Fizyka powierzchni 6-7/7. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Wielkość: px
Rozpocząć pokaz od strony:

Download "Fizyka powierzchni 6-7/7. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska"

Transkrypt

1 Fizyka powierzchni 6-7/7 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska

2 Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni ciał stałych Termodynamika równowagowa i statystyczna Adsorpcja, nukleacja i wzrost Fonony powierzchniowe Własności elektronowe Techniki badania powierzchni quasi-elastyczne rozpraszanie (LEED) nieelastyczne rozpraszanie (AES) mikroskopia elektronowa (SEM) skaningowa tunelowa mikroskopia (STM) metody optyczne (spektr. Ramana)

3 Techniki badania powierzchni Hans Luth, Solid Surfaces, Interfaces and Thin Films, Springer-Verlag Berlin Heidelberg, M-C. Desjonqeres and D. Spanjaard, Concepts in surface physics, Springer, Anna Szaynok, Stanisław Kuźmiński, Podstawy fizyki powierzchni półprzewodników, Wydawnictwa Naukowo-Techniczne, Warszawa Dr Dorota Jamróz (UJ) - wykłady

4 Rozpraszanie Eksperymenty polegające na rozpraszaniu są źródłem wielu informacji o badanej powierzchni i warstwie przypowierzchniowej tak więc zrozumienie procesów odpowiedzialnych za rozpraszanie staje się bardzo istotne. Rozpraszanie elastyczne informacje nt. ustawienia atomów w warstwach przypowierzchniowych. Rozpraszanie nieelastyczne (energia jest transportowana do lub z warstw przypowierzchniowych) informacje o możliwych wzbudzeniach na powierzchni (międzypowierzchni), tak elektronowych jak i fononowych. W ogólności wszystkie rodzaje cząstek (promienie e-m, elektrony, atomy, cząsteczki, jony czy neutrony) mogą być wykorzystane do próbkowania. Jedynym ograniczeniem jest rozdzielczość /cm 2 do /cm 3 właściwymi wydają się więc techniki odbiciowe cząstki nie powinny zbytnio penetrować objętości

5 - silne oddziaływanie głównie z elektronami walencyjnymi duża komplikacja w opisie zjawiska teoria dynamiczna (dynamic theory) - przybliżenie pojedyncze procesy rozpraszania teoria kinematyczna (kinematic theory) Rozpraszanie Próbkowanie atomy, jony, cząsteczki i elektrony o małej energii. tylko atomy na powierzchni penetracja na kilka A

6 Teoria kinetyczna Opisuje tak zjawiska elastyczna jak i nieelastyczne. Nie wyjaśnia, np., intensywności otrzymanego widma LEED. Ograniczmy się do próbkowania elektronami. Low Energy Electron Diffraction High Energy Electron Diffraction Reflection HEED Inelastic Reflected LEED Auger Electron Spectroscopy Electron Induced Ion Desorption Electron Stimulated Surface Mass Spect. Electron Induced Desorption Surface Desorbed Molecular Spectroscopy Characteristic Isochromat Spectroscopy Appearance Potential Spectroscopy

7 Teoria kinetyczna Dyfrakcja na powierzchni idealnej 1 atom/kom. elementarną - każda cząstka (elektron) rozpraszana jest przez 1 atom - interferują cząstki rozproszone na dwóch atomach odległych o - warunek interferencji konstruktywnej - doprowadza do warunku - z zasady zachowania energii (k), dostajemy

8 Teoria kinetyczna Dyfrakcja na powierzchni idealnej Każdej ugiętej fali można przypisać odpowiednią wartość. Jeśli jest rzeczywisty (dla skończonej liczby ), jest falą płaską. Jeśli jest urojony będzie zanikać. I tak ogólne rozwiązanie będzie postaci - co daje wkład w postaci punktów w obrazie dyfrakcyjnym

9 Teoria kinetyczna Dyfrakcja na powierzchni idealnej - konstrukcja Ewalda - punkty na sferze o promieniu OI spełniają zasadę zachowania energii - węzły sieci odwrotnej pręty (rods) - punkty przecięcia odpowiadają możliwym wartościom wektora k

10 Teoria kinetyczna Dyfrakcja na powierzchni idealnej - konstrukcja Ewalda - wzajemne odległości pomiędzy punktami i ich symetria dają informacje o strukturze powierzchni

11 Teoria kinetyczna Dyfrakcja na powierzchni idealnej - uogólniając warunek Laue go na przypadki, gdy na komórkę przypada więcej niż jeden atom lub/i gdy występuje wielokrotne rozpraszanie, to - obraz dyfrakcyjny może nie zależeć od ilości atomów w komórce elementarnej (ew. różnice w intensywności poszczególnych punktów) - tak więc nie możemy określić jednoznacznie położeń atomowych - jest to możliwe jedynie poprzez porównanie intensywności punktów zmierzonych i obliczonych na podstawie określonych położeń atomów w komórce elementarnej

12 Teoria kinetyczna Wpływ kolejnych warstw atomowych

13 Teoria kinetyczna Wpływ kolejnych warstw atomowych - przesunięcie maksimów elektron wewnątrz materiału doświadcza dod. potencjału (fala mu odpowiadająca ma inną długość) - obecność dodatkowych pików wymaga analizy na podstawie teorii dynamicznej

14 Dyfrakcja elektronów - Hipoteza de Broglie a została potwierdzona w Bell Labs w 1927, kiedy Clinton Davisson and Lester Germer skierowali wiązkę elektronów o niskiej energii na krystaliczny nikiel i zaobserwowali kątową zależność intensywności elektronów wstecznie rozproszonych widmo dyfrakcyjne.

15 LEED - Low Energy Electron Diffraction (LEED) dyfrakcja elektronów o niskiej energii. - wymaga UHV, - detekcja obecnie CCD, - odpowiednie przygotowanie powierzchni. - Ze względu na powyższe technika rozwijana od lat 60-tych. - Teoria kinematyczna niewystarczająca nie daje informacji o strukturze powierzchni, wiązaniach i adsorption sites. - Dynamiczna teoria dyfrakcji elektronów (wielokrotne rozpraszanie) opracowana w latach 60-tych dokładne wyniki eksperymentalne.

16 Elementy aparatury LEED: - działo elektronowe, LEED - hemisferyczny ekran fluorescencyjny do bezpośredniej obserwacji obrazu dyfrakcyjnego, - sputtering gun czyszczenie powierzchni, - system AES określanie czystości powierzchni.

17 Działo elektronowe LEED - z katody, pod napięciem V, emitowane są monochromatyczne (o tej samej energii) elektrony - elektrony są przyspieszane i skupiane do wiązki o średnicy 0.1 to 0.5 mm Detektor koncentrycznie umieszczonych siatek (do wyłapywania rozproszonych nieelastycznie elektronów) i ekran fosforowy (lub inny detektor),

18 Czułość LEED - wynika z silnego oddziaływania elektronów o niskiej energii i atomami ciała stałego, - w czasie penetracji kryształu, elektrony pierwotne, tracą energię kinetyczną (nieelastyczne procesy jak fonony, plazmony i wzbudzenia elektronowe) - zanik intensywności wiązki pierwotnej w kierunku propagacji, można zapisać jako: - gdzie d jest głębokością wiązki w materiale i jest to nieelastyczna średnia droga swobodna (odległość jaką elektron przebywa tracąc intensywność o czynnik 1/e. - rozpraszanie (i ) zależy od energii i nie zależy od materiału - dla elektronów o niskiej energii ( ev) nieelastyczna średnia droga swobodna ma wartość 5-10 Å, - tylko kilka warstw atomowych jest próbkowanych.

19 Superstruktury LEED - sieć kubiczna (100) i jej obraz LEED - superstruktura (2x1) na poprzedniej dodatkowe plamki w obrazie dykrakcyjnym

20 LEED Superstruktury (4x2) c(4x2)

21 Domeny LEED - złożenie ortogonalnych domen (2x1) i (1x2) na sieci kwadratowej, - symetria w przestrzeni rzeczywistej jest dwukrotna a obraz dyfrakcyjny wykazuje symetrię czterokrotną u (001)

22 LEED Domeny Au (001)

23 LEED Przykłady

24 Teoria dynamiczna LEED - Zwykły obraz dyfrakcyjny LEED daje informacje jakościowe o periodyczności powierzchni (rozmiarze powierzchniowej komórki elementarnej). - Nie dostajemy informacji o ułożeniu atomów, czy też rekonstrukcji powierzchni. - Efekty związane z wielokrotnym rozpraszaniem można wytłumaczyć korzystając z teorii dynamicznej badając zależność intensywności plamek dyfrakcyjnych w funkcji energii padających elektronów widma I-V.

25 Teoria dynamiczna LEED Wykorzystywane są dwa podejścia: 1. rozwiązanie r. Schroedingera dla pół-nieskończonej sieci używając funkcji Blocha spełniających warunki graniczne zszywa się funkcje Blocha z funkcjami falowymi padających i odbitych elektronów 2. tylko 2D okresowość powierzchni jest brana pod uwagę uwzględniany jest wpływ kolejnych warstw atomowych na rozwiązania r. Schroedingera

26 Teoria dynamiczna LEED

27 Teoria dynamiczna LEED Policzone intensywności dyfrakcyjne dla: pojedynczego atomu dwóch atomów odległych o a N atomów odległych o a kilku grup po N atomów odległych o a kilku różnych grup atomów odległych o a N atomów rozmieszczonych losowo w 2N miejscach odległych o a

28 Teoria dynamiczna LEED - Miernikiem zgodności pomiędzy eksperymentem a obliczeniami jest tzw. współczynnik wiarygodności R (reliability- lub R- factor). - Najczęściej używana jest definicja Pendry ego. p - dla R p < 0.2 dobra zgodność, - dla R p ok 0.3 średnia zgodność, - dla R p pow 0.5 mała zgodność

29 Teoria dynamiczna LEED

30 Teoria dynamiczna LEED Al (111)

31 LEED

32 Rozpraszanie nieelastyczne - zwykle - konsekwencja 2D translacyjnej symetrii, - gdy w rozpraszaniu biorą udział nieregularnie rozłożone centra (zaadsorbowane atomy, defekty) wtedy tylko pierwsze jest prawdziwe, - energia i wektor mogą zostać przekazane do kolektywnych wzbudzeń powierzchniowych (fonony, plazmony) do elektronów w pasmie przewodnictwa lub elektronów wzbudzonych ze stanów obsadzonych do pustych, - dla rozpraszania z udziałem elektronów

33 Rozpraszanie nieelastyczne

34 AES Spektroskopia elektronów Augera Auger Electron Spectroscopy (AES) - kontrola czystości powierzchni w UHV, - skład chemiczny powierzchni, - profil głębokościowy koncentracji wybranych pierwiastków. - Spektroskopia elektronów wtórnych. - Typowa głębokość próbkowania, 1-3 nm.

35 AES

36 Notacja AES

37 AES - możliwa weryfikacja poprzez XPS, - jednak jest różnica między procesem Augera a fotoemisją ze względu na generację dodatkowej dziury niezbędny jest człon korekcyjny DE, - Z jest liczbą atomową pierwiastka badanego, - poprawka zwykle jest mała i zależy od wzrostu energii wiązania elektronu L 2, gdy brak jest elektronu L 1 i odwrotnie, - można oszacować średnią poprawkę: - więc

38 AES Przykład KL 1 L 2 dla Fe (Z = 26) - zmierzona wartość - energie poziomów z XPS: - poprawka (dla Co, Z = 27) - po obliczeniach dostajemy, czyli wartość bliską eksperymentalnej

39 AES

40 AES Względne wydajności procesów emisji elektronu Augera i fluorescencji promieniowania rentgenowskiego dla dziury 1s

41 AES - skomplikowany proces, lecz najważniejsze jest oddziaływanie pomiędzy elektronem spadającym na poziom korowy (wypełniającym wolne miejsce po wybitym elektronie) i elektronem wyemitowanym jako elektron Auger, - ta wymiana energii jest powodowana głównie poprzez oddziaływania Coulombowskie, - prawdopodobieństwo przejścia Auger (KLL) można zapisać jako - gdzie jest stanem początkowym opisanym przez dwie jednoelektronowe funkcje 2s i 2p, - stan końcowy obejmuje elektron 1 w jego stanie 1s i elektron 2 jako swobodny elektron o wektorze falowym k, - w przeciwieństwie do przejść promienistych, prawd. Auger nie zależy od Z, - nie podlega też dipolowym regułom wyboru (jak przejścia optyczne), np. przejście KL 1 L 1 jest zabronione optycznie.

42 AES Układ pomiarowy 2-5keV CMA

43 Przykłady AES

44 Przykłady AES

45 Przykłady AES

46 Przykłady AES

47 Spektroskopia Ramana Rozpraszanie - Fotony mogą być zaabsorbowane i wyemitowane. - Mogą być także rozproszone (1 na 10 7 fotonów). - Rozpraszanie może być: - elastyczne i nie zmieniać stanu cząsteczki (Rayleigh Scattering), - nieelastyczne i zmieniać stan kwantowy cząsteczki (Raman Scattering)

48 Spektroskopia Ramana Rozpraszanie Rayleigh a Dipolowe centrum rozpraszające << l rozprasza z intensywnością - niebo jest niebieskie, - zachód Słońca jest czerwony.

49 Spektroskopia Ramana Rozpraszanie Ramana - Pasmo stokesowskie - gdy cząsteczka po oddziaływaniu z promieniowaniem przenosi się na wyższy poziom oscylacyjny i rozproszony foton ma energię mniejszą o różnicę energii poziomów oscylacyjnych hν. - Pasmo antystokesowskie - jeśli przed oddziaływaniem z promieniowaniem molekuła znajdowała się na wzbudzonym poziomie oscylacyjnym, to oddziaływanie przenosi ją na podstawowy (zerowy) poziom oscylacyjny. Energia rozproszonego fotonu jest większa o różnicę energii poziomów oscylacyjnych hν. Pasmo to ma zwykle niższą intensywność niż pasmo stokesowskie.

50 Spektroskopia Ramana Reguły wyboru - obecność pola elektrycznego powoduje polaryzację atomu/cząsteczki, - w przypadku zmiennego pola (foton) - w atomach polaryzowalność jest izotropowa, atom wypromieniowuje padającą częstotliwość tylko rozpraszanie Rayleigh a, - w cząsteczkach polaryzowalność może być anizotropowa dodatkowo pojawia się rozpraszanie Ramana, - Podstawowa reguła wyboru: Aktywna ramanowsko cząsteczka musi mieć anizotropową polaryzowalność.

51 Spektroskopia Ramana Reguły wyboru obroty - nawet cząsteczki niepolarne (O 2, N 2 )

52 Spektroskopia Ramana Reguły wyboru drgania - polaryzowalność zmienia się pod wpływem drgań, CO 2

53 Reguły wyboru Spektroskopia Ramana

54 Układ pomiarowy Spektroskopia Ramana

55 Spektroskopia Ramana Przykłady polietylen

56 Przykłady Spektroskopia Ramana

57 Spektroskopia Ramana Przykłady a) podłoże SiC, b) grafit na SiC, c) i d) dwa różne położenia, 5-10 warstw, e) 100 warstw, f) pojedyncza warstwa grafenu.

58 Spektroskopia Ramana Rezonansowa spektroskopia Ramana - Rezonansowy efekt Ramana obserwuje się wówczas, gdy częstość promieniowania wzbudzającego bardzo zbliża się lub wchodzi w zakres elektronowej absorpcji cząsteczki. - Spektroskopia rezonansowa umożliwia nam uzyskanie znacznie większych intensywności promieniowania rozproszonego niż jej klasyczna wersja (nawet do 10 6 razy), co pozwala na wykorzystanie w tej technice mniejszych ilości substancji badanych. - Dużą zaletą jest możliwość wpływania na intensywność drgań charakterystycznych tylko tych grup atomów w cząsteczce znajdujących się blisko interesującego nas miejsca w cząsteczce (w centrum aktywnym). - Poprzez dostrojenie częstotliwości lasera do wybranego interesującego nas przejścia π - π*, czy CT, co może mieć znaczenie w szczególności w przypadku dużych makrocząsteczek, gdy typowe widmo staje się niezwykle skomplikowane.

59 Spektroskopia Ramana Powierzchniowo wzmocniona spektroskopia ramanowska (SERS) - technika spektroskopowa polegająca na pomiarze promieniowania rozproszenia Ramana cząsteczek zaadsorbowanych na powierzchni metalu lub cząstki metalicznego zolu, - skutkuje znacznym wzmocnieniem mierzonego promieniowania w stosunku do klasycznego pomiaru ramanowskiego, - osadza się badaną substancję na powierzchni elektrochemicznie schropowaconej elektrody (na ogół srebrnej) lub wytwarza metaliczny zol, z którym substancja oddziałuje, - kiedy częstość światła padającego jest zbliżona do częstości drgań plazmy, elektrony przewodnictwa na powierzchni metalu są wzbudzane do stanu nazywanego rezonansem powierzchniowych plazmonów, - cząsteczki zaadsorbowane na powierzchni doświadczają wyjątkowo silnego pola elektromagnetycznego, - aby zoptymalizować efekt wzmocnienia częstość lasera musi pasować do częstości rezonansowej plazmy.

60 Spektroskopia Ramana Rozproszenie ramanowskie w cienkich filmach - Zasadniczy problem - niewielka intensywność promieniowania rozproszonego ramanowsko ulega dodatkowemu obniżeniu o kilka rzędów wielkości wskutek zmniejszenia liczby oddziałujących z promieniowaniem cząsteczek. - Wzmocnienie pola elektrycznego - złożenie fali padającej i odbitej pozwala uzyskać zwiększone natężenie pola elektrycznego oddziałującego na próbkę (metoda zewnętrznego lub całkowitego wewnętrznego odbicia).

61 Spektroskopia Ramana Rozproszenie ramanowskie w cienkich filmach - metoda zewnętrznego odbicia - światło wzbudzające powinno być spolaryzowane w płaszczyźnie padania oraz padać na powierzchnię odbijającą pod dużym kątem,

62 Spektroskopia Ramana Rozproszenie ramanowskie w cienkich filmach - metoda całkowitego wewnętrznego odbicia - wzmocnienie intensywności promieniowania rozproszonego uzyskuje się poprzez wielokrotne odbicie wiązki wewnątrz materiału badanego, - metoda umożliwia rejestrację widm cienkich filmów (o grubości nawet poniżej 1mm) na przezroczystej powierzchni,

63 Spektroskopia Ramana Zalety spektroskopii ramanowskiej - metoda komplementarna do spektroskopii w podczerwieni, - mniejsza, niż w IR, długość fali światła wzbudzającego pozwala uzyskać lepszą rozdzielczość przestrzenną sygnału, - woda, która bardzo silnie absorbuje promieniowanie IR, daje bardzo słabe pasmo w widmie ramanowskim,

64 Przykłady Spektroskopia Ramana

65 SEM Skaningowy mikroskop elektronowy Scanning electron microscope (SEM) Badanie: Powierzchni, Przełomów, Cienkich folii, Replik Możliwości badawcze: Duża zdolność rozdzielcza, Możliwość szybkiego skanowania dużych powierzchni, szybka zmiana powiększenia, Duża głębia ostrości, % szerokości pola obrazu, Uzyskanie obrazu dyfrakcyjnego identyfikacja struktury krystalicznej Analiza chemiczna elementów budowy materiału

66 SEM Skaningowy mikroskop elektronowy (SEM) - pierwszy obraz otrzymał Max Knoll w 1935, - badania nad podstawami fizycznymi i oddziaływaniem wiązki z próbką prowadził Manfred von Ardenne w 1937 (patent na SEM), - SEM zbudował Sir Charles Oatley i jego student Gary Stewart (przedstawiono go do sprzedaży w 1965 przez Cambridge Scientific Instrument Company).

67 SEM Skaningowy mikroskop elektronowy (SEM) W mikroskopach skaningowych wiązka elektronów bombarduje próbkę, skanując jej powierzchnię linia po linii. Pod wpływem wiązki elektronów próbka emituje różne sygnały (m. in. elektrony wtórne, elektrony wstecznie rozproszone, charakterystyczne promieniowanie rentgenowskie), które są rejestrowane za pomocą odpowiednich detektorów, a następnie przetwarzane na obraz próbki lub widmo promieniowania rentgenowskiego.

68 Schemat SEM SEM

69 SEM Przykłady Uszkodzona powierzchnia stali Przełom próbki stalowej

70 Przykłady SEM

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Fizyka powierzchni 7 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni

Bardziej szczegółowo

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Fizyka powierzchni 9 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni

Bardziej szczegółowo

Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy)

Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Oddziaływanie elektronów ze stałą, krystaliczną próbką wstecznie rozproszone elektrony elektrony pierwotne

Bardziej szczegółowo

Spektroskopia ramanowska w badaniach powierzchni

Spektroskopia ramanowska w badaniach powierzchni Spektroskopia ramanowska w badaniach powierzchni z Efekt Ramana (1922, CV Raman) I, ν próbka y Chandra Shekhara Venketa Raman x I 0, ν 0 Monochromatyczne promieniowanie o częstości ν 0 ulega rozproszeniu

Bardziej szczegółowo

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Fizyka powierzchni 5 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni

Bardziej szczegółowo

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Fizyka powierzchni 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni

Bardziej szczegółowo

dr inż. Beata Brożek-Pluska SERS La boratorium La serowej

dr inż. Beata Brożek-Pluska SERS La boratorium La serowej dr inż. Beata Brożek-Pluska La boratorium La serowej Spektroskopii Molekularnej PŁ Powierzchniowo wzmocniona sp ektroskopia Ramana (Surface Enhanced Raman Spectroscopy) Cząsteczki zaadsorbowane na chropowatych

Bardziej szczegółowo

Światło fala, czy strumień cząstek?

Światło fala, czy strumień cząstek? 1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie

Bardziej szczegółowo

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest

Bardziej szczegółowo

MIKROSKOPIA ELEKTRONOWA. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

MIKROSKOPIA ELEKTRONOWA. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego MIKROSKOPIA ELEKTRONOWA Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Tło historyczne Pod koniec XIX wieku stosowanie mikroskopów świetlnych w naukach

Bardziej szczegółowo

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Promieniowanie X Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Lampa rentgenowska Lampa rentgenowska Promieniowanie rentgenowskie

Bardziej szczegółowo

Powierzchniowo wzmocniona spektroskopia Ramana SERS. (Surface Enhanced Raman Spectroscopy)

Powierzchniowo wzmocniona spektroskopia Ramana SERS. (Surface Enhanced Raman Spectroscopy) Powierzchniowo wzmocniona spektroskopia Ramana SERS (Surface Enhanced Raman Spectroscopy) Cząsteczki zaadsorbowane na chropowatych powierzchniach niektórych metali (Ag, Au, Cu) dają bardzo intensywny sygnał

Bardziej szczegółowo

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE 1 SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE 2 Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest

Bardziej szczegółowo

Przejścia promieniste

Przejścia promieniste Przejście promieniste proces rekombinacji elektronu i dziury (przejście ze stanu o większej energii do stanu o energii mniejszej), w wyniku którego następuje emisja promieniowania. E Długość wyemitowanej

Bardziej szczegółowo

Optyczna spektroskopia oscylacyjna. w badaniach powierzchni

Optyczna spektroskopia oscylacyjna. w badaniach powierzchni Optyczna spektroskopia oscylacyjna w badaniach powierzchni Zalety oscylacyjnej spektroskopii optycznej uŝycie fotonów jako cząsteczek wzbudzających i rejestrowanych nie wymaga uŝycia próŝni (moŝliwość

Bardziej szczegółowo

Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk

Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk fizycznych tego rodzaju należą zjawiska odbicia i załamania

Bardziej szczegółowo

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy

Bardziej szczegółowo

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale

Bardziej szczegółowo

Jak badać strukturę powierzchni?

Jak badać strukturę powierzchni? Jak badać strukturę powierzchni? Wykład - 12 15 Anim - ten kod oznacza, że na stronie znajdują się animacje niewidoczne w pliku pdf. Aby oglądnąć te animacje skopiuj zbiór z pokazem PowerPoint Z. Postawa,

Bardziej szczegółowo

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Fizyka powierzchni 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni

Bardziej szczegółowo

Światło ma podwójną naturę:

Światło ma podwójną naturę: Światło ma podwójną naturę: przejawia własności fal i cząstek W. C. Roentgen ( Nobel 1901) Istnieje ciągłe przejście pomiędzy tymi własnościami wzdłuż spektrum fal elektromagnetycznych Dla niskich częstości

Bardziej szczegółowo

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Fizyka powierzchni 6 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni

Bardziej szczegółowo

Fizykochemiczne metody w kryminalistyce. Wykład 7

Fizykochemiczne metody w kryminalistyce. Wykład 7 Fizykochemiczne metody w kryminalistyce Wykład 7 Stosowane metody badawcze: 1. Klasyczna metoda analityczna jakościowa i ilościowa 2. badania rentgenostrukturalne 3. Badania spektroskopowe 4. Metody chromatograficzne

Bardziej szczegółowo

Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego

Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego W5. Energia molekuł Przemieszczanie się całych molekuł w przestrzeni - Ruch translacyjny - Odbywa się w fazie gazowej i ciekłej, w fazie stałej

Bardziej szczegółowo

Podstawy fizyki wykład 2

Podstawy fizyki wykład 2 D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,

Bardziej szczegółowo

Absorpcja związana z defektami kryształu

Absorpcja związana z defektami kryształu W rzeczywistych materiałach sieć krystaliczna nie jest idealna występują różnego rodzaju defekty. Podział najważniejszych defektów ze względu na właściwości optyczne: - inny atom w węźle sieci: C A atom

Bardziej szczegółowo

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów

Bardziej szczegółowo

WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab.

WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. Halina Abramczyk POLITECHNIKA ŁÓDZKA Wydział Chemiczny

Bardziej szczegółowo

Wykład 18: Elementy fizyki współczesnej -1

Wykład 18: Elementy fizyki współczesnej -1 Wykład 18: Elementy fizyki współczesnej -1 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Promieniowanie ciała doskonale czarnego

Bardziej szczegółowo

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub

Bardziej szczegółowo

Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu

Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu J1 Pomiar energii wiązania deuteronu Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu Przygotowanie: 1) Model deuteronu. Własności deuteronu jako źródło informacji o siłach jądrowych [4] ) Oddziaływanie

Bardziej szczegółowo

Kwantowa natura promieniowania

Kwantowa natura promieniowania Kwantowa natura promieniowania Promieniowanie ciała doskonale czarnego Ciało doskonale czarne ciało, które absorbuje całe padające na nie promieniowanie bez względu na częstotliwość. Promieniowanie ciała

Bardziej szczegółowo

Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA)

Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Promieniowaniem X nazywa się promieniowanie elektromagnetyczne o długości fali od około

Bardziej szczegółowo

Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman

Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman Porównanie Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman Spektroskopia FT-Raman Spektroskopia FT-Raman jest dostępna od 1987 roku. Systemy

Bardziej szczegółowo

Spektroskopia elektronów Augera AES

Spektroskopia elektronów Augera AES Spektroskopia elektronów Augera AES (Auger Electron Spectroscopy) Emisja elektronu Augera (Pierre Auger, 1925) elektron Augera E kin E vac 3 poziom Fermiego e C B 2 Φ Α E C E B E A A 1 Energia kinetyczna

Bardziej szczegółowo

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A

Bardziej szczegółowo

Optyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa

Optyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa Optyka Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim

Bardziej szczegółowo

Wykład FIZYKA II. 11. Optyka kwantowa. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 11. Optyka kwantowa.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 11. Optyka kwantowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ FIZYKA KLASYCZNA A FIZYKA WSPÓŁCZESNA Fizyka klasyczna

Bardziej szczegółowo

h λ= mv h - stała Plancka (4.14x10-15 ev s)

h λ= mv h - stała Plancka (4.14x10-15 ev s) Twórcy podstaw optyki elektronowej: De Broglie LV. 1924 hipoteza: każde ciało poruszające się ma przyporządkowaną falę a jej długość jest ilorazem stałej Plancka i pędu. Elektrony powinny więc mieć naturę

Bardziej szczegółowo

Falowa natura materii

Falowa natura materii r. akad. 2012/2013 wykład I - II Podstawy Procesów i Konstrukcji Inżynierskich Falowa natura materii 1 r. akad. 2012/2013 Podstawy Procesów i Konstrukcji Inżynierskich Warunki zaliczenia: Aby uzyskać dopuszczenie

Bardziej szczegółowo

Spektroskopia modulacyjna

Spektroskopia modulacyjna Spektroskopia modulacyjna pozwala na otrzymanie energii przejść optycznych w strukturze z bardzo dużą dokładnością. Charakteryzuje się również wysoką czułością, co pozwala na obserwację słabych przejść,

Bardziej szczegółowo

Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy

Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy Oddziaływanie promieniowania X z materią Podstawowe mechanizmy Promieniowanie od oscylującego elektronu Rozpraszanie Thomsona Dyspersja podejście klasyczne Fala padająca Wymuszony, tłumiony oscylator harmoniczny

Bardziej szczegółowo

2. Metody, których podstawą są widma atomowe 32

2. Metody, których podstawą są widma atomowe 32 Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola

Bardziej szczegółowo

2008/2009. Seweryn Kowalski IVp IF pok.424

2008/2009. Seweryn Kowalski IVp IF pok.424 2008/2009 seweryn.kowalski@us.edu.pl Seweryn Kowalski IVp IF pok.424 Plan wykładu Wstęp, podstawowe jednostki fizyki jądrowej, Własności jądra atomowego, Metody wyznaczania własności jądra atomowego, Wyznaczanie

Bardziej szczegółowo

Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X

Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Ćwiczenie nr 2 : Badanie licznika proporcjonalnego fotonów X Oskar Gawlik, Jacek Grela 16 lutego 2009 1 Podstawy teoretyczne 1.1 Liczniki proporcjonalne Wydajność detekcji promieniowania elektromagnetycznego

Bardziej szczegółowo

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. 1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu

Bardziej szczegółowo

TEORIA PASMOWA CIAŁ STAŁYCH

TEORIA PASMOWA CIAŁ STAŁYCH TEORIA PASMOWA CIAŁ STAŁYCH Skolektywizowane elektrony w metalu Weźmy pod uwagę pewną ilość atomów jakiegoś metalu, np. sodu. Pojedynczy atom sodu zawiera 11 elektronów o konfiguracji 1s 2 2s 2 2p 6 3s

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Fonony. Fonony

S. Baran - Podstawy fizyki materii skondensowanej Fonony. Fonony Fonony Drgania płaszczyzn sieciowych podłużne poprzeczne źródło: Ch. Kittel Wstęp do fizyki..., rozdz. 4, rys. 2, 3, str. 118 Drgania płaszczyzn sieciowych Do opisu drgań sieci krystalicznej wystarczą

Bardziej szczegółowo

Zaburzenia periodyczności sieci krystalicznej

Zaburzenia periodyczności sieci krystalicznej Zaburzenia periodyczności sieci krystalicznej Defekty liniowe dyslokacja krawędziowa dyslokacja śrubowa dyslokacja mieszana Defekty punktowe obcy atom w węźle luka w sieci (defekt Schottky ego) obcy atom

Bardziej szczegółowo

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski Plan na dzisiaj Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 półprzewodniki

Bardziej szczegółowo

Własności optyczne półprzewodników

Własności optyczne półprzewodników Własności optyczne półprzewodników Andrzej Wysmołek Wykład przygotowany w oparciu o wykłady prowadzone na Wydziale Fizyki UW przez prof. Mariana Grynberga oraz prof. Romana Stępniewskiego Klasyfikacja

Bardziej szczegółowo

SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa przedmiotu SYLABUS A. Informacje ogólne

SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa przedmiotu SYLABUS A. Informacje ogólne SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów

Bardziej szczegółowo

ZASADY ZALICZENIA PRZEDMIOTU MBS

ZASADY ZALICZENIA PRZEDMIOTU MBS ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll

Bardziej szczegółowo

Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x.

Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x. Równanie falowe Schrödingera h Ψ( x, t) + V( x, t) Ψ( x, t) W jednym wymiarze ( ) ( ) gdy V x, t = V x x Ψ = ih t Gdy V(x,t)=V =const cząstka swobodna, na którą nie działa siła Fala biegnąca Ψ s ( x, t)

Bardziej szczegółowo

Grafen materiał XXI wieku!?

Grafen materiał XXI wieku!? Grafen materiał XXI wieku!? Badania grafenu w aspekcie jego zastosowań w sensoryce i metrologii Tadeusz Pustelny Plan prezentacji: 1. Wybrane właściwości fizyczne grafenu 2. Grafen materiał 21-go wieku?

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm)

Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm) SPEKTROSKOPIA W PODCZERWIENI Podczerwień bliska: 14300-4000 cm -1 (0,7-2,5 µm) Podczerwień właściwa: 4000-700 cm -1 (2,5-14,3 µm) Podczerwień daleka: 700-200 cm -1 (14,3-50 µm) WIELKOŚCI CHARAKTERYZUJĄCE

Bardziej szczegółowo

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,

Bardziej szczegółowo

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka.

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka. Fale materii 194- Louis de Broglie teoria fal materii, 199- nagroda Nobla Hipoteza de Broglie głosi, że dwoiste korpuskularno falowe zachowanie jest cechą nie tylko promieniowania, lecz również materii.

Bardziej szczegółowo

PODSTAWY MECHANIKI KWANTOWEJ

PODSTAWY MECHANIKI KWANTOWEJ PODSTAWY MECHANIKI KWANTOWEJ De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie

Bardziej szczegółowo

Oddziaływanie cząstek z materią

Oddziaływanie cząstek z materią Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki

Bardziej szczegółowo

METODY BADAŃ BIOMATERIAŁÓW

METODY BADAŃ BIOMATERIAŁÓW METODY BADAŃ BIOMATERIAŁÓW 1 Cel badań: ograniczenie ryzyka związanego ze stosowaniem biomateriałów w medycynie Rodzaje badań: 1. Badania biofunkcyjności implantów, 2. Badania degradacji implantów w środowisku

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

Przejścia optyczne w strukturach niskowymiarowych

Przejścia optyczne w strukturach niskowymiarowych Współczynnik absorpcji w układzie dwuwymiarowym można opisać wyrażeniem: E E gdzie i oraz f są energiami stanu początkowego i końcowego elektronu, zapełnienie tych stanów opisane jest funkcją rozkładu

Bardziej szczegółowo

Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd.

Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman ( ) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Tak określił mechanikę kwantową laureat nagrody Nobla Ryszard Feynman (1918-1988) mechanika kwantowa opisuje naturę w sposób prawdziwy, jako absurd. Równocześnie Feynman podkreślił, że obliczenia mechaniki

Bardziej szczegółowo

Rozpraszanie nieelastyczne

Rozpraszanie nieelastyczne Rozpraszanie nieelastyczne Przekazywanie energii elektronów wiązki prowadzi do emisji szeregu sygnałów wykorzystywanych w mikroskopii elektronowej i mikroanalizie rentgenowskiej: 1. Niskoenergetyczne elektrony

Bardziej szczegółowo

VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale.

VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. Światło wykazuje zjawisko dyfrakcyjne. Rys.VII.1.Światło padające na

Bardziej szczegółowo

Pasmowa teoria przewodnictwa. Anna Pietnoczka

Pasmowa teoria przewodnictwa. Anna Pietnoczka Pasmowa teoria przewodnictwa elektrycznego Anna Pietnoczka Wpływ rodzaju wiązań na przewodność próbki: Wiązanie jonowe - izolatory Wiązanie metaliczne - przewodniki Wiązanie kowalencyjne - półprzewodniki

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach. Dyfrakcja na kryształach

S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach. Dyfrakcja na kryształach S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach Dyfrakcja na kryształach Warunki dyfrakcji źródło: Ch. Kittel Wstęp do fizyki..., rozdz. 2, rys. 6, str. 49 Konstrukcja Ewalda

Bardziej szczegółowo

Wprowadzenie do ekscytonów

Wprowadzenie do ekscytonów Proces absorpcji można traktować jako tworzenie się, pod wpływem zewnętrznego pola elektrycznego, pary elektron-dziura, które mogą być opisane w przybliżeniu jednoelektronowym. Dokładniejszym podejściem

Bardziej szczegółowo

PODSTAWY METODY SPEKTROSKOPI W PODCZERWIENI ABSORPCJA, EMISJA

PODSTAWY METODY SPEKTROSKOPI W PODCZERWIENI ABSORPCJA, EMISJA PODSTAWY METODY SPEKTROSKOPI W PODCZERWIENI ABSORPCJA, EMISJA Materia może oddziaływać z promieniowaniem poprzez absorpcję i emisję. Procesy te polegają na pochłonięciu lub wyemitowaniu fotonu przez cząstkę

Bardziej szczegółowo

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24)

n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A / B 2 1 hν exp( ) 1 kt (24) n n 1 2 = exp( ε ε ) 1 / kt = exp( hν / kt) (23) 2 to wzór (22) przejdzie w następującą równość: ρ (ν) = B B A 1 2 / B hν exp( ) 1 kt (24) Powyższe równanie określające gęstość widmową energii promieniowania

Bardziej szczegółowo

Własności optyczne materii. Jak zachowuje się światło w zetknięciu z materią?

Własności optyczne materii. Jak zachowuje się światło w zetknięciu z materią? Własności optyczne materii Jak zachowuje się światło w zetknięciu z materią? Właściwości optyczne materiału wynikają ze zjawisk: Absorpcji Załamania Odbicia Rozpraszania Własności elektrycznych Refrakcja

Bardziej szczegółowo

Techniki analityczne. Podział technik analitycznych. Metody spektroskopowe. Spektroskopia elektronowa

Techniki analityczne. Podział technik analitycznych. Metody spektroskopowe. Spektroskopia elektronowa Podział technik analitycznych Techniki analityczne Techniki elektrochemiczne: pehametria, selektywne elektrody membranowe, polarografia i metody pokrewne (woltamperometria, chronowoltamperometria inwersyjna

Bardziej szczegółowo

Atmosfera ziemska w obserwacjach promieni kosmicznych najwyższych energii. Jan Pękala Instytut Fizyki Jądrowej PAN

Atmosfera ziemska w obserwacjach promieni kosmicznych najwyższych energii. Jan Pękala Instytut Fizyki Jądrowej PAN Atmosfera ziemska w obserwacjach promieni kosmicznych najwyższych energii Jan Pękala Instytut Fizyki Jądrowej PAN Promienie kosmiczne najwyższych energii Widmo promieniowania kosmicznego rozciąga się na

Bardziej szczegółowo

Spektroskopia molekularna. Spektroskopia w podczerwieni

Spektroskopia molekularna. Spektroskopia w podczerwieni Spektroskopia molekularna Ćwiczenie nr 4 Spektroskopia w podczerwieni Spektroskopia w podczerwieni (IR) jest spektroskopią absorpcyjną, która polega na pomiarach promieniowania elektromagnetycznego pochłanianego

Bardziej szczegółowo

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Fizyka powierzchni 11 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura

Bardziej szczegółowo

Początek XX wieku. Dualizm korpuskularno - falowy

Początek XX wieku. Dualizm korpuskularno - falowy Początek XX wieku Światło: fala czy cząstka? Kwantowanie energii promieniowania termicznego postulat Plancka efekt fotoelektryczny efekt Comptona Fale materii de Broglie a Dualizm korpuskularno - falowy

Bardziej szczegółowo

Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób:

Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób: Zastosowanie laserów w Obrazowaniu Medycznym Spis treści 1 Powtórka z fizyki Zjawisko Interferencji 1.1 Koherencja czasowa i przestrzenna 1.2 Droga i czas koherencji 2 Lasery 2.1 Emisja Spontaniczna 2.2

Bardziej szczegółowo

OPTYKA. Leszek Błaszkieiwcz

OPTYKA. Leszek Błaszkieiwcz OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający

Bardziej szczegółowo

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy

Stałe : h=6, Js h= 4, eVs 1eV= J nie zależy T_atom-All 1 Nazwisko i imię klasa Stałe : h=6,626 10 34 Js h= 4,14 10 15 evs 1eV=1.60217657 10-19 J Zaznacz zjawiska świadczące o falowej naturze światła a) zjawisko fotoelektryczne b) interferencja c)

Bardziej szczegółowo

Chemia ogólna - część I: Atomy i cząsteczki

Chemia ogólna - część I: Atomy i cząsteczki dr ab. Wacław Makowski Cemia ogólna - część I: Atomy i cząsteczki 1. Kwantowanie. Atom wodoru 3. Atomy wieloelektronowe 4. Termy atomowe 5. Cząsteczki dwuatomowe 6. Hybrydyzacja 7. Orbitale zdelokalizowane

Bardziej szczegółowo

Krystalografia. Dyfrakcja

Krystalografia. Dyfrakcja Krystalografia Dyfrakcja Podstawowe zagadnienia Rodzaje promieniowania używane w dyfrakcyjnych metodach badań struktur krystalicznych, ich źródła Fizyczne podstawy i warunki dyfrakcji Równania dyfrakcji:

Bardziej szczegółowo

ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA

ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH ĆWICZENIE Nr 4 Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników I. Cześć doświadczalna. 1. Uruchomić Spekol

Bardziej szczegółowo

Fizyka 3. Konsultacje: p. 329, Mechatronika

Fizyka 3. Konsultacje: p. 329, Mechatronika Fizyka 3 Konsultacje: p. 39, Mechatronika marzan@mech.pw.edu.pl Zaliczenie: 1 sprawdzian 30 pkt 15.1 18 3.0 18.1 1 3.5 1.1 4 4.0 4.1 7 4.5 7.1 30 5.0 http:\\adam.mech.pw.edu.pl\~marzan Program: - elementy

Bardziej szczegółowo

Widmo promieniowania

Widmo promieniowania Widmo promieniowania Spektroskopia Każde ciało wysyła promieniowanie. Promieniowanie to jest składa się z wiązek o różnych długościach fal. Jeśli wiązka światła pada na pryzmat, ulega ono rozszczepieniu,

Bardziej szczegółowo

Spektroskopia fotoelektronów (PES)

Spektroskopia fotoelektronów (PES) Spektroskopia fotoelektronów (PES) Efekt fotoelektryczny hν ( UV lub X) E =hν kin W Proces fotojonizacji w PES: M + hν M + + e E kin (e) = hν E B Φ sp E B energia wiązania elektronu w atomie/cząsteczce

Bardziej szczegółowo

Ładunek elektryczny jest skwantowany

Ładunek elektryczny jest skwantowany 1. WSTĘP DO MECHANIKI KWANTOWEJ 1.1. Budowa materii i kwantowanie ładunku Materia w skali mikroskopowej nie jest ciągła lecz zbudowana z atomów mówimy, że jest skwantowana Powierzchnia platyny Ładunek

Bardziej szczegółowo

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja

Rekapitulacja. Detekcja światła. Rekapitulacja. Rekapitulacja Rekapitulacja Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje: czwartek

Bardziej szczegółowo

Podstawy fizyki kwantowej i budowy materii

Podstawy fizyki kwantowej i budowy materii Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 5 7 listopada 2016 A.F.Żarnecki Podstawy

Bardziej szczegółowo

IM-4 BADANIE ABSORPCJI ŚWIATŁA W MATERIAŁACH PÓŁPRZEWODNIKOWYCH

IM-4 BADANIE ABSORPCJI ŚWIATŁA W MATERIAŁACH PÓŁPRZEWODNIKOWYCH IM-4 BADANIE ABSORPCJI ŚWIATŁA W MATERIAŁACH PÓŁPRZEWODNIKOWYCH I. Cel ćwiczenia Zapoznanie się z fotoelektryczną optyczną metodą wyznaczania energii przerwy wzbronionej w półprzewodnikach na przykładzie

Bardziej szczegółowo

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki

Przewodność elektryczna ciał stałych. Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Przewodność elektryczna ciał stałych Elektryczne własności ciał stałych Izolatory, metale i półprzewodniki Elektryczne własności ciał stałych Do sklasyfikowania różnych materiałów ze względu na ich własności

Bardziej szczegółowo

Stara i nowa teoria kwantowa

Stara i nowa teoria kwantowa Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż

Bardziej szczegółowo

III. EFEKT COMPTONA (1923)

III. EFEKT COMPTONA (1923) III. EFEKT COMPTONA (1923) Zjawisko zmiany długości fali promieniowania roentgenowskiego rozpraszanego na swobodnych elektronach. Zjawisko to stoi u podstaw mechaniki kwantowej. III.1. EFEKT COMPTONA Rys.III.1.

Bardziej szczegółowo

Ciała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami.

Ciała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. Ciała stałe Ciała krystaliczne Ciała amorficzne Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. r T = Kryształy rosną przez regularne powtarzanie się identycznych

Bardziej szczegółowo

PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR

PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR WSTĘP Metody spektroskopowe Spektroskopia bada i teoretycznie wyjaśnia oddziaływania pomiędzy materią będącą zbiorowiskiem

Bardziej szczegółowo

Badanie schematu rozpadu jodu 128 J

Badanie schematu rozpadu jodu 128 J J8A Badanie schematu rozpadu jodu 128 J Celem doświadczenie jest wyznaczenie schematu rozpadu jodu 128 J Wiadomości ogólne 1. Oddziaływanie kwantów γ z materią (1,3) a/ efekt fotoelektryczny b/ efekt Comptona

Bardziej szczegółowo

Struktura pasmowa ciał stałych

Struktura pasmowa ciał stałych Struktura pasmowa ciał stałych dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści 1. Pasmowa teoria ciała stałego 2 1.1. Wstęp do teorii..............................................

Bardziej szczegółowo

Podstawy fizyki kwantowej

Podstawy fizyki kwantowej Podstawy fizyki kwantowej Fizyka kwantowa - co to jest? Światło to fala czy cząstka? promieniowanie termiczne efekt fotoelektryczny efekt Comptona fale materii de Broglie a równanie Schrodingera podstawa

Bardziej szczegółowo