Powierzchniowo wzmocniona spektroskopia Ramana SERS. (Surface Enhanced Raman Spectroscopy)
|
|
- Adam Grabowski
- 7 lat temu
- Przeglądów:
Transkrypt
1 Powierzchniowo wzmocniona spektroskopia Ramana SERS (Surface Enhanced Raman Spectroscopy)
2 Cząsteczki zaadsorbowane na chropowatych powierzchniach niektórych metali (Ag, Au, Cu) dają bardzo intensywny sygnał ramanowski. Wzmocnienie rozpraszania ramanowskiego w stosunku do zwykłych warunków rejestracji widma jest rzędu 10 6 lub większe Pierwsza wzmianka o zaskakująco silnym rozproszeniu ramanowskim: Fleischmann et al. - rejestracja widm ramanowskich pirydyny zaadsorbowanej na elektrodzie srebrowej poddanej uprzednio kilkukrotnemu cyklowi utlenianie-redukcja Jeanmaire & Van Duyne oraz Albrecht & Creighton wykazują, iŝ obserwowane w tych warunkach silne wzmocnienia sygnału ramanowskiego nie da się wyjaśnić zwiększoną powierzchnią adsorpcyjną metalu Obecnie przyjmuje się, Ŝe obserwowane wzmocnienie sygnału jest wypadkową dwóch mechanizmów: wzmocnienia chemicznego oraz wzmocnienia pola elektromagnetycznego.
3 Wzmocnienie chemiczne W wyniku nałoŝenia się na siebie orbitali walencyjnych cząsteczki zaadsorbowanej oraz pasma przewodnictwa metalu moŝliwe staje się przeniesienie ładunku (chargetransfer) z adsorbatu do metalu (lub na odwrót). Proces ten moŝe zostać spowodowany absorpcją fotonu o energii hν 0, jeśli energia ta odpowiada róŝnicy E r - E m. Taka absorpcja rezonansowa powoduje wyraźny wzrost składowej tensora rozproszenia: metal adsorbat ( α ) ρσ mn = r ( M ) ( M ) ( M ) ( M ) E r σ mr E m ρ rn mr + hν 0 E E hν 0 r ρ n σ rn
4 Charakterystyka wzmocnienia chemicznego wzmocnienie natęŝenia światła rozproszonego ramanowsko w stosunku do zwykłych warunków rejestracji widma jest rzędu 10 2 wzmocnienie występuje jedynie dla cząsteczek bezpośrednio oddziałujących z metalem - zasięg ograniczony do monowarstwy adsorbatu (duŝa specyficzność powierzchniowa) wzmocnienie chemiczne nie zaleŝy od właściwości optycznych metalu, tylko od natury oddziaływań metal-adsorbat; obserwuje się je równieŝ w przypadku innych metali niŝ Ag, Au czy Cu wielkość wzmocnienia chemicznego zaleŝy od połoŝenia poziomu Fermiego metalu i zmienia się w zaleŝności od przyłoŝonego do elektrody potencjału.
5 Wzmocnienia pola elektromagnetycznego - rezonansowa oscylacja plazmonów powierzchniowych E( r) E 0 r I 0 a θ a << λ Oddziaływanie wektora E fali padającej o λ >> a na swobodne elektrony powierzchniowe metalu powoduje ich przemieszczanie się, z określoną częstością, w kierunku góra-dół. Ten kolektywny ruch elektronów powierzchniowych nazywany jest plazmonem powierzchniowym. Oscylujący dipol (plazmon) jest źródłem fali elektromagnetycznej, której kierunek propagacji jest zgodny z kierunkiem rozchodzenia się fali wzbudzającej następuje lokalne wzmocnienie pola elektrycznego
6 Całkowite natęŝenie pola elektrycznego w odległości r od powierzchni metalicznej sfery wynosi; 3 a E( r) E0 cosθ g E0 cosθ 3 r = + ε m( ν 0) ε 0 g = ε ( ν ) + 2ε m 0 gdzie: ε m (ν 0 ) - przenikalność dielektryczna (zespolona) metalu ε 0 - przenikalność dielektryczna ośrodka 0 W przypadku, gdy ośrodkiem jest próŝnia lub powietrze (ε 0 =1), maksymalną wartość współczynnika g (a zatem maksymalną wartość E(r) ) uzyskuje się dla częstości ν r, spełniającej warunek: ε m (ν r ) = -2 /ściślej - Re{ε m (ν r )} = -2 / ν r - częstość rezonansowa oscylacji plazmonów
7 Charakterystyka wzmocnienia pola elektromagnetycznego efekt wzmocnienia pola zaleŝy głównie od właściwości optycznych metalu i jest najsilniejszy dla Ag, Au i Cu wzmocnienie pola powoduje wzrost natęŝenia rozproszenia ramanowskiego rzędu 10 4 w stosunku do zwykłych warunków rejestracji jest odczuwalny w odległości do kilkudziesięciu nm od powierzchni metalu (obejmuje swym zasięgiem kilka warst atomowych) wielkość efektu silnie zaleŝy od rozmiaru i kształtu chropowatości, morfologii powierzchni metalu lub rozmiarów agregatów atomów metalu
8 Największe wzmocnienie uzyskuje się, gdy ziarnistość metalu ma rozmiary rzędu nm. Powierzchnię o takiej strukturze moŝna spreparować na kilka sposobów: poddanie elektrody kilkukrotnemu cyklowi reakcji utleniania-redukcji osadzenie par metalu na odpowiednio oziębionym podłoŝu ścieranie gładkich powierzchni metalu za pomocą wysokoenergetycznych jonów utworzenie koloidalnych agregatów atomów metalu (zole metali) koloidalne agregaty Au elektrochemicznie wytrawiona powierzchnia Ag
9 Nowoczesne techniki projektowania uporządkowanych powierzchni do SERS A) nanolitografia B) osadzanie koloidu na matrycy C) litografia z uŝyciem wiązki elektronów A) B) C)
10 SERS z zastosowaniem nanocząstek Nanocząstki Au i Ag bardzo silnie wzmacniają promieniowanie elektromagnetyczne. UmoŜliwia to uzyskanie widma SERS poprzez wprowadzenie substratu wzmacniającego promieniowanie do badanego układu (np. komórki) Zaadsorbowane na powierzchni duŝych cząsteczek (białek) nanocząstki pozwalają uzyskać widmo SERS tych cząsteczek w warunkach in vivo. Częstość rezonansowa oscylacji plazmonów zaleŝy od rozmiaru cząstki moŝliwość dostrojenia rozpraszanej częstości
11 SERS z zastosowaniem nanosensorów cząsteczki próbki cząsteczki próbniki
12 Wewnątrzkomórkowy czujnik ph (C.E.Talley et al., Anal.Chem.2004,76,7064) Kwas 4-merkaptobenzoesowy osadzony na nanocząsteczkach Ag o średnicy 50-80nm wprowadzono do komórek Ŝywego chomika. ph=12,3 ph=5,0
13 Problemy metody SERS widma SERS na ogół róŝnią się od tradycyjnych widm ramanowskich - inne reguły wyboru oraz złamanie symetrii cząsteczki w wyniku adsorpcji moŝe spowodować zmianę względnych intensywności poszczególnych pasm (zanik niektórych pasm lub pojawienie się innych) intensywność pasma nie daje się w prosty sposób powiązać ze stęŝeniem cząsteczek trudność uzyskania powierzchni wzmacniających o identycznej morfologii (problem z powodzeniem rozwiązywany przez nanotechnologię)
dr inż. Beata Brożek-Pluska SERS La boratorium La serowej
dr inż. Beata Brożek-Pluska La boratorium La serowej Spektroskopii Molekularnej PŁ Powierzchniowo wzmocniona sp ektroskopia Ramana (Surface Enhanced Raman Spectroscopy) Cząsteczki zaadsorbowane na chropowatych
Bardziej szczegółowoSpektroskopia ramanowska w badaniach powierzchni
Spektroskopia ramanowska w badaniach powierzchni z Efekt Ramana (1922, CV Raman) I, ν próbka y Chandra Shekhara Venketa Raman x I 0, ν 0 Monochromatyczne promieniowanie o częstości ν 0 ulega rozproszeniu
Bardziej szczegółowoSpektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy)
Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Oddziaływanie elektronów ze stałą, krystaliczną próbką wstecznie rozproszone elektrony elektrony pierwotne
Bardziej szczegółowoOptyczna spektroskopia oscylacyjna. w badaniach powierzchni
Optyczna spektroskopia oscylacyjna w badaniach powierzchni Zalety oscylacyjnej spektroskopii optycznej uŝycie fotonów jako cząsteczek wzbudzających i rejestrowanych nie wymaga uŝycia próŝni (moŝliwość
Bardziej szczegółowoReflekcyjno-absorpcyjna spektroskopia w podczerwieni RAIRS (IRRAS) Reflection-Absorption InfraRed Spectroscopy
Reflekcyjno-absorpcyjna spektroskopia w podczerwieni RAIRS (IRRAS) Reflection-Absorption InfraRed Spectroscopy Odbicie promienia od powierzchni metalu E n 1 Równania Fresnela E θ 1 θ 1 r E = E odb, 0,
Bardziej szczegółowoZespolona funkcja dielektryczna metalu
Zespolona funkcja dielektryczna metalu Przenikalność elektryczna ośrodków absorbujących promieniowanie elektromagnetyczne jest zespolona, a także zależna od częstości promieniowania, które przenika przez
Bardziej szczegółowoSpektroskopia fotoelektronów (PES)
Spektroskopia fotoelektronów (PES) Efekt fotoelektryczny hν ( UV lub X) E =hν kin W Proces fotojonizacji w PES: M + hν M + + e E kin (e) = hν E B Φ sp E B energia wiązania elektronu w atomie/cząsteczce
Bardziej szczegółowoXPS (ESCA) X-ray Photoelectron Spectroscopy (Electron Spectroscopy for Chemical Analysis)
XPS (ESCA) X-ray Photoelectron Spectroscopy (Electron Spectroscopy for Chemical Analysis) Wykorzystuje miękkie promieniowanie rentgenowskie o E > 100eV, pozwalające na wybicie elektronów z orbitali rdzenia
Bardziej szczegółowoELEKTROCHEMICZNIE OTRZYMYWANE NANOSTRUKTURY ZŁOTA JAKO PODŁOŻA DLA ENZYMÓW
ELEKTROCHEMICZNIE OTRZYMYWANE NANOSTRUKTURY ZŁOTA JAKO PODŁOŻA DLA ENZYMÓW Aleksandra Pawłowska Pracownia Elektrochemii Promotor: dr hab. Barbara Pałys Tło - http://www.pgi.gov.pl/muzeum/kolekcja/zloto/guardon.jpg
Bardziej szczegółowoSPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE
SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest
Bardziej szczegółowoSpektroskopia elektronów Augera AES
Spektroskopia elektronów Augera AES (Auger Electron Spectroscopy) Emisja elektronu Augera (Pierre Auger, 1925) elektron Augera E kin E vac 3 poziom Fermiego e C B 2 Φ Α E C E B E A A 1 Energia kinetyczna
Bardziej szczegółowoSPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE
1 SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE 2 Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest
Bardziej szczegółowoPodczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm)
SPEKTROSKOPIA W PODCZERWIENI Podczerwień bliska: 14300-4000 cm -1 (0,7-2,5 µm) Podczerwień właściwa: 4000-700 cm -1 (2,5-14,3 µm) Podczerwień daleka: 700-200 cm -1 (14,3-50 µm) WIELKOŚCI CHARAKTERYZUJĄCE
Bardziej szczegółowoEWA PIĘTA. Streszczenie pracy doktorskiej
EWA PIĘTA Spektroskopowa analiza struktur molekularnych i procesu adsorpcji fosfinowych pochodnych pirydyny, potencjalnych inhibitorów aminopeptydazy N Streszczenie pracy doktorskiej wykonanej na Wydziale
Bardziej szczegółowoI.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona
r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A
Bardziej szczegółowoWYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab.
WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. Halina Abramczyk POLITECHNIKA ŁÓDZKA Wydział Chemiczny
Bardziej szczegółowoZASADY ZALICZENIA PRZEDMIOTU MBS
ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll
Bardziej szczegółowoWłaściwości materii. Bogdan Walkowiak. Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka. 18 listopada 2014 Biophysics 1
Wykład 8 Właściwości materii Bogdan Walkowiak Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka 18 listopada 2014 Biophysics 1 Właściwości elektryczne Właściwości elektryczne zależą
Bardziej szczegółowoWprowadzenie do ekscytonów
Proces absorpcji można traktować jako tworzenie się, pod wpływem zewnętrznego pola elektrycznego, pary elektron-dziura, które mogą być opisane w przybliżeniu jednoelektronowym. Dokładniejszym podejściem
Bardziej szczegółowoWzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk
Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk fizycznych tego rodzaju należą zjawiska odbicia i załamania
Bardziej szczegółowo1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?
Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody
Bardziej szczegółowoPRACOWNIA CHEMII. Wygaszanie fluorescencji (Fiz4)
PRACOWNIA CHEMII Ćwiczenia laboratoryjne dla studentów II roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Projektowanie molekularne i bioinformatyka Wygaszanie fluorescencji
Bardziej szczegółowoSpektroskopia modulacyjna
Spektroskopia modulacyjna pozwala na otrzymanie energii przejść optycznych w strukturze z bardzo dużą dokładnością. Charakteryzuje się również wysoką czułością, co pozwala na obserwację słabych przejść,
Bardziej szczegółowoFizykochemiczne metody w kryminalistyce. Wykład 7
Fizykochemiczne metody w kryminalistyce Wykład 7 Stosowane metody badawcze: 1. Klasyczna metoda analityczna jakościowa i ilościowa 2. badania rentgenostrukturalne 3. Badania spektroskopowe 4. Metody chromatograficzne
Bardziej szczegółowoPrzejścia promieniste
Przejście promieniste proces rekombinacji elektronu i dziury (przejście ze stanu o większej energii do stanu o energii mniejszej), w wyniku którego następuje emisja promieniowania. E Długość wyemitowanej
Bardziej szczegółowoZjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich
Bardziej szczegółowoWykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne
Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach
Bardziej szczegółowoBadanie nanostruktur plazmonicznych do zastosowań w fotowoltaice
Badanie nanostruktur plazmonicznych do zastosowań w fotowoltaice Zbigniew Starowicz Promotor: dr hab. Marek Lipiński, prof. PAN Promotor pomocniczy: dr inż. Kazimierz Drabczyk Instytut Metalurgii i Inżynierii
Bardziej szczegółowofalowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich
Bardziej szczegółowoElektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α
Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest
Bardziej szczegółowoEmisja spontaniczna i wymuszona
Fluorescencja Plan wykładu 1) Absorpcja, emisja wymuszona i emisja spontaniczna 2) Przesunięcie Stokesa 3) Prawo lustrzanego odbicia 4) Znaczniki fluorescencyjne 5) Fotowybielanie Emisja spontaniczna i
Bardziej szczegółowoRezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego
Paweł Szroeder Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Wykład XII Oddziaływanie promieniowania z materią w kontekście spektroskopii oscylacyjnej Absorpcja i rozpraszanie
Bardziej szczegółowoJan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM
Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM Światło słoneczne jest mieszaniną fal o różnej długości i różnego natężenia. Tylko część promieniowania elektromagnetycznego
Bardziej szczegółowoIII.4 Gaz Fermiego. Struktura pasmowa ciał stałych
III.4 Gaz Fermiego. Struktura pasmowa ciał stałych Jan Królikowski Fizyka IVBC 1 Gaz Fermiego Gaz Fermiego to gaz swobodnych, nie oddziałujących, identycznych fermionów w objętości V=a 3. Poszukujemy N(E)dE
Bardziej szczegółowoTransport elektronów w biomolekułach
Transport elektronów w biomolekułach Równanie Arrheniusa, energia aktywacji Większość reakcji chemicznych zachodzi ze stałą szybkości (k) zaleŝną od temperatury (T) i energii aktywacji ( G*) tej reakcji,
Bardziej szczegółowoFizyka powierzchni 6-7/7. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Fizyka powierzchni 6-7/7 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni ciał stałych Termodynamika równowagowa i
Bardziej szczegółowoPRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR
PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR WSTĘP Metody spektroskopowe Spektroskopia bada i teoretycznie wyjaśnia oddziaływania pomiędzy materią będącą zbiorowiskiem
Bardziej szczegółowoFalowa natura światła
Falowa natura światła Christiaan Huygens Thomas Young James Clerk Maxwell Światło jest falą elektromagnetyczną Barwa światło zależy od jej długości (częstości). Optyka geometryczna Optyka geometryczna
Bardziej szczegółowon n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24)
n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A 1 2 / B hν exp( ) 1 kt (24) Powyższe równanie określające gęstość widmową energii promieniowania
Bardziej szczegółowoWŁASNOŚCI CIAŁ STAŁYCH I CIECZY
WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)
Bardziej szczegółowoWłasności optyczne półprzewodników
Własności optyczne półprzewodników Andrzej Wysmołek Wykład przygotowany w oparciu o wykłady prowadzone na Wydziale Fizyki UW przez prof. Mariana Grynberga oraz prof. Romana Stępniewskiego Klasyfikacja
Bardziej szczegółowoSpektroskopia molekularna. Spektroskopia w podczerwieni
Spektroskopia molekularna Ćwiczenie nr 4 Spektroskopia w podczerwieni Spektroskopia w podczerwieni (IR) jest spektroskopią absorpcyjną, która polega na pomiarach promieniowania elektromagnetycznego pochłanianego
Bardziej szczegółowoSpektroskopia Ramanowska
Spektroskopia Ramanowska Część A 1.Krótki wstęp historyczny 2.Oddziaływanie światła z osrodkiem materialnym (rozpraszanie światła) 3.Opis klasyczny zjawiska Ramana 4. Widmo ramanowskie. 5. Opis półklasyczny
Bardziej szczegółowoWstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Bardziej szczegółowoSurface Enhanced Raman Scattering (SERS)-based detection of ions
Warszawa, 15.12.2017 mgr Piotr Piotrowski Pracownia Oddziaływań Międzymolekularnych Zakład Chemii Fizycznej Wydział Chemii Uniwersytet Warszawski Autoreferat rozprawy doktorskiej pt. Surface Enhanced Raman
Bardziej szczegółowoFizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła
W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy
Bardziej szczegółowoI. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
Bardziej szczegółowoPrzejścia kwantowe w półprzewodnikach (kryształach)
Przejścia kwantowe w półprzewodnikach (kryształach) Rozpraszanie na nieruchomej sieci krystalicznej (elektronów, neutronów, fotonów) zwykłe odbicie Bragga (płaszczyzny krystaliczne odgrywają rolę rys siatki
Bardziej szczegółowoMetoda osłabionego całkowitego wewnętrznego odbicia ATR (Attenuated Total Reflection)
Metoda osłabionego całkowitego wewnętrznego odbicia ATR (Attenuated Total Reflection) Całkowite wewnętrzne odbicie n 2 θ θ n 1 n > n 1 2 Kiedy promień pada na granicę ośrodków pod kątem większym od kąta
Bardziej szczegółowoĆwiczenie 3 ANALIZA JAKOŚCIOWA PALIW ZA POMOCĄ SPEKTROFOTOMETRII FTIR (Fourier Transform Infrared Spectroscopy)
POLITECHNIKA ŁÓDZKA WYDZIAŁ INśYNIERII PROCESOWEJ I OCHRONY ŚRODOWISKA KATEDRA TERMODYNAMIKI PROCESOWEJ K-106 LABORATORIUM KONWENCJONALNYCH ŹRÓDEŁ ENERGII I PROCESÓW SPALANIA Ćwiczenie 3 ANALIZA JAKOŚCIOWA
Bardziej szczegółowoS. Baran - Podstawy fizyki materii skondensowanej Półprzewodniki. Półprzewodniki
Półprzewodniki Definicja i własności Półprzewodnik materiał, którego przewodnictwo rośnie z temperaturą (opór maleje) i w temperaturze pokojowej wykazuje wartości pośrednie między przewodnictwem metali,
Bardziej szczegółowo2008/2009. Seweryn Kowalski IVp IF pok.424
2008/2009 seweryn.kowalski@us.edu.pl Seweryn Kowalski IVp IF pok.424 Plan wykładu Wstęp, podstawowe jednostki fizyki jądrowej, Własności jądra atomowego, Metody wyznaczania własności jądra atomowego, Wyznaczanie
Bardziej szczegółowoMożliwości wykorzystania spektroskopii ramanowskiej w branży naftowej
NAFTA-GAZ listopad 2012 ROK LXVIII Sylwia Jędrychowska Instytut Nafty i Gazu, Kraków Możliwości wykorzystania spektroskopii ramanowskiej w branży naftowej Część I. Podstawy teoretyczne spektroskopii ramanowskiej
Bardziej szczegółowoEfekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów
Bardziej szczegółowoPhotovoltaics
Photovoltaics PV Cell PV Array Components opv Cells omodules oarrays PV System Components Net Metering PV Array Fields Disadvantages of Solar Energy Less efficient and costly equipment Part Time Reliability
Bardziej szczegółowoCHEMIA. Wymagania szczegółowe. Wymagania ogólne
CHEMIA Wymagania ogólne Wymagania szczegółowe Uczeń: zapisuje konfiguracje elektronowe atomów pierwiastków do Z = 36 i jonów o podanym ładunku, uwzględniając rozmieszczenie elektronów na podpowłokach [
Bardziej szczegółowoWłaściwości kryształów
Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne
Bardziej szczegółowoRecenzja rozprawy doktorskiej pani magister Marty Marii Siek zatytułowanej Electrochemical preparation of Ag- and Au- based plasmonic platforms
dr hab. Barbara Pałys, prof. U.W Warszawa, 14-11-2015 Pracownia Elektrochemii Zakład Chemii Fizycznej Recenzja rozprawy doktorskiej pani magister Marty Marii Siek zatytułowanej Electrochemical preparation
Bardziej szczegółowoPasmowa teoria przewodnictwa. Anna Pietnoczka
Pasmowa teoria przewodnictwa elektrycznego Anna Pietnoczka Wpływ rodzaju wiązań na przewodność próbki: Wiązanie jonowe - izolatory Wiązanie metaliczne - przewodniki Wiązanie kowalencyjne - półprzewodniki
Bardziej szczegółowoMechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy
Bardziej szczegółowoGŁÓWNE CECHY ŚWIATŁA LASEROWEGO
GŁÓWNE CECHY ŚWIATŁA LASEROWEGO Światło może być rozumiane jako: Strumień fotonów o energii E Fala elektromagnetyczna. = hν i pędzie p h = = hν c Najprostszym przypadkiem fali elektromagnetycznej jest
Bardziej szczegółowoMody sprzęŝone plazmon-fonon w silnych polach magnetycznych
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,
Bardziej szczegółowoThe role of band structure in electron transfer kinetics at low dimensional carbons
The role of band structure in electron transfer kinetics at low dimensional carbons Paweł Szroeder Instytut Fizyki, Uniwersytet Mikołaja Kopernika, ul. Grudziądzka 5/7, 87-100 Toruń, Poland Reakcja przeniesienia
Bardziej szczegółowoPodstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 21, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 21, 14.05.2012. wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 20 - przypomnienie
Bardziej szczegółowoCiała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami.
Ciała stałe Ciała krystaliczne Ciała amorficzne Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. r T = Kryształy rosną przez regularne powtarzanie się identycznych
Bardziej szczegółowoOPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,
Bardziej szczegółowoOddziaływanie cząstek z materią
Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki
Bardziej szczegółowoNanostruktury i nanotechnologie
Nanostruktury i nanotechnologie Heterozłącza Efekty kwantowe Nanotechnologie Z. Postawa, "Fizyka powierzchni i nanostruktury" 1 Termin oddania referatów do 19 I 004 Zaliczenie: 1 I 004 Z. Postawa, "Fizyka
Bardziej szczegółowoPodstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 21, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 21, 15.12.2017. wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 20 - przypomnienie
Bardziej szczegółowo1 k. AFM: tryb bezkontaktowy
AFM: tryb bezkontaktowy Ramię igły wprowadzane w drgania o małej amplitudzie (rzędu 10 nm) Pomiar zmian amplitudy drgań pod wpływem sił (na ogół przyciągających) Zbliżanie igły do próbki aż do osiągnięcia
Bardziej szczegółowoPRACOWNIA CHEMII. Reakcje fotochemiczne (Fiz3)
PRACOWNIA CHEMII Ćwiczenia laboratoryjne dla studentów II roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Projektowanie molekularne i bioinformatyka Reakcje fotochemiczne
Bardziej szczegółowoMody sprzężone plazmon-fonon w silnych polach magnetycznych
Mody sprzężone plazmon-fonon w silnych polach magnetycznych Mody sprzężone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga,, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,
Bardziej szczegółowoSeria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii
Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii 8.1.21 Zad. 1. Obliczyć ciśnienie potrzebne do przemiany grafitu w diament w temperaturze 25 o C. Objętość właściwa (odwrotność gęstości)
Bardziej szczegółowoZasada nieoznaczoności Heisenberga. Konsekwencją tego, Ŝe cząstki mikroświata mają takŝe własności falowe jest:
Zasada nieoznaczoności Heisenberga Konsekwencją tego, Ŝe cząstki mikroświata mają takŝe własności falowe jest: Pewnych wielkości fizycznych nie moŝna zmierzyć równocześnie z dowolną dokładnością. Iloczyn
Bardziej szczegółowoStany skupienia materii
Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -słabo ściśliwe - uporządkowanie bliskiego zasięgu -tworzą powierzchnię
Bardziej szczegółowoJest to graficzna ilustracja tzw. prawa Plancka, które moŝna zapisać następującym równaniem:
WSTĘP KaŜde ciało o temperaturze powyŝej 0 0 K, tj. powyŝej temperatury zera bezwzględnego emituje promieniowanie cieplne, zwane teŝ temperaturowym, mające naturę fali elektromagnetycznej. Na rysunku poniŝej
Bardziej szczegółowoWykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego
Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego W5. Energia molekuł Przemieszczanie się całych molekuł w przestrzeni - Ruch translacyjny - Odbywa się w fazie gazowej i ciekłej, w fazie stałej
Bardziej szczegółowoSpektroskopia magnetycznego rezonansu jądrowego - wprowadzenie
Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Streszczenie Spektroskopia magnetycznego rezonansu jądrowego jest jedną z technik spektroskopii absorpcyjnej mającej zastosowanie w chemii,
Bardziej szczegółowoIII. EFEKT COMPTONA (1923)
III. EFEKT COMPTONA (1923) Zjawisko zmiany długości fali promieniowania roentgenowskiego rozpraszanego na swobodnych elektronach. Zjawisko to stoi u podstaw mechaniki kwantowej. III.1. EFEKT COMPTONA Rys.III.1.
Bardziej szczegółowoWstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział
Bardziej szczegółowoLiniowe i nieliniowe własciwości optyczne chromoforów organiczych. Summer 2012, W_12
Liniowe i nieliniowe własciwości optyczne chromoforów organiczych Powszechność SHG: Każda molekuła niecentrosymetryczna D-p-A p musi być łatwo polaryzowalna CT o niskiej energii Uporządkowanie ukierunkowanie
Bardziej szczegółowoĘŚCIOWO KOHERENTNYM. τ), gdzie Γ(r 1. oznacza centralną częstotliwość promieniowania quasi-monochromatycznego.
OBRAZOWANIE W OŚWIETLENIU CZĘŚ ĘŚCIOWO KOHERENTNYM 1. Propagacja światła a częś ęściowo koherentnego prof. dr hab. inŝ. Krzysztof Patorski Krzysztof PoniŜej zajmiemy się propagacją promieniowania quasi-monochromatycznego,
Bardziej szczegółowoSPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa przedmiotu SYLABUS A. Informacje ogólne
SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów
Bardziej szczegółowo8 H + B -5 (H + ) Ag OH H +...(j.w.)... (4 H 2 O) 8 e - 8 Ag 0 B B +3 B(OH) 4
Redukcja jonów srebrowych i synteza nanocząstek w roztworze na podstawie: V, N Langmuir 9, 9 Do roztworu soli srebra (AgNO 3 lub Ag 2 SO 4 ) w wodzie dodawany jest roztwór substancji o właściwościach redukujących,
Bardziej szczegółowoSpektroskopia. Spotkanie drugie UV-VIS, NMR
Spektroskopia Spotkanie drugie UV-VIS, NMR Spektroskopia UV-Vis 2/32 Promieniowanie elektromagnetyczne: Ultrafioletu ~100-350 nm światło widzialne ~350-900 nm Kwanty energii zgodne z róŝnicami poziomów
Bardziej szczegółowo1.6. Ruch po okręgu. ω =
1.6. Ruch po okręgu W przykładzie z wykładu 1 asteroida poruszała się po okręgu, wartość jej prędkości v=bω była stała, ale ruch odbywał się z przyspieszeniem a = ω 2 r. Przyspieszenie w tym ruchu związane
Bardziej szczegółowoV.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania
V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania 1. Ogólne wyrażenia na aberrację światła. Rozpad cząstki o masie M na dwie cząstki o masach m 1 i m 3. Rozpraszanie fotonów z lasera GaAs
Bardziej szczegółowoAbsorpcja związana z defektami kryształu
W rzeczywistych materiałach sieć krystaliczna nie jest idealna występują różnego rodzaju defekty. Podział najważniejszych defektów ze względu na właściwości optyczne: - inny atom w węźle sieci: C A atom
Bardziej szczegółowoBARWY W CHEMII Dr Emilia Obijalska Katedra Chemii Organicznej i Stosowanej UŁ
BARWY W CHEMII Dr Emilia bijalska Katedra Chemii rganicznej i Stosowanej UŁ Akademia Ciekawej Chemii Czym jest światło? Wzrok człowieka reaguje na fale elektromagnetyczne w zakresie 380-760nm. Potocznie
Bardziej szczegółowoZastosowanie metod dielektrycznych do badania właściwości żywności
Zastosowanie metod dielektrycznych do badania właściwości żywności Ze względu na właściwości elektryczne materiały możemy podzielić na: Przewodniki (dobrze przewodzące prąd elektryczny) Półprzewodniki
Bardziej szczegółowoIV. Transmisja. /~bezet
Światłowody IV. Transmisja BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet 1. Tłumienność 10 7 10 6 Tłumienność [db/km] 10 5 10 4 10 3 10 2 10 SiO 2 Tłumienność szkła w latach (za A.
Bardziej szczegółowoElektryczne własności ciał stałych
Elektryczne własności ciał stałych Izolatory (w temperaturze pokojowej) w praktyce - nie przewodzą prądu elektrycznego. Ich oporność jest b. duża. Np. diament ma oporność większą od miedzi 1024 razy Metale
Bardziej szczegółowoCząsteczki i światło. Jacek Waluk. Instytut Chemii Fizycznej PAN Kasprzaka 44/52, Warszawa
Cząsteczki i światło Jacek Waluk Instytut Chemii Fizycznej PAN Kasprzaka 44/52, 01-224 Warszawa 10 19 m (1000 lat świetlnych) 10-5 m (10 mikronów) 10 11 gwiazd w naszej galaktyce 10 22 gwiazd we Wszechświecie
Bardziej szczegółowoWłasności optyczne półprzewodników
Własności optyczne półprzewodników Andrzej Wysmołek Wykład przygotowany w oparciu o wykłady prowadzone na Wydziale Fizyki Uniwersytetu Warszawakiego przez prof. Mariana Grynberga oraz prof. Romana Stępniewskiego
Bardziej szczegółowoPOLITECHNIKA WARSZAWSKA WYDZIAŁ ELEKTRYCZNY. PRACOWNIA MATERIAŁOZNAWSTWA ELEKTROTECHNICZNEGO KWNiAE
POLITECHNIK WRSZWSK WYDZIŁ ELEKTRYCZNY PRCOWNI MTERIŁOZNWSTW ELEKTROTECHNICZNEGO KWNiE ĆWICZENIE 11 WYZNCZNIE ELEKTROCHEMICZNEGO RÓWNOWśNIK MIEDZI ORZ STŁEJ FRDY 1. Elektrolity i przewodnictwo jonowe Ogólnie
Bardziej szczegółowoRozpraszanie elastyczne światła
Wykład 11 Rozpraszanie elastyczne światła na drobinach Jeszcze raz o zasadzie Huygensa i roli konstruktywnej interferencji Rozpraszanie na obiektach kulistych i teoria Mie Rozpraszanie Rayleigha Dlaczego
Bardziej szczegółowoSkręcenie wektora polaryzacji w ośrodku optycznie czynnym
WFiIS PRACOWNIA FIZYCZNA I i II Imię i nazwisko: 1.. TEMAT: ROK GRUPA ZESPÓŁ NR ĆWICZENIA ata wykonania: ata oddania: Zwrot do poprawy: ata oddania: ata zliczenia: OCENA Cel ćwiczenia: Celem ćwiczenia
Bardziej szczegółowoBARWY W CHEMII Dr Emilia Obijalska Katedra Chemii Organicznej i Stosowanej UŁ
BARWY W CHEMII Dr Emilia bijalska Katedra Chemii rganicznej i Stosowanej UŁ Akademia Ciekawej Chemii Czym jest światło? Czym jest światło? Rozszczepienie światła białego przez pryzmat Fala elektromagnetyczna
Bardziej szczegółowoSpektroskopia. Spotkanie pierwsze. Prowadzący: Dr Barbara Gil
Spektroskopia Spotkanie pierwsze Prowadzący: Dr Barbara Gil Temat rozwaŝań Spektroskopia nauka o powstawaniu i interpretacji widm powstających w wyniku oddziaływań wszelkich rodzajów promieniowania na
Bardziej szczegółowoZJAWISKA KWANTOWO-OPTYCZNE
ZJAWISKA KWANTOWO-OPTYCZNE Źródła światła Prawo promieniowania Kirchhoffa Ciało doskonale czarne Promieniowanie ciała doskonale czarnego Prawo promieniowania Plancka Prawo Stefana-Boltzmanna Prawo przesunięć
Bardziej szczegółowo