Ćwiczenie 4. Modelowanie układu mechanicznego z elementami podatnymi. Symulacja w projektowaniu urządzeń mechatronicznych - laboratorium
|
|
- Beata Szulc
- 7 lat temu
- Przeglądów:
Transkrypt
1 Symulaa w poetowanu uządzeń mehatonznyh - laoatoum Ćwzene 4 odelowane uładu mehanznego z elementam podatnym Instua laoatoyna Człowe - nalepsza nwestya Poet współfnansowany pzez Unę Euopesą w amah Euopesego Funduszu Społeznego Waszawa 07
2 Ćwzene 4 odelowane uładu mehanznego z elementam podatnym 4. odelowane uładu mehanznego z elementam podatnym 4.. ZASADY REDUKCI UKŁADÓW ECHAICZYCH 4... Uwag ogólne Ułady mehanzne U pzedstawane w posta elementów o paametah suponyh masy spężystoś tłumena są wyodęnonym zoem ał ałem lu zęśą ała tóego uh mehanzny est pzedmotem analzy. Uład mehanzny zeduowany UZ ędąy uposzzonym modelem fzyznym zezywstego uładu stanow podstawę matematyznego opsu uhu tego uładu: wyó uładu zastępzego zależy od agumentów uzasadnaąyh z edne stony ozyś wynaąe z postoty modelu a z duge możlwą do otzymana doładność wynów. Ułady zeduowane UR twozone są ao uposzzena modelowanyh uładów mehanznyh. UR est to wę uład mehanzny uposzzony w stosunu do uładu zastępzego lez ównoważny mu pod względem dynamznym tzn. spełnaąy oeślone waun edu. W uładze mehanznym sztywnym ne zaweaąym elementów podatnyh tłumąyh wyonue sę eduę mas sł uogólnonyh. W pozostałyh uładah pzepowadza sę dodatowo eduę pzemeszzeń sztywnoś opoów tłumena. W pzypadu uhu lnowego uładu elementam U są: masy współzynn sztywnoś lnowe tłumena lnowe zaś masy wyonuą pzemeszena lnowe. W pzypadu uhu ootowego elementam U są: masowe momenty ezwładnoś współzynn sztywnoś sętne tłumena ątowe zaś masy wyonuą pzemeszena ątowe Redue Redua mas est to zastąpene uogólnonyh mas eduowanyh w uhu postępowym lu ootowym edną masą zwązaną z złonem edu tóe enega netyzna w ażde hwl uhu est ówna eneg netyzne wszysth mas eduowanyh. Powyższą zasadę pzedstawamy następuąym zależnośam: m / / m m Symulaa w poetowanu uządzeń mehatonznyh
3 Ćwzene 4 3 odelowane uładu mehanznego z elementam podatnym gdze: m - masy masowe momenty ezwładnoś eduowanyh złonów; - pędość śoda masy -tego złonu; - pędość śoda masy zeduowane; - pędość ątowa -tego złonu; - pędość ątowa złonu do tóego eduowana est masa. Podzas edu sł słą P / zeduowaną na eune momentem / zeduowanym na eune nazywamy taą słę ta moment sły tóa pzyłożona do złonu edu dae mo hwlową ówną sume hwlowyh moy uogólnonyh sł eduowanyh. Reduę sł pzedstawaą wzoy: gdze dodatowo: P / / os P os P α - ąt pomędzy słą P pędośą ; W wynu edu mas sł otzymue sę model dynamzny U spowadzony do ednego złonu w posta edne masy wyonuąe uh postępowy lu ootowy do tóego pzyłożono sły zeduowane: - sły zynne od napędu sły opou sły oążena zewnętznego opoów taa. Redua pzemeszzeń w uładze sztywnym wyna ze zwązów medzy pzemeszzenam złonów U tatowanego ao łańuh nematyzny złożony z elementów sztywnyh. Redua sztywnoś opea sę na zasadze że enega potenalna elementów spężystyh US wynaąa z pzemeszzeń postępowyh ootowyh ego złonów masowyh pownna yć ówna w ażde hwl uhu eneg potenalne elementów spężystyh zeduowanyh. Redua sztywnoś est pzedstawana wzoam: 4.5 gdze dodatowo: odpowedno zeduowana sztywność sztywnoś poszzególnyh złonów. 4.6 Symulaa w poetowanu uządzeń mehatonznyh
4 4 Ćwzene 4 odelowane uładu mehanznego z elementam podatnym Symulaa w poetowanu uządzeń mehatonznyh 4.. ZASADA D ALABERTA Zgodne z zasadą w zase uhu dowolnego uładu puntów matealnyh U sztywnego lu UST sły zezywste zewnętzne dzałaąe na punty tego uładu masy supone ównoważą sę z słam ezwładnoś. Zasada est wyażona wzoam: 0 P a m e P m a e 4.8 Podzas analzy uładu zeduowanego doonywany est podzał uładu na dwe zęś a sły wewnętzne uładu tatowane są ao zewnętzne dla ou zęś. Podzał ten pzedstawono na ys. 4.. Rys. 4.. Podzał uładu zgodne z zasadą d Alameta Powstały uład sładaąy sę z dwóh mas można opsać następuąym ównanam ównowag: alo naze: 4. 4.
5 Ćwzene 4 5 odelowane uładu mehanznego z elementam podatnym Symulaa w poetowanu uządzeń mehatonznyh 4.3. ODELOWAIE ZŁOŻOYCH UKŁADÓW APĘDOWYCH Z WIELOA ELEETAI PODATYI Stutua mehanzna uładu napędowego z elementam podatnym może yć pzedstawona na podstawe zasady Hamltona waayne zasady namneszego dzałana ezpośedno azuąe na zasadze d Alameta. Pzy tam podeśu ozpatywany uład est analzowany ao system łańuhowy zudowany z elementów o paametah suponyh - neodształanyh elementów ył haateyzuąyh sę oeślonym masowym momentem ezwładnoś ezmasowyh elementów spężystyh. Współzędnym uogólnonym są położena ątowe poszzególnyh elementów neodształanyh. Stutuę modelu pzedstawono na ys. 4.. ' ' -' - ' Rys. 4.. Stutua mehanzna uładu napędowego modelowanego ao system łańuhowy - moment sły - lza stopn swoody uładu - położene ątowe elementu neodształalnego w pzeoah oaz ': współzędna uogólnona poesu - masowy moment ezwładnoś elementu neodształalnego - - współzynn tłumena wsotyznego - - sztywność sętna elementu odształanego odel est opsywany uładem ównań
6 6 Ćwzene 4 odelowane uładu mehanznego z elementam podatnym 4.4. CEL ĆWICZEIA. Patyzne zapoznane sę z zasadam modelowana mehanzmów zespołów pzenesena napędu w tóyh występuą elementy podatne.. Poznane możlwoś wyozystana symula omputeowe w paah nżynesh dotyząyh uładów napędowyh WYKOAIE ĆWICZEIA Opaowane symulaynego modelu uładu napędowego W ęzyu atla/smuln zapsać model uładu napędowego z moslnem pądu stałego pzedstawonego shematyzne na ys mosln Spzęgło elastyzne Oążene: o o Spzęgło steowane Rys Uład napędowy ze spzęgłem elastyznym sztywność sętna spzęgła współzynn tłumena sętnego w spzęgle o masowy moment ezwładnoś oążena o moment zynny oążena odel stutuy mehanzne taego napędu można pzedstawć za pomoą ys. 4. ao system dwóh neodształalnyh elementów neynyh z tóyh eden epezentue masowy moment ezwładnoś wna slna zaś dug masowy moment ezwładnoś oążena. Do zapsana posta matematyzne taego modelu należy wyozystać ównana pzymuą za moment w ównanu 4. sumę momentów: zynnego momentu eletomagnetyznego slna oaz enyh: momentu opoów taa w ułożysowanu slna momentu opoów pędośowyh. ao moment z ównana 4. występue moment oążena o z ys Watość hwlową pądu należy wypowadzć z ównana ównowag napęć slna. oment eletomagnetyzny ozwany pzez mosln wyaża znany wzó: e K 4.4 T ao watoś współzynnów modelu moslna pownny zostać pzyęte dane atalogowe wyozystywane w popzednm ćwzenu. W modelu stosuemy onsewentne ednost współzynnów zmennyh zapoponowane w nstu do ćwze- Symulaa w poetowanu uządzeń mehatonznyh
7 Ćwzene 4 7 odelowane uładu mehanznego z elementam podatnym na odelowane moslna pądu stałego w śodowsu ATLAB/SIULIK ta Badana uładu napędowego W modelu uładu napędowego należy pzyąć watość masowego momentu ezwładnoś oążena o ao dwuotne węszą od momentu ezwładnoś wna zaś momentu o ówną /4 momentu ozuhowego moslna. Sztywność sętna wynos m/ad. Watość współzynna tłumena należy doać samodzelne. Spzęgło steowane ma yć włązane po upływe zasu T ównego 5 stałym zasowym eletomehanznym moslna. Do zamodelowana poesu włązana spzęgła ozystne est zastosowane lou Swth. Pozwala on zamodelować podstawene po włązenu spzęgła do wzoów nezeowyh watoś oążena: o o SPRAWOZDAIE Z ĆWICZEIA W spawozdanu z ćwzena należy zameść: a matematyzny ops zadana model uładu napędowego ze spzęgłem elastyznym steowanym oeślene model oznaza zaówno zó ównań a pełny wyaz watoś współzynnów w ównanah symulayny model uładu odpowedz modelowanego uładu d wnos w szzególnoś wyaśnene ształtu uzysanyh pzeegów LITERATURA. Kuszews. Wttodt E.: Dgana uładów mehanznyh w uęu omputeowym. Tom I. Zagadnena lnowe. WT Waszawa 99. Osńs Z.: Spzęgła hamule. PW Waszawa Osńs Z.: Teoa dgań. Waszawa PW Szlas L. aaz K.: Wyane zagadnena dynam napędów eletyznyh. PW Waszawa Wotny L.: Dynama uładów mehanznyh. OWPW Waszawa 995 Symulaa w poetowanu uządzeń mehatonznyh
Modelowanie struktur mechanicznych
odelowane strutur mehanznyh Zasady reduj uładów mehanznyh odelowane uładów z elementam podatnym U - strutury mehanzne - lteratura Wrotny L.: Dynama uładów mehanznyh. OWPW, Warszawa, 995 Osńs Z.: Teora
ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BRYŁY SZTYWNEJ
ZASADA ZACHOWANIA MOMENTU PĘDU: PODSTAWY DYNAMIKI BYŁY SZTYWNEJ 1. Welkośc w uchu obotowym. Moment pędu moment sły 3. Zasada zachowana momentu pędu 4. uch obotowy były sztywnej względem ustalonej os -II
Energia potencjalna jest energią zgromadzoną w układzie. Energia potencjalna może być zmieniona w inną formę energii (na przykład energię kinetyczną)
1 Enega potencjalna jest enegą zgomadzoną w układze. Enega potencjalna może być zmenona w nną omę eneg (na pzykład enegę knetyczną) może być wykozystana do wykonana pacy. Sumę eneg potencjalnej knetycznej
XXX OLIMPIADA FIZYCZNA (1980/1981). Stopień I, zadanie teoretyczne T4 1
XXX OLMPADA FZYCZNA (1980/1981). Stopień, zadanie teoetyczne T4 1 Źódło: Komitet Główny Olimpiady Fizycznej; Waldema Gozowsi; Andzej Kotlici: Fizya w Szole, n 3, 1981.; Andzej Nadolny, Kystyna Pniewsa:
ZASADY WYZNACZANIA DEPOZYTÓW ZABEZPIECZAJĄCYCH PO WPROWADZENIU DO OBROTU OPCJI W RELACJI KLIENT-BIURO MAKLERSKIE
Zasady wyznazana depozytów zabezpezaąyh po wprowadzenu do obrotu op w rela lent-buro malerse ZAADY WYZNACZANIA DEPOZYTÓW ZABEZPIECZAJĄCYCH PO WPROWADZENIU DO OBROTU OPCJI W RELACJI KLIENT-BIURO MAKLERKIE
RUCH OBROTOWY Można opisać ruch obrotowy ze stałym przyspieszeniem ε poprzez analogię do ruchu postępowego jednostajnie zmiennego.
RUCH OBROTOWY Można opsać ruch obrotowy ze stałym przyspeszenem ε poprzez analogę do ruchu postępowego jednostajne zmennego. Ruch postępowy a const. v v at s s v t at Ruch obrotowy const. t t t Dla ruchu
Moment pędu punktu materialnego i układu punktów materialnych, moment siły Dynamika ruchu obrotowego bryły
Moment ędu untu matealnego uładu untów matealnych, moment sły Dynama uchu obotowego były x Moment ędu untu matealnego L. O L α. α α A Oeślamy go względem ustalonego untu O v L mv -weto oeślający jego ołożene
Blok 8: Moment bezwładności. Moment siły Zasada zachowania momentu pędu
Blo 8: Moent bezwładności Moent siły Zasada zachowania oentu pędu Moent bezwładności awiając uch postępowy ciała, posługujey się pojęciai pzeieszczenia, szybości, pzyspieszenia tego ciała oaz wypadowej
KONSTRUOWANIE ENERGII POTENCJALNEJ ODDZIAŁYWANIA MIĘDZYMOLEKULARNEGO
KONSTUOWANIE ENEGII POTENCJALNEJ ODDZIAŁYWANIA MIĘDZYMOLEKULANEGO Dwa etay: "ozsądny model eneg otencalne dobó oczątowych watośc aametów Doasowane aametów w tace symulac Oddzaływana ótozasęgowe enega otencalna
Wyznaczenie współczynnika podziału kwasu octowego pomiędzy fazą organiczną a wodną
Ćwzene 13 Wyznazene współzynnka podzału kwasu otowego pomędzy fazą anzną a wodną Cel ćwzena Celem ćwzena jest wyznazene współzynnka podzału kwasu otowego pomędzy fazą anzną (butanolem) a wodną w oparu
ELEMENTY RACHUNKU WEKTOROWEGO
Unwestet Wmńso- Mus w Ostne Złd Mehn onstu udownh ELEMENTY RCHUNU WETOROWEGO Włd d nż. Roet Smt Zen tetu 1. wtows J.: Stt ogón. Wsw : Wdw. Potehn Wswse, 1971. 2. wtows J.: Mehn tehnn. Wsw: Wdw.. Potehn
POLITECHNIKA WARSZAWSKA Instytut Podstaw Budowy Maszyn XIX Konferencja nt METODY I ŚRODKI PROJEKTOWANIA WSPOMAGANEGO KOMPUTEROWO
MECHANIK NR /03 43 POLITECHNIKA WARSZAWSKA Instytut Podstaw Budowy Maszyn XIX Konfeenja nt METODY I ŚRODKI PROJEKTOWANIA WSPOMAGANEGO KOMPUTEROWO Łańut, paździeni 03 Elżbieta Ziąbsa Uniwesytet Tehnologizno
Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. TWIERDZENIA O WZAJEMNOŚCI Twierdzenie Bettiego (o wzajemności prac)
Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. 7. TWIERDZENIA O WZAJEMNOŚCI 7.1. Twerdzene Bettego (o wzajemnośc prac) Nech na dowolny uład ramowy statyczne wyznaczalny lub newyznaczalny, ale o nepodatnych
Rama płaska metoda elementów skończonych.
Pzyład. Rama płasa metoda elementów sończonych. M p l A, EJ P p l A, EJ l A, EJ l l,5 l. Dysetyzacja Podział na elementy i węzły x st. sw. M 5 P Z X, M, V, H 7, M, H Y, V Element amy płasiej węzły, x stopni
Podstawy Procesów i Konstrukcji Inżynierskich. Ruch obrotowy INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA
Podstawy Pocesów Konstukcj Inżyneskch Ruch obotowy Keunek Wyóżnony pzez PKA 1 Ruch jednostajny po okęgu Ruch cząstk nazywamy uchem jednostajnym po okęgu jeśl pousza sę ona po okęgu lub kołowym łuku z pędkoścą
Pęd ciała. II zasada dynamiki-postać uogólniona. Pęd =iloczyn masy ciała i jego prędkości. Pęd jest wektorem skierowanym zgodnie z wektorem prędkości
Pęd cała y j,, x x y y z z x w Pęd loczyn asy cała jego ędośc. Pęd jest wetoe seowany zgodne z wetoe ędośc II zasada dyna-ostać uogólnona a d dt d( ) dt const d dt w d dt Szybość zany w czase ędu jest
POLE MAGNETYCZNE W PRÓŻNI - CD. Zjawisko indukcji elektromagnetycznej polega na powstawaniu prądu elektrycznego w
POL AGNTYCZN W PRÓŻNI - CD Indukcja elektomagnetyczna Zjawsko ndukcj elektomagnetycznej polega na powstawanu pądu elektycznego w zamknętym obwodze wskutek zmany stumena wektoa ndukcj magnetycznej. Np.
TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE
POLITHNIKA RZSZOWSKA Katedra Podstaw lektronk Instrkcja Nr4 F 00/003 sem. letn TRANZYSTOR IPOLARNY HARAKTRYSTYKI STATYZN elem ćwczena jest pomar charakterystyk statycznych tranzystora bpolarnego npn lb
(M2) Dynamika 1. ŚRODEK MASY. T. Środek ciężkości i środek masy
(MD) MECHANIKA - Dynamka T. Środek cężkośc środek masy (M) Dynamka T: Środek cężkośc środek masy robert.szczotka(at)gmal.com Fzyka astronoma, Lceum 01/014 1 (MD) MECHANIKA - Dynamka T. Środek cężkośc środek
Indukcja elektromagnetyczna Indukcyjność Drgania w obwodach elektrycznych
ndukcja eektomagnetyczna ndukcyjność Dgana w obwodach eektycznych Pawo ndukcj eektomagnetycznej Faadaya > d zewnętzne poe magnetyczne skeowane za płaszczyznę ysunku o watośc osnącej w funkcj czasu. ds
I. Metoda Klasyczna. Podstawy Elektrotechniki - Stany nieustalone. Zadanie k.1 Wyznaczyć prąd i w na wyłączniku. R RI E
Podsawy lkohnk - Sany nsalon. Moda Klasyzna Zadan k. Wyznazyć pąd w na wyłąznk. w? kładay ównana na podsaw sha. ównan haakysyzn: w d d w w d d d d d d p p p w Zadan k. Znalźć aką hwlę zas x aby spłnony
( ) RóŜne rodzaje grup. Symetrie i struktury ciała stałego. W.Sikora, Wyklad 3
Symete stutuy ł stłe. W.S Wyld RóŜne dze up up wetw W - zó wetów z ddwnem dzłnem upwym spełn wszyste złŝen ztem est upą. Nzyw sę ą upą wetwą. Gup t est nesńzn (e ząd est nesńzny) mŝe yć ął lu dysetn. Dysetn
Dobór nastawień zabezpieczeń nadprądowych
Dobó nastaweń zabezpeczeń nadpądowych 1. Wstęp Zabezpeczena nadpądowe stanową podstawową gupę uządzeo zabezpeczających od sutów zwad mędzyfazowych w secach śednego nsego napęca. Celem dwczena jest poznane
Badanie współzależności dwóch cech ilościowych X i Y. Analiza korelacji prostej
Badane współzależnośc dwóch cech loścowych X Y. Analza korelacj prostej Kody znaków: żółte wyróżnene nowe pojęce czerwony uwaga kursywa komentarz 1 Zagadnena 1. Zwązek determnstyczny (funkcyjny) a korelacyjny.
TWIERDZENIA O WZAJEMNOŚCIACH
1 Olga Kopac, Adam Łodygows, Wojcech Pawłows, Mchał Płotowa, Krystof Tymber Konsultacje nauowe: prof. dr hab. JERZY RAKOWSKI Ponań 2002/2003 MECHANIKA BUDOWI 7 ACH TWIERDZENIE BETTIEGO (o wajemnośc prac)
System M/M/c/L. H 0 µ 1 λ 0 H 1 µ 2 λ 1 µ c λ c-1 H c µ c+1 λ c µ c+l λ c+l-1 H c+l = 2 = 3. Jeli załoymy, e λ λ = λ = Lλ. =1, za.
System M/M// System osada dentyznyh, nezalene raujyh anałów obsług ozealn o ojemno, gdze <
ZESZYTY NAUKOWE NR 5(77) AKADEMII MORSKIEJ W SZCZECINIE. Stabilizacja kursu statku w oparciu o uproszczony komputerowy model dynamiki
ISSN 17-867 ZESZYTY NAUKOWE NR 5(77) AKADEMII MORSKIEJ W SZCZECINIE OBSŁUGIWANIE MASZYN I URZĄDZEŃ OKRĘTOWYCH O M i U O 2 5 Piot Boowsi, Zenon Zwiezewicz Stabilizacja usu statu w opaciu o uposzczony omputeowy
LINIA PRZESYŁOWA PRĄDU STAŁEGO
oitechnia Białostoca Wydział Eetyczny Kateda Eetotechnii Teoetycznej i Metoogii nstucja do zajęć aboatoyjnych Tytuł ćwiczenia LNA RZEYŁOWA RĄD TAŁEGO Nume ćwiczenia E Auto: mg inŝ. Łuasz Zaniewsi Białysto
Metoda prądów obwodowych
Metod prądów owodowyh Zmenmy wszystke rzezywste źródł prądowe n npęowe, Tworzymy kłd równń lnowyh opsjąyh poszzególne owody. Dowolną seć lnową skłdjąą sę z elementów skponyh możn opsć z pomoą kłd równń
Ćw. 5. Wyznaczanie współczynnika sprężystości przy pomocy wahadła sprężynowego
5 KATEDRA FIZYKI STOSOWANEJ PRACOWNIA FIZYKI Ćw. 5. Wyznaczane współczynna sprężystośc przy pomocy wahadła sprężynowego Wprowadzene Ruch drgający należy do najbardzej rozpowszechnonych ruchów w przyrodze.
MECHANIKA BUDOWLI 12
Olga Koacz, Kzysztof Kawczyk, Ada Łodygowski, Michał Płotkowiak, Agnieszka Świtek, Kzysztof Tye Konsultace naukowe: of. d hab. JERZY RAKOWSKI Poznań /3 MECHANIKA BUDOWLI. DRGANIA WYMUSZONE, NIETŁUMIONE
Fizyka 7. Janusz Andrzejewski
Fzyka 7 Janusz Andzejewsk Poblem: Dlaczego begacze na stadone muszą statować z óżnych mejsc wbegu na 400m? Janusz Andzejewsk Ruch obotowy Cało sztywne Cało, któe obaca sę w tak sposób, że wszystke jego
m q κ (11.1) q ω (11.2) ω =,
OPIS RUCHU, DRGANIA WŁASNE TŁUMIONE Oga Kopacz, Adam Łodygowski, Kzysztof Tymbe, Michał Płotkowiak, Wojciech Pawłowski Konsutacje naukowe: pof. d hab. Jezy Rakowski Poznań 00/00.. Opis uchu OPIS RUCHU
I PRACOWNIA FIZYCZNA, UMK TORUŃ WYZNACZANIE MOMENTU BEZWŁADNOŚCI BRYŁY SZTYWNEJ ZA POMOCĄ WAHADŁA TORSYJNEGO
PACOWNA FZYCZNA, UMK TOUŃ nstrukja do ćwzena nr 9 * WYZNACZANE MOMENTU BEZWŁANOŚC BYŁY SZTYWNEJ ZA POMOCĄ WAHAŁA TOSYJNEGO. Cel ćwzena Wyznazene momentu bezwładnoś za pomoą wahadła torsyjnego (metoda dynamzna).
11. DYNAMIKA RUCHU DRGAJĄCEGO
11. DYNAMIKA RUCHU DRGAJĄCEGO Ruchem dgającym nazywamy uch, któy powtaza się peiodycznie w takcie jego twania w czasie i zachodzi wokół położenia ównowagi. Zespół obiektów fizycznych zapewniający wytwozenie
5. Regulacja częstotliwościowa prędkości obrotowej silnika indukcyjnego klatkowego
5. egulacja czętotlwoścowa pędkośc obotowej lnka ndukcyjnego klatkowego 5.1 Zaada egulacj czętotlwoścowej - waunk optymalzacj tatycznej; 5. egulacja kalana pędkośc obotowej ( U/f); 5.3 egulacja wektoowa
Metody analizy obwodów
Metody analzy obwodów Metoda praw Krchhoffa, która jest podstawą dla pozostałych metod Metoda transfguracj, oparte na przekształcenach analzowanego obwodu na obwód równoważny Metoda superpozycj Metoda
Energia kinetyczna i praca. Energia potencjalna
negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut
Inercjalne układy odniesienia
Inecjalne ukłay onesena I II zasaa ynamk Newtona są spełnone tylko w pewnej klase ukłaów onesena. Nazywamy je necjalnym ukłaam onesena. Kyteum ukłau necjalnego: I zasaa jeżel F 0, to a 0. Jeżel stneje
[ ] D r ( ) ( ) ( ) POLE ELEKTRYCZNE
LKTYCZNOŚĆ Pole elektcne Lne sł pola elektcnego Pawo Gaussa Dpol elektcn Pole elektcne w delektkach Pawo Gaussa w delektkach Polaacja elektcna Potencjał pola elektcnego Bewowość pola elektcnego óŝnckowa
NADZOROWANIE DRGAŃ UKŁADÓW NOŚNYCH ROBOTÓW PRZEMYSŁOWYCH Z ZASTOSOWANIEM STEROWANIA OPTYMALNEGO PRZY ENERGETYCZNYM WSKAŹNIKU JAKOŚCI
POIECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY Kateda Mechank Wytzymałośc Mateałów KRZYSZOF JASIŃSKI NADZOROWANIE DRGAŃ UKŁADÓW NOŚNYCH ROBOÓW PRZEMYSŁOWYCH Z ZASOSOWANIEM SEROWANIA OPYMANEGO PRZY ENERGEYCZNYM
ι umieszczono ladunek q < 0, który może sie ι swobodnie poruszać. Czy środek okregu ι jest dla tego ladunku po lożeniem równowagi trwa lej?
ozwiazania zadań z zestawu n 7 Zadanie Okag o pomieniu jest na ladowany ze sta l a gestości a liniowa λ > 0 W śodku okegu umieszczono ladunek q < 0, któy może sie swobodnie pouszać Czy śodek okegu jest
Analiza termodynamiczna ożebrowanego wymiennika ciepła z nierównomiernym dopływem czynników
Instytut Technk Ceplnej Poltechnk Śląskej Analza temodynamczna ożebowanego wymennka cepła z neównomenym dopływem czynnków mg nż. Robet Pątek pomoto: pof. Jan Składzeń Plan pezentacj Wstęp Cel, teza zakes
X. PODSTAWOWA MATEMATYKA REKONSTRUKCJI TOMOGRAFICZNYCH
X. PODSTAWOWA MATEMATYKA REKONSTRUKCJI TOMOGRAFICZNYCH 1.1 Definice; metoda wsteczne poeci w tomogafii tansmisyne Rys. 1.1 Pzyład dwóch zutów pzedmiotu złożonego z dwóch cylindycznych obietów Z czysto
II.6. Wahadło proste.
II.6. Wahadło poste. Pzez wahadło poste ozumiemy uch oscylacyjny punktu mateialnego o masie m po dolnym łuku okęgu o pomieniu, w stałym polu gawitacyjnym g = constant. Fig. II.6.1. ozkład wektoa g pzyśpieszenia
Kondensatory. Definicja pojemności przewodnika: C = q V. stosunek!adunku wprowadzonego na przewodnik do wytworzonego potencja!u.
Kondensatoy Defncja pojemnośc pzewodnka: stosunek!adunku wpowadzonego na pzewodnk do wytwozonego potencja!u. -6 - Jednostka: faad, F, µ F F, pf F Kondensato: uk!ad co najmnej dwóch pzewodnków, pzedzelonych
CZ.1. ANALIZA STATYCZNA I KINETOSTATYCZNA MECHANIZMÓW
Automatyka Robotyka Podstawy odelowana Syntezy echanzmów Analza statyczna knetostatyczna mechanzmów CZ.1. 1 CZ.1. ANALIZA STATYCZNA I KINETOSTATYCZNA ECHANIZÓW Dynamka jest dzałem mechank zajmującej sę
Wyznaczanie współczynnika sztywności drutu metodą dynamiczną.
Ćwiczenie M- Wyznaczanie współczynnika sztywności dutu metodą dynamiczną.. Ce ćwiczenia: pomia współczynnika sztywności da stai metodą dgań skętnych.. Pzyządy: dwa kążki metaowe, statyw, dut staowy, stope,
ZASADA ZACHOWANIA PĘDU
ZASADA ZACHOWANIA PĘDU; DYNAMIKA RUCHU OBROTOWEGO PRZYPOMNIENIE: Ale dv ZASADA ZACHOWANIA PĘDU dv d a ( V) Jeśl na cało dzałają sły, to cało a pzyśpeszene popocjonalne do całkowtej dzałającej sły: p V
XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne
XXX OLIPIADA FIZYCZNA TAP I Zadana teoretczne Nazwa zadana ZADANI T1 Na odstawe wsółczesnch badań wadomo że jądro atomowe może znajdować sę tlo w stanach o oreślonch energach odobne ja dobrze znan atom
Ł Ą ż ż Ę ż Ó Ł ź ż ż Ś ż Ę Ę Ś Ą ć ż Ź Ś Ę Ś ĄÓ Ę Ź ż Ń ć ć ć ć ż ć ć Ę Ś ż ż ć ć ć Ę ć ż Ć Ś ć ć Ś ć ć ż ż ż Ź Ś ż ć ć ć ć ć ć Ś ć Ę ż Ę ć Ó ć ć ć ć Ę ć ć ć Ę Ś ż ć Ę Ź ć Ę Ć Ź ż ż Ś Ę ź ć Ź ż ć Ą ć
Wyznaczenie współczynnika dyfuzji cieplnej κ z rozkładu amplitudy fali cieplnej
ace Instytutu Mechanii Góotwou AN Tom 15, n 3-, gudzień 13, s. 69-75 Instytut Mechanii Góotwou AN Wyznaczenie współczynnia dyfuzji cieplnej κ z ozładu amplitudy fali cieplnej JAN KIEŁBASA Instytut Mechanii
Wyznaczenie współczynników q1=1,0. Wyznaczyć częstości drgań własnych oraz amplitudy drgań wymuszonych dla następującej belki:
Wyznaczyć częośc dgań włanych oaz aludy dgań wyuzonych dla naęującej bel: 4. Sfoułowane zez wółczynn acezy zywnośc. a dgana włane Dane: N 5 g 8 N Hz π 88,496 ad/, J Soeń wobody dynacznej SSD Uład odawowy
Wykład: praca siły, pojęcie energii potencjalnej. Zasada zachowania energii.
Wykład: paca siły, pojęcie enegii potencjalnej. Zasada zachowania enegii. Uwaga: Obazki w tym steszczeniu znajdują się stonie www: http://www.whfeeman.com/tiple/content /instucto/inde.htm Pytanie: Co to
16. Pole magnetyczne, indukcja. Wybór i opracowanie Marek Chmielewski
6. Poe magnetczne, nukcja Wbó opacowane Maek meewsk 6.. Znaeźć nukcje poa magnetcznego w oegłośc o neskończone ługego pzewonka wacowego o pomenu pzekoju popzecznego a w któm płne pą I. 6.. Wznaczć nukcję
Funkcja momentu statycznego odciętej części przekroju dla prostokąta wyraża się wzorem. z. Po podstawieniu do definicji otrzymamy
etoy energetyczne rzykła Wyznaczyć współczynnk z - α z a przekroju prostokątnego który wzłuż os y ma wymar b wzłuż os Funkcja momentu statycznego ocętej częśc przekroju a prostokąta wyraża sę wzorem b
MODEL MATEMATYCZNY STATKU CYBERSHIP II
Mosław Tomea Akadema Moska w Gdyn MODEL MATEMATCZ STATKU CBERSHIP II W lteatze tdno jest znaleźć dobe nelnowe modele matematyczne dynamk statk zaweające watośc nmeyczne, któe można byłoby wykozystać zaówno
Ruch obrotowy. Wykład 6. Wrocław University of Technology
Wykład 6 Wocław Univesity of Technology Oboty - definicje Ciało sztywne to ciało któe obaca się w taki sposób, że wszystkie jego części są związane ze sobą dzięki czemu kształt ciała nie ulega zmianie.
Moment siły (z ang. torque, inna nazwa moment obrotowy)
Moment sły (z ang. torque, nna nazwa moment obrotowy) Sły zmenają ruch translacyjny odpowednkem sły w ruchu obrotowym jest moment sły. Tak jak sła powoduje przyspeszene, tak moment sły powoduje przyspeszene
SCENARIUSZ LEKCJI MATEMATYKI Temat: Zadania na dowodzenie w trygonometrii. Cel: Uczeń tworzy łańcuch argumentów i uzasadnia jego poprawność.
SCENAIUSZ LEKCJI MATEMATYKI Temat: Zadania na dowodzenie w tygonometii Cel: Uczeń twozy łańcuch agumentów i uzasadnia jego popawność Czas: godzina lekcyjna Cele zajęć: Uczeń po zajęciach: wykozystuje definicje
WYZNACZENIE ROZKŁADU TEMPERATUR STANU USTALONEGO W MODELU 2D PRZY UŻYCIU PROGRMU EXCEL
Zeszyty robemowe Maszyny Eetryczne Nr /203 (98) 233 Andrze ałas BOBRME KOMEL, Katowce WYZNACZENIE ROZKŁADU TEMERATUR STANU USTALONEGO W MODELU 2D RZY UŻYCIU ROGRMU EXCEL SOLVING STEADY STATE TEMERATURE
EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA
EFEKTYWNA STOPA PROCENTOWA O RÓWNOWAŻNA STPOPA PROCENTOWA Nekedy zachodz koneczność zany okesu kapt. z ównoczesny zachowane efektów opocentowane. Dzeje sę tak w nektóych zagadnenach ateatyk fnansowej np.
Koncepcja integracji metod wyznaczania i bilansowania energii chemicznej zuŝytych paliw
Koncepcja ntegacj metod wyznaczana lansowana eneg chemcznej zuŝytych palw utozy: Jan Soołows, Kzysztof Wojas ( Enegetya Ceplna Zawodowa - n 6/20) W jednostach wytwóczych zazwyczaj stosuje sę ównolegle
Zbigniew Otremba, Fizyka cz.1: Mechanika 5
Zbigniew Otemba, Fizya cz.: Mechania 5. MECHANIKA Mechania - to idee odnoszące się do zozumienia i opisu wszeliego uchu. Wpowadzone tu pojęcia i wielości dają postawy innym działom fizyi oaz mechanice
Wykład 2: Uczenie nadzorowane sieci neuronowych - I
Wykład 2: Uczene nadzorowane sec neuronowych - I Algorytmy uczena sec neuronowych Na sposób dzałana sec ma wpływ e topologa oraz funkconowane poszczególnych neuronów. Z reguły topologę sec uznae sę za
4. Prąd stały Prąd i prawo Ohma. C s. i = i = t. i S. j = V u prędkość unoszenia ładunków. r r
4. Pąd sały. 4.. Pąd pawo Ohma. l U - + u u pędkość unoszena ładunków S j o ds gdze j jes gęsoścą pądu: j S j S A s A m W pzewodnku o objęośc S l znajduje sę ładunek n e S l m lczbą elekonów w jednosce
Optymalne rozmieszczanie wiskotycznych tłumików drga.
Optymalne rozmeszzane wsotyznyh tłumów Roman Lewandows, Bartosz Choryzews Autorzy pragn wyraz podzowane swom udentom: Anne Chorowse, Anne Zelone, Bartoszow Dbrowsemu, Tomaszow Terleemu Mar Lewandowse Szymonow
NEURONOWE ESTYMATORY PRĘDKOŚCI SILNIKA INDUKCYJNEGO STAN BADAŃ
Pace Nauowe Instytutu Maszyn, Napędów Pomaów Eletycznych N 54 Poltechn Wocławsej N 54 Studa Mateały N 3 3 Teesa ORŁOWSKA-KOWALSKA * Sln nducyjny, napęd bezczujnowy, estymato pędośc sec neuonowe welowastwowe,
Wykład 1 Zagadnienie brzegowe liniowej teorii sprężystości. Metody rozwiązywania, metody wytrzymałości materiałów. Zestawienie wzorów i określeń.
Wykład Zagadnene brzegowe lnowe teor sprężystośc. Metody rozwązywana, metody wytrzymałośc materałów. Zestawene wzorów określeń. Układ współrzędnych Kartezańsk, prostokątny. Ose x y z oznaczono odpowedno
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony
KRYTERIA OCENIANIA ODPOWIEDZI Póbna Matua z OPERONEM Matematyka Poziom ozszezony Listopad 0 W ni niej szym sche ma cie oce nia nia za dań otwa tych są pe zen to wa ne pzy kła do we po paw ne od po wie
WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA
WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POITEHNIKI KRAKOWSKIEJ Instytut Fizyki ABORATORIUM PODSTAW EEKTROTEHNIKI, EEKTRONIKI I MIERNITWA ĆWIZENIE 7 Pojemność złącza p-n POJĘIA I MODEE potzebne do zozumienia
Zasady wyznaczania minimalnej wartości środków pobieranych przez uczestników od osób zlecających zawarcie transakcji na rynku terminowym
Załązn nr 3 Do zzegółowyh Zasad rowadzena Rozlzeń Transa rzez KDW_CC Zasady wyznazana mnmalne wartoś środów oberanyh rzez uzestnów od osób zleaąyh zaware transa na rynu termnowym 1. Metodologa wyznazana
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne
XLI OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadane teoretyczne Rozwąż dowolne rzez sebe wybrane dwa sośród odanych nże zadań: ZADANIE T Nazwa zadana: Protony antyrotony A. Cząstk o mase równe mase rotonu, ale
Wyznaczanie temperatury i ciśnienia gazu z oddziaływaniem Lennarda Jonesa metodami dynamiki molekularnej
Pojekt n C.4. Wyznazanie tempeatuy i iśnienia gazu z oddziaływaniem Lennada Jonesa metodami dynamiki molekulanej Wpowadzenie Fizyka Rozważamy model gazu zezywistego zyli zbió atomów oddziaływująyh z sobą
Ć ź Ą Ć ź ź Ę Ę Ę Ę Ń Ą Ę ź ź Ó Ę Ę Ć Ę Ó ź ź ź ź Ń ź ź Ę Ę Ó ź Ć Ę ź ź Ą Ć Ę Ę Ę Ą Ć Ć Ż Ż Ó Ó Ą Ą Ą Ź Ą ź Ę Ą Ę Ó Ę ź Ę Ą Ś Ń Ż Ś Ó Ó Ó Ż Ę Ę Ę Ż Ź Ę Ę Ę Ę Ę Ę Ż Ż Ę Ę Ę Ę Ę Ę Ę Ż Ż Ń Ę Ś Ę Ę ĘĘ ÓŚ Ę
Spis treści I. Ilościowe określenia składu roztworów strona II. Obliczenia podczas sporządzania roztworów
Sps teśc I. Iloścowe okeślena składu oztwoów stona Ułaek wagowy (asowy ocent wagowy (asowy ocent objętoścowy Ułaek olowy 3 ocent olowy 3 Stężene olowe 3 Stężene pocentowe 3 Stężene noalne 4 Stężene olane
Pęd, d zasada zac zasad a zac owan owan a p a p du Zgod Zg n od ie n ie z d r d u r g u im g pr p a r wem e N ew e tona ton :
Mechanika ogólna Wykład n 13 Zasady zachowania w dynamice. Dynamika były sztywnej. Dynamika układu punktów mateialnych. 1 Zasady zachowania w dynamice Zasada: zachowania pędu; zachowania momentu pędu (kętu);
4. Zjawisko przepływu ciepła
. Zawso przepływu cepła P.Plucńs. Zawso przepływu cepła wymana cepła przez promenowane wymana cepła przez unoszene wymana cepła przez przewodzene + generowane cepła znane wartośc temperatury zolowany brzeg
Pędu Momentu pędu Ładunku Liczby barionowej. Przedmiot: Fizyka. Przedmiot: Fizyka. Wydział EAIiE Kierunek: Elektrotechnika.
ZASADY ZACHOWANIA W FIZYCE ZASADY ZACHOWANIA: Enegii Pęd Moent pęd Ładnk Liczby baionowej ZASADA ZACHOWANIA ENERGII W = E calk Paca siły zewnętznej Jeżeli W=0 to E calk =0 Ziana enegii całkowitej Ziana
BADANIE DYNAMICZNEGO TŁUMIKA DRGA
Ćwiczenie 3 BDNIE DYNMICZNEGO TŁUMIK DRGŃ. Cel ćwiczenia yłumienie dgań układu o częsości ezonansowej za pomocą dynamicznego łumika dgań oaz wyznaczenie zakesu częsości wymuszenia, w kóym łumik skuecznie
Wykład 15 Elektrostatyka
Wykład 5 Elektostatyka Obecne wadome są cztey fundamentalne oddzaływana: slne, elektomagnetyczne, słabe gawtacyjne. Slne słabe oddzaływana odgywają decydującą ole w budowe jąde atomowych cząstek elementanych.
23 PRĄD STAŁY. CZĘŚĆ 2
Włodzimiez Wolczyński 23 PĄD STAŁY. CZĘŚĆ 2 zadanie 1 Tzy jednakowe oponiki, każdy o opoze =30 Ω i opó =60 Ω połączono ze źódłem pądu o napięciu 15 V, jak na ysunku obok. O ile zwiększy się natężenie pądu
OGÓLNE PODSTAWY SPEKTROSKOPII
WYKŁAD 8 OGÓLNE PODSTAWY SPEKTROSKOPII E E0 sn( ωt kx) ; k π ; ω πν ; λ T ν E (m c 4 p c ) / E +, dla fotonu m 0 p c p hk Rozkład energ w stane równowag: ROZKŁAD BOLTZMANA!!!!! P(E) e E / kt N E N E/
r śm równa się wypadkowej sile działającej na
Wykład z fzyk. Pot Posykewcz 74 F wyp dp dt 8- Duga zasada dynak Tak węc: Wypadkowa sła dzałająca na punkt atealny jest ówna szybkośc zany pędu cząstk. W zeczywstośc pewotne sfoułowane dugej zasady dynak
Rysunek 9-13 jest to pokazane na rysunku 9-14.W rezultacie, jeŝeli obroty odbywają się w r
Wykład z zyk, Pot Posmykewcz 9-5 96 Własnośc wektoowe obotów. Aby zaznaczyć keunek obotów względem ustalonej os moŝna wpowadzć plus lub mnus pzed oznaczenem pędkośc kątowej, analogczne jak to mało mejsce
= v. T = f. Zagadnienia. dkość. 1 f T = Wielkości charakteryzujące przebiegi okresowe. v = 2πrf. Okres toru. dy dt. dx dt. v y. v x. dy y.
Zgdnen Welośc chtezujące pzebeg oesowe Welośc chtezujące pzebeg oesowe (cl, oes, częstotlwość) uch jednostjn po oęgu (pę lnow, pzspeszene sł dośodow) uch obotow bł sztwnej (zwąze welośc lnowch z ątow)
exp jest proporcjonalne do czynnika Boltzmanna exp(-e kbt (szerokość przerwy energetycznej między pasmami) g /k B
Koncentracja nośnów ładunu w półprzewodnu W półprzewodnu bez domesz swobodne nośn ładunu (eletrony w paśme przewodnctwa, dzury w paśme walencyjnym) powstają tylo w wynu wzbudzena eletronów z pasma walencyjnego
Ocena precyzji badań międzylaboratoryjnych metodą odporną "S-algorytm"
Eugen T.VOLODARSKY, Zygmunt L.WARSZA Naodowy Unwesytet Technczny Ukany -Poltechnka Kowska (), Pzemysłowy Instytut Automatyk Pomaów (PIAP) Waszawa () do:.599/48.5..4 Ocena pecyz badań mędzylaboatoynych
Układy punktów materialnych i zasada zachowania pędu.
Wykład z fzyk. Pot Posmykewcz 68 W Y K Ł A D VII Układy punktów matealnych zasada zachowana pędu. Do tej poy taktowaly cała take jak samochód, aketę, czy człoweka jako punkty matealne (cząstk) stosowaly
( ) ( ) s = 5. s 2s. Krzysztof Oprzędkiewicz Kraków r. Podstawy Automatyki Zadania do części rachunkowej
Kzyztof Opzędiewicz Kaów 09 0 0. Zajęcia : (ba zadań-wpowadzenie) Zajęcia : (ba zadań wyłącznie część laboatoyjna) Podtawy Automatyi Zadania do części achunowej Zajęcia : Chaateytyi czaowe podtawowych
Wielokategorialne systemy uczące się i ich zastosowanie w bioinformatyce. Rafał Grodzicki
Welokategoralne systemy uząe sę h zastosowane w bonformatye Rafał Grodzk Welokategoralny system uząy sę (multlabel learnng system) Zbór danyh weśowyh: d X = R Zbór klas (kategor): { 2 } =...Q Zbór uząy:
WPŁYW POJEMNOŚCI KONDENSATORA PRACY JEDNOFAZOWEGO SILNIKA INDUKCYJNEGO Z POMOCNICZYM UZWOJENIEM KONDENSATOROWYM NA PROCES ROZRUCHU
Pace Nakowe Instytt Maszyn, Napędów Pomaów Elektycznych N 63 Poltechnk Wocławskej N 63 Stda Mateały N 29 2009 Kzysztof MAKOWSKI*, Macn WIK* mkoslnk, jednofazowe, ndkcyjne, kondensatoowe, modelowane obwodowe,
Pole magnetyczne. 5.1 Oddziaływanie pola magnetycznego na ładunki. przewodniki z prądem. 5.1.1 Podstawowe zjawiska magnetyczne
Rozdział 5 Pole magnetyczne 5.1 Oddziaływanie pola magnetycznego na ładunki i pzewodniki z pądem 5.1.1 Podstawowe zjawiska magnetyczne W obecnym ozdziale ozpatzymy niektóe zagadnienia magnetostatyki. Magnetostatyką
Zasada Jourdina i zasada Gaussa
Zasada Jourdna zasada Gaussa Orócz zasady d Alemberta w mechance analtyczne stosue sę nne zasady waracyne. Są to: zasada Jourdana zasada Gaussa. Wyrowadzene tych zasad oarte est na oęcu rędkośc rzygotowane
WYZNACZANIE SIŁ MIĘŚNIOWYCH I REAKCJI W STAWACH KOŃCZYNY DOLNEJ PODCZAS NASKOKU I ODBICIA
MODELOWANIE INŻYNIERSKIE ISSN 896-77X 44, s. 49-56, Gliwice 0 WYZNACZANIE SIŁ MIĘŚNIOWYCH I REAKCJI W SAWACH KOŃCZYNY DOLNEJ PODCZAS NASKOKU I ODBICIA KRZYSZO DRAPAŁA, KRZYSZO DZIEWIECKI, ZENON MAZUR,
r i m r Fwyp R CM Dynamika ruchu obrotowego bryły sztywnej
Dynamka ruchu obrotowego bryły sztywnej Bryła sztywna - zbór punktów materalnych (neskończene welu), których wzajemne położene ne zmena sę po wpływem załających sł F wyp R C O r m R F wyp C Śroek masy
ĆWICZENIE 6. POMIAR MOMENTU BEZWŁADNOŚCI. SPRAWDZENIE DRUGIEJ ZASADY DYNAMIKI DLA RUCHU OBROTOWEGO. BADANIE ADDYTYWNOŚCI MOMENTU BEZWłADNOŚCI
ĆWICZEIE 6 POMIAR MOMETU BEZWŁADOŚCI. SPRAWDZEIE DRUGIEJ ZASADY DYAMIKI DLA RUCHU OBROTOWEGO. BADAIE ADDYTYWOŚCI MOMETU BEZWłADOŚCI Wpowadzenie Była sztywna to układ punktów mateialnych o stałych odległościach
Dr Krzysztof Piontek. Metody taksonomiczne Klasyfikacja i porządkowanie
Lteratura przegląd etod Studu podyploowe Analty Fnansowy Metody tasonoczne Klasyfaca porządowane Dzechcarz J. (pod red.), Eonoetra: etody, przyłady, zadana, Wydawnctwo Aade Eonoczne we Wrocławu, Wrocław,
Modele odpowiedzi do arkusza Próbnej Matury z OPERONEM. Matematyka Poziom rozszerzony
Modele odpowiedzi do akusza Póbnej Matuy z OPERONEM Matematyka Poziom ozszezony Listopad 00 W kluczu są pezentowane pzykładowe pawidłowe odpowiedzi. Należy ównież uznać odpowiedzi ucznia, jeśli są inaczej