładana) jest liczba źródeł 2. Różne próbki głosu osoby dostarczają różnych obserwacji 3. Dopuszczamy rozkład normalny co najwyżej jednego źródła (dla modelu uproszczonego) 4. Cechy mówiącego (toru głosowego): współczynniki liniowej superpozycji źródeł (macierz A)
27 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 27/40 Estymacja cech w dziedzinie częstotliwości 1. Współczynniki mocy na bazie widma Fouriera 2. Współczynniki Fouriera wyrażone w tzw. mel-skali 3. Selekcja częstotliwości (czyli współczynników Fouriera) za pomocą filtrów trójkątnych
28 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 28/40 Mel-skala: prosty ekesperyment
29 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 29/40 Mel-skala 1. Nieliniowa zmiana częstotliwości, np.: f mel = 2595 log(1 + f/700) 2. Subiektywna ocena odległości pomiędzy dźwiękami poparta doświadczeniami ( mel od słowa melodia ) 3. Uważa się, iż mel-skala lepiej niż skala liniowa odzwierciedla charakterystykę słuchu ludzkiego
30 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 30/40 Przykładowa zależność między skalą liniową i mel-skalą
31 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 31/40 Estymacja cech w dziedzinie cepstralnej Rozplot homomorficzny 1. Załóżmy, że obserwowany sygnał mowy y jest splotem pobudzenia x i odpowiedzi impulsowej h toru głosowego y(n) = k= lub w dziedzinie częstotliwości x(k)h(n k) Y (ω) = X(ω)H(ω)
32 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 32/40 Estymacja cech w dziedzinie cepstralnej Rozplot homomorficzny 2. Obliczając logarytm obu stron poprzedniego równania oraz wyznaczając odwrotną transformatę Fouriera otrzymujemy tzw. reprezentację cepstralną sygnału (lub krótko: cepstrum, anagram słowa spectrum ): DFT 1( log 10 ( Y (ω) ) ) = DFT 1( log 10 ( X(ω)H(ω) ) ) = DFT 1( log 10 ( X(ω) ) + log10 ( H(ω) ) ) DFT 1( log 10 ( X(ω) ) ) + DFT 1( log 10 ( H(ω) ) )
33 gdzie MFC oznacza operację przekształcającą częstotliwości do mel-skali c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 33/40 Estymacja cech w dziedzinie cepstralnej Rozplot homomorficzny 3. Rodzaje cepstrum cepstrum rzeczywiste (widma mocy): cepstrum zespolone: mel-cepstrum zespolone: RC(y) = DFT 1( log 10 DFT(y) ) CC(y) = DFT 1( log 10 ( DFT(y) ) ) MF CC(y) = DFT 1 ( log 10 ( MF ( DFT(y) )))
34 Estymacja cech w dziedzinie cepstralnej Wyznaczanie porównywanie cech 4. Wyznaczanie cech mówiącego okienkowanie (najczęściej filtrami trójkątnymi): cepstrum zespolone odpowiedzi toru głosowego skupione jest w początkowych elementach reprezentacji typowe cechy: współczynniki cepstralne (ang. Cepstral Coefficients, CC) lub współczynniki mel-cepstralne (ang. Mel Frequency Cepstral Coefficients, MFCC) odpowiedzi toru głosowego 5. Porównanie cech: najczęściej ważona odległość euklidesowa 6. Dodatkowe przetwarzanie reprezentacji cepstralnych (jeśli zasadne) wyznaczanie widma (typowo DFT) oraz wykonanie operacji odwrotnej do logarytmowania osobno dla pobudzenia i dla odpowiedzi toru głosowego otrzymujemy widmo pobudzenia oraz widmo toru głosowego c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 34/40
35 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 35/40 Estymacja cech w dziedzinie cepstralnej Przykład Czas (s)
36 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 36/40 Estymacja cech w dziedzinie cepstralnej Przykład 300 Widmo amplitudowe
37 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 37/40 Estymacja cech w dziedzinie cepstralnej Przykład 3 Logarytm widma amplitudowego
38 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 38/40 Estymacja cech w dziedzinie cepstralnej Przykład 0.03 Reprezentacja cepstralna Próbki 10 5
39 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 39/40 Estymacja w dziedzinie cepstralnej Schemat działania
40 c Adam Czajka, IAiIS PW, wersja: 26 maja 2015, 40/40 Przykładowe pytanie egzaminacyjne Załóżmy, że funkcję f przekształcamy zgodnie z zależnością ( f = FFT 1 ln ( FFT(f) )) gdzie FFT oznacza operację szybkiej transformaty Fouriera. W jakim celu wykorzystuje się takie przekształcenie w biometrii i jak należy interpretowaæ wynikową funkcję f?
Biometryczna Identyfikacja Tożsamości
c Adam Czajka, IAiIS PW, wersja: 6 grudnia 2015, 1/39 Adam Czajka Wykład na Wydziale Elektroniki i Technik Informacyjnych Politechniki Warszawskiej Semestr zimowy 2015/16 c Adam Czajka, IAiIS PW, wersja:
Biometryczna Identyfikacja Tożsamości
c Adam Czajka IAiIS PW 20 maja 2014 1/39 Adam Czajka Wykład na Wydziale Elektroniki i Technik Informacyjnych Politechniki Warszawskiej Semestr letni 2014 c Adam Czajka IAiIS PW 20 maja 2014 2/39 Rozpoznawanie
Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI)
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe
Przetwarzanie sygnałów biomedycznych
Przetwarzanie sygnałów biomedycznych dr hab. inż. Krzysztof Kałużyński, prof. PW Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU
ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU i klasyfikacja sygnału audio dr inż. Jacek Naruniec Sygnał mowy mózg (układ sterujący) głośnia (źródło dźwięku) rezonator akustyczny (filtr) sygnał mowy 2 Sygnał mowy
Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, Spis treści
Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, 2011 Spis treści Przedmowa 11 Rozdział 1. WPROWADZENIE 13 1.1. Czym jest automatyczne rozpoznawanie mowy 13 1.2. Poziomy
dr inż. Jacek Naruniec
dr inż. Jacek Naruniec Przetwarzanie wstępne Wyznaczenie obszarów zainteresowania Ekstrakcja cech - dźwięk Klasyfikacja detekcja mowy okno analizy spektrogram filtr preemfazy wokodery (formantów, kanałowe,
Podstawy Przetwarzania Sygnałów
Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech
4 Zasoby językowe Korpusy obcojęzyczne Korpusy języka polskiego Słowniki Sposoby gromadzenia danych...
Spis treści 1 Wstęp 11 1.1 Do kogo adresowana jest ta książka... 12 1.2 Historia badań nad mową i językiem... 12 1.3 Obecne główne trendy badań... 16 1.4 Opis zawartości rozdziałów... 18 2 Wyzwania i możliwe
Algorytmy detekcji częstotliwości podstawowej
Algorytmy detekcji częstotliwości podstawowej Plan Definicja częstotliwości podstawowej Wybór ramki sygnału do analizy Błędy oktawowe i dokładnej estymacji Metody detekcji częstotliwości podstawowej czasowe
AKUSTYKA MOWY. Podstawy rozpoznawania mowy część I
AKUSTYKA MOWY Podstawy rozpoznawania mowy część I PLAN WYKŁADU Część I Podstawowe pojęcia z dziedziny rozpoznawania mowy Algorytmy, parametry i podejścia do rozpoznawania mowy Przykłady istniejących bibliotek
Przekształcenie Fouriera obrazów FFT
Przekształcenie ouriera obrazów T 6 P. Strumiłło, M. Strzelecki Przekształcenie ouriera ourier wymyślił sposób rozkładu szerokiej klasy funkcji (sygnałów) okresowych na składowe harmoniczne; taką reprezentację
ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU
ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU obraz dr inż. Jacek Naruniec Analiza Składowych Niezależnych (ICA) Independent Component Analysis Dąży do wyznaczenia zmiennych niezależnych z obserwacji Problem opiera
Rozpoznawanie i synteza mowy w systemach multimedialnych. Analiza i synteza mowy - wprowadzenie. Spektrogram wyrażenia: computer speech
Slajd 1 Analiza i synteza mowy - wprowadzenie Spektrogram wyrażenia: computer speech Slide 1 Slajd 2 Analiza i synteza mowy - wprowadzenie Slide 2 Slajd 3 Analiza i synteza mowy - wprowadzenie Slide 3
PARAMETRYZACJA SYGNAŁU MOWY. PERCEPTUALNE SKALE CZĘSTOTLIWOŚCI.
1 PARAMETRYZACJA SYGNAŁU MOWY. PERCEPTUALNE SKALE CZĘSTOTLIWOŚCI. mgr inż. Kuba Łopatka Katedra Systemów Multimedialnych p. 628, tel. 348-6332 PLAN WYKŁADU 1. Potrzeba i istota parametryzacji 2. Klasyfikacja
ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU
ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU i klasyfikacja sygnału audio dr inż. Jacek Naruniec Sygnał mowy mózg (układ sterujący) głośnia (źródło dźwięku) rezonator akustyczny (filtr) sygnał mowy 2 Sygnał mowy
9. Dyskretna transformata Fouriera algorytm FFT
Transformata Fouriera ma szerokie zastosowanie w analizie i syntezie układów i systemów elektronicznych, gdyż pozwala na połączenie dwóch sposobów przedstawiania sygnałów reprezentacji w dziedzinie czasu
Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:
PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.
Laboratorium Przetwarzania Sygnałów Biomedycznych
Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 3 Analiza sygnału o nieznanej strukturze Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik Politechnika Warszawska,
Transformacje i funkcje statystyczne
Generacja okien: win = window(@fwin,n); Generacja okien gui: wintool; Rodzaje niektórych okien: @bartlett - Bartletta. @blackman - Blackmana. @chebwin - Czebyszewa. @gausswin - gausowskie. @hamming - Hamminga.
System do sterowania ruchem kamery przemysłowej za pomocą komend głosowych
System do sterowania ruchem kamery przemysłowej za pomocą komend głosowych Dariusz Krala 1 1 Wydział Inżynierii Mechanicznej i Informatyki Kierunek Informatyka, Rok V {dariusz.krala}@gmail.com Streszczenie
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe
ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH
ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH Generowanie podstawowych przebiegów okresowych sawtooth() przebieg trójkątny (wierzhołki +/-1, okres 2 ) square() przebieg kwadratowy (okres 2 ) gauspuls()przebieg sinusoidalny
Przekształcenie Fouriera i splot
Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Przekształcenie Fouriera i splot Wstęp Na tym wykładzie: przekształcenie Fouriera
3. Przetwarzanie analogowo-cyfrowe i cyfrowo-analogowe... 43
Spis treści 3 Przedmowa... 9 Cele książki i sposoby ich realizacji...9 Podziękowania...10 1. Rozległość zastosowań i głębia problematyki DSP... 11 Korzenie DSP...12 Telekomunikacja...14 Przetwarzanie sygnału
Analiza sygnału mowy pod kątem rozpoznania mówcy chorego. Anna Kosiek, Dominik Fert
Analiza sygnału mowy pod kątem rozpoznania mówcy chorego Anna Kosiek, Dominik Fert Wstęp: Analiza sygnału akustycznego była wykorzystywana w medycynie jeszcze przed wykorzystaniem jej w technice. Sygnał
Promotor: dr Marek Pawełczyk. Marcin Picz
Promotor: dr Marek Pawełczyk Marcin Picz Stosowane metody: - Grupa metod odejmowania widm (subtractive( subtractive-typetype algorithms); - Filtracja Wienera; - Neural networks & Fuzzy logic (sieci neuronowe
PRZETWARZANIE MOWY W CZASIE RZECZYWISTYM
PRZETWARZANIE MOWY W CZASIE RZECZYWISTYM Akustyka mowy opracowanie: M. Kaniewska, A. Kupryjanow, K. Łopatka PLAN WYKŁADU Zasada przetwarzania sygnału w czasie rzeczywistym Algorytmy zmiany czasu trwania
Omówienie różnych metod rozpoznawania mowy
Omówienie różnych metod rozpoznawania mowy Na podstawie artykułu: Comparative study of automatic speech recognition techniques Beniamin Sawicki Wydział Inżynierii Mechanicznej i Robotyki Inżynieria Akustyczna
Analiza szeregów czasowych: 2. Splot. Widmo mocy.
Analiza szeregów czasowych: 2. Splot. Widmo mocy. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2006/07 Splot Jedna z najważniejszych własności transformaty Fouriera jest to, że transformata
CYFROWE PRZETWARZANIE SYGNAŁÓW
POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI Katedra Metrologii i Systemów Diagnostycznych CYFROWE PRZETWARZANIE SYGNAŁÓW Analiza widmowa sygnałów (2) dr inż. Robert
Przetwarzanie sygnałów
Przetwarzanie sygnałów Ćwiczenie 3 Filtry o skończonej odpowiedzi impulsowej (SOI) Spis treści 1 Filtracja cyfrowa podstawowe wiadomości 1 1.1 Właściwości filtru w dziedzinie czasu............... 1 1.2
8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT)
8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) Ćwiczenie polega na wykonaniu analizy widmowej zadanych sygnałów metodą FFT, a następnie określeniu amplitud i częstotliwości głównych składowych
2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).
SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy
Komputerowe przetwarzanie sygnału mowy
Komputerowe przetwarzanie sygnału mowy Prof dr hab inż Bożena Kostek Katedra Systemów Multimedialnych Wydział Elektroniki, Telekomunikacji i Informatyki Politechnika Gdańska Komputerowe przetwarzanie sygnału
Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe.
Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Komputerowe wspomaganie eksperymentu Zjawisko aliasingu.. Przecieki widma - okna czasowe. dr inż. Roland PAWLICZEK Zjawisko aliasingu
Przetwarzanie i transmisja danych multimedialnych. Wykład 8 Transformaty i kodowanie cz. 2. Przemysław Sękalski.
Przetwarzanie i transmisja danych multimedialnych Wykład 8 Transformaty i kodowanie cz. 2 Przemysław Sękalski sekalski@dmcs.pl Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych DMCS
BIOMETRIA WYKŁAD 6 CECHY BIOMETRYCZNE: GŁOS
BIOMETRIA WYKŁAD 6 CECHY BIOMETRYCZNE: GŁOS Wykorzystanie mowy w technologii Automatyczne rozpoznawanie mowy Synteza mowy Rozpoznawania mówcy Rozpoznawanie emocji Generowanie emocji Synteza z ruchem ust
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe
Ćwiczenie 3. Właściwości przekształcenia Fouriera
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Sieci komputerowe Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE
WOJSKOWA AKADEMIA TECHNICZNA
WOJSKOWA AKADEMIA TECHNICZNA LABORATORIUM CYFROWE PRZETWARZANIE SYGNAŁÓW Stopień, imię i nazwisko prowadzącego Imię oraz nazwisko słuchacza Grupa szkoleniowa Data wykonania ćwiczenia dr inż. Andrzej Wiśniewski
Analiza szeregów czasowych: 2. Splot. Widmo mocy.
Analiza szeregów czasowych: 2. Splot. Widmo mocy. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Splot Jedna z najważniejszych własności transformaty Fouriera jest to, że transformata
Modelowanie i optymalizacja generatora cech dla systemu rozpoznawania mówcy
Bi u l e t y n WAT Vo l. LXI, Nr 4, 2012 Modelowanie i optymalizacja generatora cech dla systemu rozpoznawania mówcy Ewelina Majda, Andrzej P. Dobrowolski, Bogusław L. Smólski Wojskowa Akademia Techniczna,
Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy
Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy Grupa: wtorek 18:3 Tomasz Niedziela I. CZĘŚĆ ĆWICZENIA 1. Cel i przebieg ćwiczenia. Celem ćwiczenia
Analiza obrazów - sprawozdanie nr 2
Analiza obrazów - sprawozdanie nr 2 Filtracja obrazów Filtracja obrazu polega na obliczeniu wartości każdego z punktów obrazu na podstawie punktów z jego otoczenia. Każdy sąsiedni piksel ma wagę, która
Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3.
Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3. Sygnały deterministyczne 4 1.3.1. Parametry 4 1.3.2. Przykłady 7 1.3.3. Sygnały
Akustyka mowy wprowadzenie. Opracował: dr inż. Piotr Suchomski
Akustyka mowy wprowadzenie Opracował: dr inż. Piotr Suchomski Kontakt Katedra Systemów Multimedialnych Wydział ETI dr inż. Piotr M. Suchomski, pok. EA 730 e-mail: pietka@sound.eti.pg.gda.pl tel. 23-01
FFT i dyskretny splot. Aplikacje w DSP
i dyskretny splot. Aplikacje w DSP Marcin Jenczmyk m.jenczmyk@knm.katowice.pl Wydział Matematyki, Fizyki i Chemii 10 maja 2014 M. Jenczmyk Sesja wiosenna KNM 2014 i dyskretny splot 1 / 17 Transformata
Widmo akustyczne radia DAB i FM, porównanie okien czasowych Leszek Gorzelnik
Widmo akustycznych sygnałów dla radia DAB i FM Pomiary widma z wykorzystaniem szybkiej transformacji Fouriera FFT sygnału mierzonego w dziedzinie czasu wykonywane są w skończonym czasie. Inaczej mówiąc
PRZETWARZANIE SYGNAŁÓW
PRZETWARZANIE SYGNAŁÓW SEMESTR V Wykład VIII Podstawy przetwarzania obrazów Filtracja Przetwarzanie obrazu w dziedzinie próbek Przetwarzanie obrazu w dziedzinie częstotliwości (transformacje częstotliwościowe)
Systemy. Krzysztof Patan
Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej
IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7
Łukasz Deńca V rok Koło Techniki Cyfrowej dr inż. Wojciech Mysiński opiekun naukowy IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE
Metoda weryfikacji mówcy na podstawie nieuzgodnionej wypowiedzi
BIULETYN INSTYTUTU AUTOMATYKI I ROBOTYKI NR, 005 Metoda weryfikacji mówcy na podstawie nieuzgodnionej wypowiedzi Leszek GRAD Zakład Automatyki, Instytut Teleinformatyki i Automatyki WAT, ul. Kaliskiego,
SYLABUS DOTYCZY CYKLU KSZTAŁCENIA Realizowany w roku akademickim 2016/2017
Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015-2017 Realizowany w roku akademickim 2016/2017 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu
DYSKRETNA TRANSFORMACJA FOURIERA
Laboratorium Teorii Sygnałów - DFT 1 DYSKRETNA TRANSFORMACJA FOURIERA Cel ćwiczenia Celem ćwiczenia jest przeprowadzenie analizy widmowej sygnałów okresowych za pomocą szybkiego przekształcenie Fouriera
Analiza sygnałów biologicznych
Analiza sygnałów biologicznych Paweł Strumiłło Zakład Elektroniki Medycznej Instytut Elektroniki PŁ Co to jest sygnał? Funkcja czasu x(t) przenosząca informację o stanie lub działaniu układu (systemu),
Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy
Automatyka i robotyka ETP2005L Laboratorium semestr zimowy 2017-2018 Liniowe człony automatyki x(t) wymuszenie CZŁON (element) OBIEKT AUTOMATYKI y(t) odpowiedź Modelowanie matematyczne obiektów automatyki
DYSKRETNE PRZEKSZTAŁCENIE FOURIERA C.D.
CPS 6 DYSKRETE PRZEKSZTAŁCEIE FOURIERA C.D. Twierdzenie o przesunięciu Istnieje ważna właściwość DFT, znana jako twierdzenie o przesunięciu. Mówi ono, że: Przesunięcie w czasie okresowego ciągu wejściowego
Procedura modelowania matematycznego
Procedura modelowania matematycznego System fizyczny Model fizyczny Założenia Uproszczenia Model matematyczny Analiza matematyczna Symulacja komputerowa Rozwiązanie w postaci modelu odpowiedzi Poszerzenie
TEORIA WYTWARZANIA DŹWIĘKÓW
1 TEORIA WYTWARZANIA DŹWIĘKÓW MOWY, FORMANTY, MODELOWANIE WYTWARZANIA DŹWIĘKÓW MOWY. mgr inż. Kuba Łopatka PLAN WYKŁADU 1. Teoria wytwarzania dźwięków mowy Ogólna teoria wytwarzania dźwięków mowy Ton krtaniowy
Kartkówka 1 Opracowanie: Próbkowanie częstotliwość próbkowania nie mniejsza niż podwojona szerokość przed spróbkowaniem.
Znowu prosta zasada - zbierzmy wszystkie zagadnienia z tych 3ech kartkówek i opracujmy - może się akurat przyda na dopytkę i uda się zaliczyć labki :) (dodatkowo można opracowania z tych rzeczy z doc ów
KARTA MODUŁU / KARTA PRZEDMIOTU
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Cyfrowe przetwarzanie sygnałów pomiarowych_e2s
Elementy statystyki wielowymiarowej
Wnioskowanie_Statystyczne_-_wykład Spis treści 1 Elementy statystyki wielowymiarowej 1.1 Kowariancja i współczynnik korelacji 1.2 Macierz kowariancji 1.3 Dwumianowy rozkład normalny 1.4 Analiza składowych
Rozpoznawanie obrazów
Rozpoznawanie obrazów Laboratorium Python Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak, S. Zaręba, M. Zięba, J. Kaczmar Cel zadania Celem zadania jest implementacja liniowego zadania
Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej
Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej. Filtry FIR o skończonej odpowiedzi impulsowej (SOI) Filtracja FIR polega na tym, że sygnał wyjściowy powstaje
CYFROWE PRZETWARZANIE SYGNAŁÓW
POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI Katedra Metrologii i Systemów Diagnostycznych CYFROWE PRZETWARZANIE SYGNAŁÓW Analiza korelacyjna sygnałów dr hab. inż.
Kompresja dźwięku w standardzie MPEG-1
mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 7, strona 1. Kompresja dźwięku w standardzie MPEG-1 Ogólne założenia kompresji stratnej Zjawisko maskowania psychoakustycznego Schemat blokowy
Dyskretne przekształcenie Fouriera cz. 2
Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Dyskretne przekształcenie Fouriera cz. 2 Twierdzenie o przesunięciu Istnieje ważna właściwość DFT, znana jako twierdzenie o przesunięciu. Mówi ono, że: przesunięcie
przedmiot kierunkowy (podstawowy / kierunkowy / inny HES) obieralny (obowiązkowy / nieobowiązkowy) polski semestr VI
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2018/2019
2 Ocena celu badań i sformułowanej tezy naukowej
Prof. dr hab. inż. Adam Dąbrowski Politechnika Poznańska Wydział Informatyki Katedra Sterowania i Inżynierii Systemów Pracownia Układów Elektronicznych i Przetwarzania Sygnałów Poznań, 23.05.2016 r. OCENA
Praca dyplomowa magisterska
Praca dyplomowa magisterska Implementacja algorytmów filtracji adaptacyjnej o strukturze transwersalnej na platformie CUDA Dyplomant: Jakub Kołakowski Opiekun pracy: dr inż. Michał Meller Plan prezentacji
Systemy akwizycji i przesyłania informacji
Politechnika Rzeszowska im. Ignacego Łukasiewicza w Rzeszowie Wydział Elektryczny Kierunek: Informatyka Systemy akwizycji i przesyłania informacji Projekt zaliczeniowy Temat pracy: Okna wygładzania ZUMFL
LABORATORIUM AKUSTYKI MUZYCZNEJ. Ćw. nr 12. Analiza falkowa dźwięków instrumentów muzycznych. 1. PODSTAWY TEORETYCZNE ANALIZY FALKOWEJ.
LABORATORIUM AKUSTYKI MUZYCZNEJ. Ćw. nr 1. Analiza falkowa dźwięków instrumentów muzycznych. 1. PODSTAWY TEORETYCZNE ANALIZY FALKOWEJ. Transformacja falkowa (ang. wavelet falka) przeznaczona jest do analizy
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM
TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 7 BADANIE ODPOWIEDZI USTALONEJ NA OKRESOWY CIĄG IMPULSÓW 1. Cel ćwiczenia Obserwacja przebiegów wyjściowych
Biometryczna Identyfikacja Tożsamości
c Adam Czajka, IAiIS PW, wersja: 9 maja 2015, 1/32 Adam Czajka Wykład na Wydziale Elektroniki i Technik Informacyjnych Politechniki Warszawskiej Semestr letni 2015 c Adam Czajka, IAiIS PW, wersja: 9 maja
Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Teoria sygnałów Signal Theory A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
Egzamin / zaliczenie na ocenę*
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim CYFROWE PRZETWARZANIE SYGNAŁÓW Nazwa w języku angielskim DIGITAL SIGNAL PROCESSING Kierunek studiów
Automatyczne rozpoznawanie mowy. Autor: mgr inż. Piotr Bratoszewski
Automatyczne rozpoznawanie mowy Autor: mgr inż. Piotr Bratoszewski Rys historyczny 1930-1950 pierwsze systemy Automatycznego rozpoznawania mowy (ang. Automatic Speech Recognition ASR), metody holistyczne;
Teoria sterowania - studia niestacjonarne AiR 2 stopień
Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe
TWORZENIE MODELU AKUSTYCZNEGO NA POTRZEBY WERYFIKACJI MÓWCY PRZY UŻYCIU UKRYTYCH MODELI MARKOWA
MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 40, s. 249-256, Gliwice 2010 TWORZENIE MODELU AKUSTYCZNEGO NA POTRZEBY WERYFIKACJI MÓWCY PRZY UŻYCIU UKRYTYCH MODELI MARKOWA IWONA WANAT MAREK IWANIEC Katedra Automatyzacji
SYMULACJA KOMPUTEROWA SYSTEMÓW
SYMULACJA KOMPUTEROWA SYSTEMÓW ZASADY ZALICZENIA I TEMATY PROJEKTÓW Rok akademicki 2015 / 2016 Spośród zaproponowanych poniżej tematów projektowych należy wybrać jeden i zrealizować go korzystając albo
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE
CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie
CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera)
I. Wprowadzenie do ćwiczenia CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) Ogólnie termin przetwarzanie sygnałów odnosi się do nauki analizowania zmiennych w czasie procesów fizycznych.
PL B1. Sposób i układ pomiaru całkowitego współczynnika odkształcenia THD sygnałów elektrycznych w systemach zasilających
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 210969 (13) B1 (21) Numer zgłoszenia: 383047 (51) Int.Cl. G01R 23/16 (2006.01) G01R 23/20 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)
Przetwarzanie sygnałów biomedycznych
Prztwarzani sygnałów biomdycznych dr hab. inż. Krzysztof Kałużyński, prof. PW Człowik- najlpsza inwstycja Projkt współfinansowany przz Unię Europjską w ramach Europjskigo Funduszu Społczngo Wykład XI Filtracja
ROZPOZNAWANIE GRANIC SŁOWA W SYSTEMIE AUTOMATYCZNEGO ROZPOZNAWANIA IZOLOWANYCH SŁÓW
ROZPOZNAWANIE GRANIC SŁOWA W SYSTEMIE AUTOMATYCZNEGO ROZPOZNAWANIA IZOLOWANYCH SŁÓW Maciej Piasecki, Szymon Zyśko Wydziałowy Zakład Informatyki Politechnika Wrocławska Wybrzeże Stanisława Wyspiańskiego
Prawdopodobieństwo i statystyka
Wykład XIII: Prognoza. 26 stycznia 2015 Wykład XIII: Prognoza. Prognoza (predykcja) Przypuśćmy, że mamy dany ciąg liczb x 1, x 2,..., x n, stanowiących wyniki pomiaru pewnej zmiennej w czasie wielkości
Lepkosprężystość. Metody pomiarów właściwości lepkosprężystych materii
Metody pomiarów właściwości lepkosprężystych materii Pomiarów dokonuje się w dwóch dziedzinach: czasowej lub częstotliwościowej i nie zależy to od rodzaju przyłożonych naprężeń (normalnych lub stycznych).
Analiza sygnału mowy sterowana danymi dla rozpoznawania komend głosowych
Analiza sygnału mowy sterowana danymi dla rozpoznawania komend głosowych Włodzimierz Kasprzak 1, Adam B. Kowalski 1 Streszczenie W artykule omówiono podstawowe etapy analizy sygnału mowy "sterowanej danymi":
Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2.
Przedmowa 11 Ważniejsze oznaczenia 14 Spis skrótów i akronimów 15 Wstęp 21 W.1. Obraz naturalny i cyfrowe przetwarzanie obrazów 21 W.2. Technika obrazu 24 W.3. Normalizacja w zakresie obrazu cyfrowego
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Teoria i przetwarzanie sygnałów Rok akademicki: 2013/2014 Kod: EEL-1-524-s Punkty ECTS: 6 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Elektrotechnika
INSTRUKCJA DO ĆWICZENIA NR 7
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety
x(n) x(n-1) x(n-2) D x(n-n+1) h N-1
Laboratorium Układy dyskretne LTI projektowanie filtrów typu FIR Z1. apisać funkcję y = filtruj(x, h), która wyznacza sygnał y będący wynikiem filtracji sygnału x przez filtr FIR o odpowiedzi impulsowej
Statystyka matematyczna i ekonometria
Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.
Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1-
Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Filtry cyfrowe cz. Zastosowanie funkcji okien do projektowania filtrów SOI Nierównomierności charakterystyki amplitudowej filtru cyfrowego typu SOI można
BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat
BIBLIOTEKA PROGRAMU R - BIOPS Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat Biblioteka biops zawiera funkcje do analizy i przetwarzania obrazów. Operacje geometryczne (obrót, przesunięcie,
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium MATLAB Zadanie nr 1 Regresja liniowa autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z liniowym zadaniem najmniejszych
Języki Modelowania i Symulacji
Języki Modelowania i Symulacji Przetwarzanie sygnałów fonicznych Marcin Ciołek Katedra Systemów Automatyki WETI, Politechnika Gdańska 3 listopada 211 O czym będziemy mówili? 1 2 wavrecord wavplay y = wavrecord(n,
Optyka Fourierowska. Wykład 11 Apodyzacja, superrozdzielczość i odtwarzanie utraconych informacji
Optyka Fourierowska Wykład 11 Apodyzacja, superrozdzielczość i odtwarzanie utraconych informacji Dyfrakcja a obrazowanie W obrazowaniu optycznym dyfrakcja jest głównym zjawiskiem ograniczającym moc rozdzielczą