SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE
|
|
- Gabriela Głowacka
- 8 lat temu
- Przeglądów:
Transkrypt
1 1 SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE
2 2 Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest selektywna i stanowi przedmiot badań spektroskopii oscylacyjnej. Szczególnie użyteczną jest spektroskopia absorpcyjna w podczerwieni, obserwacja widm emisyjnych w IR jest trudniejsza i znacznie rzadziej stosowana. Za odkrywcę promieniowania IR uważa się Sir Fredericka Williama Herschel a który w 1800 r. stwierdził, że istnieje promieniowanie poza obszarem widzialnym. To promieniowanie cieplne nazwano później promieniowaniem podczerwony (prefix infra oznacza pod ). Eksperyment Herschel a był ważny nie tylko dlatego, że doprowadził do odkrycia promieniowania IR, ale również dlatego, że po raz pierwszy zauważono istnienie formy światła niewidzialnego dla ludzkiego oka.
3 3 Spektroskopia IR i spektroskopia Ramana dostarczają informacji o wibracjach cząsteczek Spektroskopia IR jest spektroskopią absorpcyjną. Spektroskopia Ramana jest spektroskopią, w której wykorzystuje się zjawisko rozpraszania światła. Aby cząsteczki zaabsorbowały promieniowanie IR musi byd spełnionych kilka warunków, warunki te noszą nazwę reguł wyboru.
4 4 Reguły wyboru dla przejść w spektroskopii IR 1. Fotony promieniowania muszą mieć energię równą różnicy energii wibracyjnych poziomów energetycznych: hν=δe 2. Przejście zachodzi tylko wtedy, gdy kwantowa liczba osculacji zmienia się o 1,2,3... oscylator harmoniczny Δν=+1 Δν=+1, +2, +3,, oscylator anharmoniczny 3.W trakcie drgania musi nastąpić zmiana momentu dipolowego cząsteczki Ponad to prawdopodobieństwo pojawienia się tonów podstawowych jest zarówno w molekułach dwu- jak i wieloatomowych proporcjonalne do kwadratu pochodnej momentu dipolowego względem współrzędnej normalnej drgania, a integralny współczynnik absorpcji jest tym większy im bardziej moment dipolowy zmienia się w trakcie drgania.
5 5 W przypadku spektroskopii Ramana reguły wyboru są zaś następujące: 1. Różnica energia fotonu padającego i rozproszonego pasuje do różnicy poziomów oscylacyjnych: hν 0 -hν R =ΔE 2. Przejście musi nastąpić tak by kwantowa liczba oscylacji zmieniała się o 1 (dla oscylatora harmonicznego) czyli Δν=+1 oscylator harmoniczny Δν=+1, +2, +3,, oscylator anharmoniczny 3. W trakcie drgania musi nastąpić zmiana polaryzowalności cząsteczki Mechanizm rozpraszania ramanowskiego można wytłumaczyć w oparciu o teorię polaryzowalności Placzka. Cząsteczka jest zbiorem ładunków elektrycznych dodatnich i ujemnych. Nośnikami dodatnich są atomowy, ujemnych zaś elektrony walencyjne. Składowa elektryczna promieniowania elektromagnetycznego musi więc z nimi oddziaływać, przez co indukuje w cząsteczce moment dipolowy wyrażony wzorem: (1)
6 6 Natężenie składowej elektrycznej promieniowania zmienia się periodycznie w funkcji czasu zgodnie ze wzorem: więc (2) (3) przyjmijmy, że polaryzowalność, czyli potencjalna zdolność przemieszczania się elektronów względem jąder w polu elektrycznym, zależy od odległości miedzy jądrami atomów cząsteczki w danej chwili i jest funkcją współrzędnej normalnej drgania q, która opisuje przemieszczanie się wszystkich jąder atomów cząsteczki w czasie drgania wokół ich położenia równowagi. Biorąc pod uwagę dwuatomową cząsteczkę o jednej współrzędnej normalnej i zakładając, że wychylenia z położenia równowagi są bliskie zeru, rozwińmy polaryzowalność w szereg MacLaurina, otrzymujemy następujące wyrażenie: (4)
7 7 w przybliżeniu harmonicznym: bowiem współrzędna normalna zmienia się periodycznie w czasie zgodnie ze wzorem: gdzie: ν-częstość drgania normalnego Q -amplituda drgania Ostatecznie wyrażenie opisujące moment dipolowy indukowany w cząsteczce wykonującej drganie własne o częstości, na którą działa fala elektromagnetyczna o częstości ν przyjmuje postać: (5) (4)
8 8 W powyższym wzorze tkwi wytłumaczenie zjawiska Ramana. Składowa elektryczna promieniowania elektromagnetycznego oddziałuje z cząsteczką i indukuje w niej moment dipolowy. Drgający indukowany moment dipolowy staje się źródłem promieniowania o trzech częstościach: a) ν 0 -częstość maksimum pasma rozpraszania Rayleigha b) ν 0 -ν- częstość maksimum pasma stokesowskiego rozpraszania Ramana c) ν 0 +ν - częstość maksimum pasma antystokesowskiego rozpraszania Ramana W sposób opisowy można, więc powiedzieć, że gdy częstość ω o promieniowania padającego i rozproszonego są jednakowe - mówimy o zjawisku rozpraszania Rayleigha. Gdy foton pada na cząsteczkę, która znajduje się w podstawowym stanie elektronowym i podstawowym stanie wibracyjnym, a w wyniku rozproszenia światła cząsteczka powraca na wzbudzony poziom wibracyjny, to częstość fotonu wyemitowanego w wyniku rozproszenia wynosi ω o - ω vib, gdzie ω vib jest częstością modu wibracyjnego. Takie rozpraszanie nosi nazwę rozpraszania Ramana, a widmo odpowiadające częstościom ω o - ω vib składową stoksowską. Odwrotnie, gdy foton o częstości ω o oddziałuje z cząsteczką, która pierwotnie znajduje się we wzbudzonym stanie wibracyjnym, a po rozproszeniu fotonu powraca ona do podstawowego poziomu wibracyjnego, to częstość fotonu rozproszonego wynosi ω o +ω vib. Mówimy wtedy o składowej antystokesowskiej rozpraszania Ramana.
9 9 Omówione zjawiska rozpraszania zilustrowano na rysunku poniżej. Zazwyczaj mierzymy składową stokesowską, bo ma ona większe natężenie niż składowa antystokesowska. Sygnał Ramana jest 3-4 rzędy słabszy od rozpraszania Rayleigha. Poziomy wibracyjne wzbudzonego poziomu elektronowego Poziom wirtualny Poziomy wibracyjne podstawowego poziomu elektronowego
10 10 Z rysunku wynika więc, że spektroskopia Ramana, choć bada zjawisko rozpraszania, dostarcza informacji o własnościach wibracyjnych cząsteczek, podobnych do tych jakie otrzymujemy w podczerwieni (IR). Czym różnią się te techniki? Rozciągające symetryczne Rozciągające asymetryczne Nożycowe (zginające) Wahadłowe Wachlarzowe Skręcające Ilustracja różnych typów drgań
11 11 Spektroskopia IR i spektroskopia Ramana są metodami komplementarnymi Nieliniowa cząsteczka wykazuje 3N-6 drgań, niektóre z nich ujawniają się jako pasma aktywne w IR, niektóre zaś w widmie Ramana. Zależy to od symetrii cząsteczki i od symetrii drgania. Dla cząsteczek mających środek inwersji obowiązuje zasada wykluczania - drgania aktywne w IR, nie są aktywne w spektroskopii Ramana i odwrotnie. Np. drgania symetryczne CO 2 lub N 2 są niewidoczne w spektroskopii IR, podczas gdy w spektroskopii Ramana obserwujemy silne pasma odpowiadające tym drganiom. Spektroskopia Ramana wypełnia więc lukę w możliwościach spektroskopii IR. Dopiero silnie polarne molekuły jak np.: NaCl nie dają widma Ramana, ale za to ich widmo w IR jest dozwolone i silne.
12 12 Rozważmy zasadę komplementarności na przykładzie molekuły CO 2. Cząsteczka CO 2 nie ma trwałego momentu dipolowego, w czasie symetrycznego rozciągającego drgania ν1 położenie środków ciężkości ładunków nie zmienia się czyli nie zmienia się moment dipolowy, drganie ν1 jest w IR nieaktywne.
13 13 Rozważmy zasadę komplementarności na przykładzie molekuły CO 2. W czasie antysymetrycznego rozciągającego drgania ν3 położenie środka ciężkości ładunku dodatniego przemieszcza się w jedną stronę, a ładunku ujemnego w stronę przeciwną, powstaje oscylujący wokół zera moment dipolowy, drganie ν3 jest w IR aktywne.
14 14 Rozważmy zasadę komplementarności na przykładzie molekuły CO 2. W dwukrotnie zdegenerowanym drganiu zginającym ν2,4 środki ciężkości ładunków rozsuwają się periodycznie w kierunku prostopadłym do osi najwyższej symetrii i powstaje oscylujący wokół zera moment dipolowy prostopadły do osi molekuły, drganie ν2,4 jest w IR aktywne.
15 15 Rozważmy zasadę komplementarności na przykładzie molekuły CO 2. Polaryzowalność molekuły CO 2 zmienia się inaczej niż moment dipolowy. W drganiu ν1 polaryzowalność w jednym półokresie jest mniejsza, a w drugim większa niż w stanie równowagi. Funkcja α=f(q) jest wic funkcją monotoniczną i jej pochodna w punkcie równowagi jest różna od zera. Drganie ν1 jest aktywne w widmie Ramana. W przypadku pozostałych drgań: dla ν3 polaryzowalność w obu półokresach jest mniejsza, a dla ν2,4 większa niż w stanie równowagi. Drgania ν3 oraz ν2,4 są w widmie Ramana nieaktywne. 1 2, 3 q 4
16 16 Kiedy przejście ramanowskie jest zabronione? a) Polaryzowalność nie jest funkcją współrzędnej normalnej drgania (wiązania jonowe, NaCl, KCl) spektroskopowe kryterium polarności wiązania: jeżeli intensywności pasma w IR rośnie, a w widmie Ramana maleje, to odpowiednie wiązanie w molekule staje się bardziej spolaryzowane b) Polaryzowalność w trakcie drgania zmienia się tak, że w stanie równowagi pochodna polaryzowalności po współrzędnej normalnej drgania ma ekstremum
17 17 6I&feature=player_detailpage#t=6s m Literatura: Z. Kęcki, Podstawy spektroskopii molekularnej, PWN J. Sadlej, Spektroskopia molekularna, Wydawnictwa Naukowo-Techniczne Warszawa, 2002.
SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE
SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest
WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab.
WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. Halina Abramczyk POLITECHNIKA ŁÓDZKA Wydział Chemiczny
SPEKTROSKOPIA RAMANA. Laboratorium Laserowej Spektroskopii Molekularnej PŁ
SPEKTROSKOPIA RAMANA Laboratorium Laserowej Spektroskopii Molekularnej PŁ WIDMO OSCYLACYJNE Zręby atomowe w molekule wykonują oscylacje wokół położenia równowagi. Ruch ten można rozłożyć na 3n-6 w przypadku
Analiza instrumentalna Wykład nr 3
Analiza instrumentalna Wykład nr 3 KT2_2 brak zajęć lab. w dniu 18.10.2012 SPEKTROSKOPIA IR SPKTROSKOPIA RAMANA WIDMO OSCYLACYJNE Zręby atomowe w molekule wykonują oscylacje wokół położenia równowagi.
Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm)
SPEKTROSKOPIA W PODCZERWIENI Podczerwień bliska: 14300-4000 cm -1 (0,7-2,5 µm) Podczerwień właściwa: 4000-700 cm -1 (2,5-14,3 µm) Podczerwień daleka: 700-200 cm -1 (14,3-50 µm) WIELKOŚCI CHARAKTERYZUJĄCE
WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE.
1 WYKŁAD NR 3 OPIS DRGAŃ NORMALNYCH UJĘCIE KLASYCZNE I KWANTOWE. Współrzędne wewnętrzne 2 F=-fq q ξ i F i =-f ij x j U = 1 2 fq2 U = 1 2 ij f ij ξ i ξ j 3 Najczęściej stosowaną metodą obliczania drgań
WYKŁAD 5 Zastosowanie teorii grup w analizie widm oscylacyjnych
WYKŁAD 5 Zastosowanie teorii grup w analizie widm oscylacyjnych Prof. dr hab. Halina Abramczyk Dr inż. Beata Brożek-Płuska POLITECHNIKA ŁÓDZKA Wydział Chemiczny, Instytut Techniki Radiacyjnej Laboratorium
Spektroskopia w podczerwieni
Spektroskopia w podczerwieni Metody badań strukturalnych ciała stałego dr inż. Magdalena Król Co to jest spektroskopia? Spektroskopia jest to nauka zajmująca się oddziaływaniem fali elektromagnetycznej
Spektroskopia molekularna. Spektroskopia w podczerwieni
Spektroskopia molekularna Ćwiczenie nr 4 Spektroskopia w podczerwieni Spektroskopia w podczerwieni (IR) jest spektroskopią absorpcyjną, która polega na pomiarach promieniowania elektromagnetycznego pochłanianego
SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa przedmiotu SYLABUS A. Informacje ogólne
SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów
dr hab. inż. Beata Brożek-Płuska SPEKTROSKOPIA RAMANA Laboratorium Laserowej Spektroskopii Molekularnej PŁ
dr hab. inż. Beata Brożek-Płuska SPEKTROSKOPIA RAMANA Laboratorium Laserowej Spektroskopii Molekularnej PŁ WIDMO OSCYLACYJNE Zręby atomowe w molekule wykonują oscylacje wokół położenia równowagi. Ruch
ZASADY ZALICZENIA PRZEDMIOTU MBS
ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll
Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego
Paweł Szroeder Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Wykład XII Oddziaływanie promieniowania z materią w kontekście spektroskopii oscylacyjnej Absorpcja i rozpraszanie
Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności
Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Spektroskopia, a spektrometria Spektroskopia nauka o powstawaniu
Wykład 1A Przegląd optycznych metod spektroskopowych
Wykład 1A Przegląd optycznych metod spektroskopowych Porównanie metod spektroskopii NMR, EPR, spektroskopii mikrofalowej, Ramana,IR, ultrafioletu i promieniowania X. Reguły wyboru dla róznych typów spektroskopii.
Optyczna spektroskopia oscylacyjna. w badaniach powierzchni
Optyczna spektroskopia oscylacyjna w badaniach powierzchni Zalety oscylacyjnej spektroskopii optycznej uŝycie fotonów jako cząsteczek wzbudzających i rejestrowanych nie wymaga uŝycia próŝni (moŝliwość
Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego
Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego W5. Energia molekuł Przemieszczanie się całych molekuł w przestrzeni - Ruch translacyjny - Odbywa się w fazie gazowej i ciekłej, w fazie stałej
Spektroskopia Ramana
Spektroskopia Ramana Źródło światła Próbka Promieniowanie rozproszone Rozpraszanie światła Rozpraszanie światła (fal elektromagnetycznych) to zjawisko oddziaływania światła z materią w wyniku którego następuje
dr inż. Beata Brożek-Pluska SERS La boratorium La serowej
dr inż. Beata Brożek-Pluska La boratorium La serowej Spektroskopii Molekularnej PŁ Powierzchniowo wzmocniona sp ektroskopia Ramana (Surface Enhanced Raman Spectroscopy) Cząsteczki zaadsorbowane na chropowatych
Zastosowanie spektroskopii w podczerwieni w jakościowej i ilościowej analizie organicznej
Zastosowanie spektroskopii w podczerwieni w jakościowej i ilościowej analizie organicznej dr Alina Dubis Zakład Chemii Produktów Naturalnych Instytut Chemii UwB Tematyka Spektroskopia - podział i zastosowanie
I. PROMIENIOWANIE CIEPLNE
I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.
Spektroskopia ramanowska w badaniach powierzchni
Spektroskopia ramanowska w badaniach powierzchni z Efekt Ramana (1922, CV Raman) I, ν próbka y Chandra Shekhara Venketa Raman x I 0, ν 0 Monochromatyczne promieniowanie o częstości ν 0 ulega rozproszeniu
Spektroskopia Ramana
Spektroskopia Ramana Źródło światła Próbka Promieniowanie rozproszone Rozpraszanie światła Rozpraszanie światła (fal elektromagnetycznych) to zjawisko oddziaływania światła z materią w wyniku którego następuje
spektroskopia IR i Ramana
spektroskopia IR i Ramana oscylacje (wibracje) 3N-6 lub 3N-5 drgań normalnych nie wszystkie drgania obserwuje się w IR - nieaktywne w IR gdy nie zmienia się moment dipolowy - pasma niektórych drgań mają
Spektroskopowe metody identyfikacji związków organicznych
Spektroskopowe metody identyfikacji związków organicznych Wstęp Spektroskopia jest metodą analityczną zajmującą się analizą widm powstających w wyniku oddziaływania promieniowania elektromagnetycznego
Spektroskopia. Spotkanie pierwsze. Prowadzący: Dr Barbara Gil
Spektroskopia Spotkanie pierwsze Prowadzący: Dr Barbara Gil Temat rozwaŝań Spektroskopia nauka o powstawaniu i interpretacji widm powstających w wyniku oddziaływań wszelkich rodzajów promieniowania na
Spektroskopia Ramana drgania i widmo rozpraszania
Spektroskopia Ramana drgania i widmo rozpraszania drian Kamiński, Instytut Fizyki UM I. Czym jest spektroskopia ramanowska Spektroskopia Ramana jest istotną metodą badania widm rotacyjnych i oscylacyjnych
Przejścia promieniste
Przejście promieniste proces rekombinacji elektronu i dziury (przejście ze stanu o większej energii do stanu o energii mniejszej), w wyniku którego następuje emisja promieniowania. E Długość wyemitowanej
Diagnostyka plazmy - spektroskopia molekularna. Ewa Pawelec wykład dla pracowni specjalistycznej
Diagnostyka plazmy - spektroskopia molekularna Ewa Pawelec wykład dla pracowni specjalistycznej Plazma Różne rodzaje plazmy: http://www.ipp.cas.cz/mi/index.html http://www.pro-fusiononline.com/welding/plasma.htm
PODSTAWY METODY SPEKTROSKOPI W PODCZERWIENI ABSORPCJA, EMISJA
PODSTAWY METODY SPEKTROSKOPI W PODCZERWIENI ABSORPCJA, EMISJA Materia może oddziaływać z promieniowaniem poprzez absorpcję i emisję. Procesy te polegają na pochłonięciu lub wyemitowaniu fotonu przez cząstkę
Przejścia optyczne w strukturach niskowymiarowych
Współczynnik absorpcji w układzie dwuwymiarowym można opisać wyrażeniem: E E gdzie i oraz f są energiami stanu początkowego i końcowego elektronu, zapełnienie tych stanów opisane jest funkcją rozkładu
Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk
Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk fizycznych tego rodzaju należą zjawiska odbicia i załamania
Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA)
Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Promieniowaniem X nazywa się promieniowanie elektromagnetyczne o długości fali od około
że w wyniku pomiaru zmiennej dynamicznej A, której odpowiada operator αˆ otrzymana zostanie wartość 2.41?
TEST. Ortogonalne i znormalizowane funkcje f i f są funkcjami własnymi operatora αˆ, przy czym: α ˆ f =. 05 f i α ˆ f =. 4f. Stan pewnej cząstki opisuje 3 znormalizowana funkcja falowa Ψ = f + f. Jakie
Zastosowanie spektroskopii w podczerwieni w analizie jakościowej i ilościowej. dr Alina Dubis Zakład Chemii Produktów Naturalnych Instytut Chemii UwB
Zastosowanie spektroskopii w podczerwieni w analizie jakościowej i ilościowej dr Alina Dubis Zakład Chemii Produktów Naturalnych Instytut Chemii UwB Tematyka Spektroskopia - podział i zastosowanie Promieniowanie
PRACOWNIA PODSTAW SPEKTROSKOPII MOLEKULARNEJ
PRACOWNIA PODSTAW SPEKTROSKOPII MOLEKULARNEJ Kierowniczka pracowni: dr hab. Magdalena Pecul-Kudelska, (pok. 417), e-mail mpecul@chem.uw.edu.pl, tel 0228220211 wew 501; Spis ćwiczeń i osoby prowadzące 1.
Ćwiczenie 5 Protonowanie wody. Różnice w widmie wibracyjnym między H 3 O + i H 2 O. Wyznaczanie widma Ramana wody
Ćwiczenie 5 Protonowanie wody. Różnice w widmie wibracyjnym między H 3 O + i H 2 O Wyznaczanie widma Ramana wody 1. Wstęp teoretyczny 2. Część doświadczalna. Opis budowy aparatury badawczej i technika
Ćwiczenie 5. Wyznaczanie widm IR i Ramana formaldehydu oraz obliczenia za pomocą pakietu Gaussian 03W
Ćwiczenie 5 Wyznaczanie widm IR i Ramana formaldehydu oraz obliczenia za pomocą pakietu Gaussian 03W Co powinieneś umieć przed zajęciami Jak obliczyć energię oscylatora harmonicznego, klasycznego i kwantowego?
Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.
Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx
c) prawdopodobieństwo znalezienia cząstki między x=1.0 a x=1.5 jest równe
TEST 1. Ortogonalne i znormalizowane funkcje f 1 i f są funkcjami własnymi operatora, przy czym: f 1 =1.05 f 1 i f =.41 f. Stan pewnej cząstki opisuje znormalizowana funkcja 1 3 falowa = f1 f. Jakie jest
n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24)
n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A 1 2 / B hν exp( ) 1 kt (24) Powyższe równanie określające gęstość widmową energii promieniowania
Jak analizować widmo IR?
Jak analizować widmo IR? Literatura: W. Zieliński, A. Rajca, Metody spektroskopowe i ich zastosowanie do identyfikacji związków organicznych. WNT. R. M. Silverstein, F. X. Webster, D. J. Kiemle, Spektroskopowe
m 1, m 2 - masy atomów tworzących wiązanie. Im
Dr inż. Grażyna Żukowska Wykorzystanie metod spektroskopii oscylacyjnej do analizy materiałów organicznych i nieorganicznych 1. Informacje podstawowe Spektroskopia Ramana i spektroskopia w podczerwieni
Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła
W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy
Widmo promieniowania
Widmo promieniowania Spektroskopia Każde ciało wysyła promieniowanie. Promieniowanie to jest składa się z wiązek o różnych długościach fal. Jeśli wiązka światła pada na pryzmat, ulega ono rozszczepieniu,
Model wiązania kowalencyjnego cząsteczka H 2
Model wiązania kowalencyjnego cząsteczka H 2 + Współrzędne elektronu i protonów Orbitale wiążący i antywiążący otrzymane jako kombinacje orbitali atomowych Orbital wiążący duża gęstość ładunku między jądrami
Podstawy fizyki kwantowej
Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa
PRACOWNIA CHEMII. Wygaszanie fluorescencji (Fiz4)
PRACOWNIA CHEMII Ćwiczenia laboratoryjne dla studentów II roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Projektowanie molekularne i bioinformatyka Wygaszanie fluorescencji
LASERY I ICH ZASTOSOWANIE
LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 3 Temat: Efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą modulowania zmiany polaryzacji światła oraz
Wykład Budowa atomu 1
Wykład 30. 11. 2016 Budowa atomu 1 O atomach Trochę historii i wprowadzenie w temat Promieniowanie i widma Doświadczenie Rutherforda i odkrycie jądra atomowego Model atomu wodoru Bohra sukcesy i ograniczenia
Badanie dynamiki rekombinacji ekscytonów w zawiesinach półprzewodnikowych kropek kwantowych PbS
Badanie dynamiki rekombinacji ekscytonów w zawiesinach półprzewodnikowych kropek kwantowych PbS 1. Absorpcja i emisja światła w układzie dwupoziomowym. Absorpcję światła można opisać jako proces, w którym
PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR
PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR WSTĘP Metody spektroskopowe Spektroskopia bada i teoretycznie wyjaśnia oddziaływania pomiędzy materią będącą zbiorowiskiem
Kwantowa natura promieniowania
Kwantowa natura promieniowania Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało, które absorbuje całe padające na nie promieniowanie bez względu na częstotliwość. Promieniowanie ciała
Spektroskopia Analiza rotacyjna widma cząsteczki N 2. Cel ćwiczenia: Wyznaczenie stałych rotacyjnych i odległości między atomami w cząsteczce N 2
Spektroskopia Analiza rotacyjna widma cząsteczki N 2 Cel ćwiczenia: Wyznaczenie stałych rotacyjnych i odległości między atomami w cząsteczce N 2 w stanach B 2 v=0 oraz X 2 v=0. System B 2 u - X 2 g cząsteczki
Akademia Górniczo-Hutnicza Wydział Inżynierii Materiałowej i Ceramiki Katedra Chemii Krzemianów i Związków Wielkocząsteczkowych
Akademia Górniczo-Hutnicza Wydział nżynierii Materiałowej i Ceramiki Katedra Chemii Krzemianów i Związków Wielkocząsteczkowych nstrukcja do ćwiczeń laboratoryjnych Kierunek studiów: Technologia chemiczna
Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR
Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR Szczególnym i bardzo charakterystycznym rodzajem oddziaływań międzycząsteczkowych jest wiązanie wodorowe. Powstaje ono między molekułami,
Fizykochemiczne metody w kryminalistyce. Wykład 7
Fizykochemiczne metody w kryminalistyce Wykład 7 Stosowane metody badawcze: 1. Klasyczna metoda analityczna jakościowa i ilościowa 2. badania rentgenostrukturalne 3. Badania spektroskopowe 4. Metody chromatograficzne
NOWOCZESNE TECHNIKI BADAWCZE W INŻYNIERII MATERIAŁOWEJ. Beata Grabowska, pok. 84A, Ip
NOWOCZESNE TECHNIKI BADAWCZE W INŻYNIERII MATERIAŁOWEJ Beata Grabowska, pok. 84A, Ip http://home.agh.edu.pl/~graboska/ promieniowanie elektromagnetyczne promieniowanie korpuskularne Wybór metody pomiaru
Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie
Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Streszczenie Spektroskopia magnetycznego rezonansu jądrowego jest jedną z technik spektroskopii absorpcyjnej mającej zastosowanie w chemii,
ZJAWISKA KWANTOWO-OPTYCZNE
ZJAWISKA KWANTOWO-OPTYCZNE Źródła światła Prawo promieniowania Kirchhoffa Ciało doskonale czarne Promieniowanie ciała doskonale czarnego Prawo promieniowania Plancka Prawo Stefana-Boltzmanna Prawo przesunięć
Stany skupienia materii
Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -słabo ściśliwe - uporządkowanie bliskiego zasięgu -tworzą powierzchnię
Początek XX wieku. Dualizm korpuskularno - falowy
Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.
Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale
Spektroskopia w podczerwieni
Spektroskopia w podczerwieni Podstawy teoretyczne spektroskopii w podczerwieni Podstawowe pojęcia związane ze spektroskopią oscylacyjną Interpretacja widm Budowa spektrometru FTIR Podstawowe techniki pomiarowe
Wykład 14. Termodynamika gazu fotnonowego
Wykład 14 Termodynamika gazu fotnonowego dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 16 stycznia 217 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej
Metody badań spektroskopowych
Metody badań spektroskopowych Program wykładu Wstęp A. Spektroskopia optyczna 1. Podstawy spektroskopii optycznej 1.1 Promieniowanie elektromagnetyczne 1.2 Kwantowanie energii 1.3 Emisja i absorpcja promieniowania
Spektroskopia modulacyjna
Spektroskopia modulacyjna pozwala na otrzymanie energii przejść optycznych w strukturze z bardzo dużą dokładnością. Charakteryzuje się również wysoką czułością, co pozwala na obserwację słabych przejść,
Emisja spontaniczna i wymuszona
Fluorescencja Plan wykładu 1) Absorpcja, emisja wymuszona i emisja spontaniczna 2) Przesunięcie Stokesa 3) Prawo lustrzanego odbicia 4) Znaczniki fluorescencyjne 5) Fotowybielanie Emisja spontaniczna i
Wykład 6 Spektroskopia oscylacyjna. Model oscylatora harmonicznego i anharmonicznego cząsteczki dwuatomowej
Wykład 6 Spektroskopia oscylacyjna Model oscylatora armonicznego i anarmonicznego cząsteczki dwuatomowej W6. Spektroskopia oscylacyjna Widmo oscylacyjne cząsteczki CO w azie gazowej O czym nas inormuje
Elektronowa struktura atomu
Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii
Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy
T_atom-All 1 Nazwisko i imię klasa Stałe : h=6,626 10 34 Js h= 4,14 10 15 evs 1eV=1.60217657 10-19 J Zaznacz zjawiska świadczące o falowej naturze światła a) zjawisko fotoelektryczne b) interferencja c)
S. Baran - Podstawy fizyki materii skondensowanej Fonony. Fonony
Fonony Drgania płaszczyzn sieciowych podłużne poprzeczne źródło: Ch. Kittel Wstęp do fizyki..., rozdz. 4, rys. 2, 3, str. 118 Drgania płaszczyzn sieciowych Do opisu drgań sieci krystalicznej wystarczą
Powierzchniowo wzmocniona spektroskopia Ramana SERS. (Surface Enhanced Raman Spectroscopy)
Powierzchniowo wzmocniona spektroskopia Ramana SERS (Surface Enhanced Raman Spectroscopy) Cząsteczki zaadsorbowane na chropowatych powierzchniach niektórych metali (Ag, Au, Cu) dają bardzo intensywny sygnał
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE
LASERY I ICH ZASTOSOWANIE W MEDYCYNIE Laboratorium Instrukcja do ćwiczenia nr 4 Temat: Modulacja światła laserowego: efekt magnetooptyczny 5.1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy
Rozpraszanie światła
Rozpraszanie światła Proces rozpraszania Ośrodek zawiera molekuły lub atomy ośrodka i cząstki obce (kurz, krople wody, itp.). Wymiar molekuł ośrodka wynosi około 0.1 nm, podczas gdy obce cząstki to zbiory
Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy
Oddziaływanie promieniowania X z materią Podstawowe mechanizmy Promieniowanie od oscylującego elektronu Rozpraszanie Thomsona Dyspersja podejście klasyczne Fala padająca Wymuszony, tłumiony oscylator harmoniczny
Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM
Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM Światło słoneczne jest mieszaniną fal o różnej długości i różnego natężenia. Tylko część promieniowania elektromagnetycznego
Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR
Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR 1. Wstęp Związki karbonylowe zawierające w położeniu co najmniej jeden atom wodoru mogą ulegać enolizacji przez przesunięcie protonu
Spektroskopia Ramanowska
Spektroskopia Ramanowska Część A 1.Krótki wstęp historyczny 2.Oddziaływanie światła z osrodkiem materialnym (rozpraszanie światła) 3.Opis klasyczny zjawiska Ramana 4. Widmo ramanowskie. 5. Opis półklasyczny
Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x.
Równanie falowe Schrödingera h Ψ( x, t) + V( x, t) Ψ( x, t) W jednym wymiarze ( ) ( ) gdy V x, t = V x x Ψ = ih t Gdy V(x,t)=V =const cząstka swobodna, na którą nie działa siła Fala biegnąca Ψ s ( x, t)
2. Całkowita liczba modów podłużnych. Dobroć rezonatora. Związek między szerokością linii emisji wymuszonej a dobrocią rezonatora
. Całkowita liczba modów podłużnych. Dobroć rezonatora. Związek między szerokością linii emisji wymuszonej a dobrocią rezonatora Gdy na ośrodek czynny, który nie znajduje się w rezonatorze optycznym, pada
Natomiast dowolny ruch chaotyczny, np. ruchy Browna, czy wszelkie postacie ruchu postępowego są przykładami ruchu nie będącego ruchem drgającym.
Wstęp Z wszelkiego radzaju drganiami mamy doczyniania w życiu codziennym. Na przykład codziennie korzystamy z prądu. Gdy pobieramy go z sieci miejskiej natężenie prądu zmienia się periodycznie z czasem.
Możliwości wykorzystania spektroskopii ramanowskiej w branży naftowej
NAFTA-GAZ listopad 2012 ROK LXVIII Sylwia Jędrychowska Instytut Nafty i Gazu, Kraków Możliwości wykorzystania spektroskopii ramanowskiej w branży naftowej Część I. Podstawy teoretyczne spektroskopii ramanowskiej
IV. Transmisja. /~bezet
Światłowody IV. Transmisja BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet 1. Tłumienność 10 7 10 6 Tłumienność [db/km] 10 5 10 4 10 3 10 2 10 SiO 2 Tłumienność szkła w latach (za A.
SF5. Spektroskopia absorpcyjna i emisyjna cząsteczek organicznych
SF5 Spektroskopia absorpcyjna i emisyjna cząsteczek organicznych Każda cząsteczka ma charakterystyczny dla siebie układ poziomów energetycznych elektronowych, oscylacyjnych i rotacyjnych, przy czym tych
Uk lady modelowe II - oscylator
Wyk lad 4 Uk lady modelowe II - oscylator Model Prawo Hooke a F = m d 2 x = kx = dv dt2 dx Potencja l Równanie ruchu V = 1 2 kx2 d 2 x dt 2 + k m x = 0 Obraz klasyczny Rozwiazania k x = A sin t = A sin
Rozdział 7 Molekuły. 7.1: Jak się formują molekuły? 7.2: Wiązania molekularne 7.3: Rotacje 7.4: Wibracje 7.5: Spektra 7.6: Złożone płaskie molekuły
Rozdział 7 Molekuły 7.1: Jak się formują molekuły? 7.2: Wiązania molekularne 7.3: Rotacje 7.4: Wibracje 7.5: Spektra 7.6: Złożone płaskie molekuły Johannes Diderik van der Waals (1837 1923) Nie, ta sztuczka
Ruch drgający. Ruch harmoniczny prosty, tłumiony i wymuszony
Ruch drgający Ruch harmoniczny prosty, tłumiony i wymuszony Ruchem drgającym nazywamy ruch ciała zachodzący wokół stałego położenia równowagi. Ruchy drgające dzielimy na ruchy: okresowe, nieokresowe. Ruch
ANALITYKA W KONTROLI JAKOŚCI
ANALITYKA W KONTROLI JAKOŚCI ANALIZA ŚLADÓW METODA ICP-OES Optyczna spektroskopia emisyjna ze wzbudzeniem w indukcyjnie sprzężonej plazmie WYKŁAD 4 Rodzaje widm i mechanizm ich powstania PODSTAWY SPEKTROSKOPII
Wykład Budowa atomu 3
Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n
Podstawy fizyki wykład 7
Podstawy fizyki wykład 7 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Drgania Drgania i fale Drgania harmoniczne Siła sprężysta Energia drgań Składanie drgań Drgania tłumione i wymuszone Fale
PDF stworzony przez wersję demonstracyjną pdffactory
Promieniowanie elektromagnetyczne (fala elektromagnetyczna) rozchodzące się w przestrzeni zaburzenie pola elektromagnetycznego. Zaburzenie to ma charakter fali poprzecznej, w której składowa elektryczna
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu
Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających
Spis treści. Przedmowa redaktora do wydania czwartego 11
Mechanika kwantowa : teoria nierelatywistyczna / Lew D. Landau, Jewgienij M. Lifszyc ; z jęz. ros. tł. Ludwik Dobrzyński, Andrzej Pindor. - Wyd. 3. Warszawa, 2012 Spis treści Przedmowa redaktora do wydania
p.n.e. Demokryt z Abdery. Wszystko jest zbudowane z niewidzialnych cząstek - atomów (atomos ->niepodzielny)
O atomie 460-370 p.n.e. Demokryt z Abdery Wszystko jest zbudowane z niewidzialnych cząstek - atomów (atomos ->niepodzielny) 1808 John Dalton teoria atomistyczna 1. Pierwiastki składają się z małych, niepodzielnych
Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.
1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu
PRACOWNIA PODSTAW BIOFIZYKI
PRACOWNIA PODSTAW BIOFIZYKI Ćwiczenia laboratoryjne dla studentów III roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Badanie wygaszania fluorescencji SPQ przez jony chloru
i elektronów w czasteczkach (laboratoryjnym) operator Hamiltona dla czasteczki dwuatomowej (jadra 2M b a i b; m -masa elektronu e 2 r ij
Notatki do wyk ladu IX Rozdzielenie ruchu jader i elektronów w czasteczkach W dowolnym uk ladzie wspó lrzednych (laboratoryjnym) operator Hamiltona dla czasteczki dwuatomowej (jadra a i b)ma postać: Ĥ