Spektroskopia. Spotkanie drugie UV-VIS, NMR

Wielkość: px
Rozpocząć pokaz od strony:

Download "Spektroskopia. Spotkanie drugie UV-VIS, NMR"

Transkrypt

1 Spektroskopia Spotkanie drugie UV-VIS, NMR

2 Spektroskopia UV-Vis 2/32 Promieniowanie elektromagnetyczne: Ultrafioletu ~ nm światło widzialne ~ nm Kwanty energii zgodne z róŝnicami poziomów energetycznych elektronów walencyjnych UV: przejścia elektronów wiązań typu p (wiązania wielokrotne) VIS: sprzęŝone wiązania wielokrotne, przeniesienie elektronu Zdecydowana większość związków chemicznych jest bezbarwna nie pochłania fal z zakresu widzialnego Na podstawie wartości pochłanianej długości fali i spadku jej natęŝenia mona wnioskować o istnieniu wiązań wielokrotnych, ich sprzęganiu (wzajemne połoŝenie) oraz istnieniu w cząsteczce układów aromatycznych

3 Prawo Lamberta-Beera 3/32 Przez roztwór w kuwecie o określonej grubości warstwy (l) przechodzi promieniowanie monochromatyczne o długości fali λ. Spadek natęŝenia promieniowania absorbancję - określa równanie: c, ε gdzie: I A = log = ε c l I 0 A absorbancja (wartość bezwymiarowa) I, I 0 natęŝenie promieniowania wchodzącego, wychodzącego ε molowy współczynnik absorpcji (L mol -1 cm -1 ) c stęŝenie substancji w roztworze (mol L -1 ) l grubość warstwy (cm)

4 Obliczenia 4/32 Molowy współczynnik absorpcji (ε) vs absorpcja właściwa (a) ε = A cl a = absorpcja właściwa jest wyraŝana w L g -1 cm -1 (zwykle µl µg -1 cm -1 ) odpowiada wartości absorbancji roztworu o stęŝeniu 1 µg µl -1 A cl Absorbancja vs transmitancja T = I 100 [%] zaleŝności: I 0 A 100 = log = 2 logt ( 2 A) T = 10 [%] T

5 Wyznaczanie analitycznych długości fali 5/32 Analityczna długość fali długości fali wyznaczone w maksimach absorpcji dla mieszanin - w zakresie "dominacji" jednego ze składników fenyloalanina 1,4 tyrozyna 1,2 1,0 Absorbancja 0,8 0,6 0,4 263 nm 295 nm 0,2 0, λ, nm

6 Wyznaczanie współczynników absorpcji 6/32 Na podstawie analitycznych długości fali i znanych stęŝeń: Związek l A stęŝenie d ε a nm mol L -1 µg µl -1 cm L mol -1 cm -1 µl µg -1 µcm -1 fenyloalanina tyrozyna Dla fenyloalaniny ε = A cl ε = = 155 a = A cl a = =

7 Budowa jądra atomowego 7/32 Jądro zbudowane jest z protonów i neutronów Liczba masowa Liczba atomowa C Liczba protonów = liczba atomowa Liczba neutronów = liczba masowa liczba atomowa Dla 12 C mamy zatem: 6 protonów i 6 neutronów Dla 13 C: 6 protonów i 7 neutronów

8 Kwantowe liczby jądrowe 8/32 Własność nukleonu: spin moment pędu Nukleony poruszają się w jądrze: orbitalny moment pędu Całkowity wektorowy moment pędu nukleonu jest równy wektorowej sumie spinu (S) i orbitalnego momentu pędu (L): I = S + L Moment pędu jądra (M J ) to suma całkowitych momentów pędu nukleonów: M I = I i i= 1 Rzut wektora I na kierunek zewnętrznego pola magnetycznego nazywany jest właśnie spinem jądra Spin jądra (I) moŝna wyraŝać w jednostkach ħ Wartość spinu- jedynie wielokrotności ½ħ A A liczba nukleonów w jądrze

9 Spiny jądrowe 9/32 W stanie podstawowym Parzysta liczba atomowa spin całkowity 14 N 7 A =14 A =14 7 protonów 7 neutronów Nieparzysta liczba atomowa spin połówkowy 19 F 9 A =19 9 protonów 10 neutronów Parzysta liczba protonów i neutronów spin zero 12 6 C A =12 6 protonów 6 neutronów Jądra w stanie wzbudzonym mogą mieć spin większy od spinu w stanie podstawowym

10 Spiny jądrowe w praktyce 10/32 Spin jądra określony przez jądrową spinową liczbę kwantową I Istnieje 117 jąder (izotopów) o spinie I = 1/2 1, 13 C, 15 N, 19 F, 31 P I = 1 2, 14 N I = 3/2 11 B, 33 S, 35 Cl, 37 Cl Liczba izotopów /2 1 3/2 5/2 3 7/2 9/ spin Abundancja czyli czego nie ma, tego nie zobaczysz Jądro 1 13 C 19 F 31 P Abundancja, %

11 Precesja 11/32 Zgodnie z prawami Maxwella jądro o I 0 generuje pole magnetyczne PrzyłoŜenie zewnętrznego pola magnetycznego ALE ustawienie się wektora spinów jąder atomowych zgodnie z wektorem pola Spin jąder nie jest prostym wirowaniem mechanicznym jądra w polu magnetycznym ulegają zjawisku precesji B 0 Częstotliwość precesji (częstotliwość Larmora) f L = γb 0 /2π γ - stała jądrowa Dla protonów: f L = 42 Mz γ =

12 Widmo NMR Ilość energii potrzebna do zmiany ustawienia spinu jądrowego zaleŝy od natęŝenia zewnętrznego pola magnetycznego a zarazem od częstotliwości promieniowania MoŜna zatem zmieniać albo natęŝenie albo częstotliwość pola magnetycznego B 0 12/32 B 0 absorpcja promieniowania sygnał słabe pole przemiatanie polem magnetycznym silne pole

13 1 NMR 13/32 UłoŜenie spinu jądrowego względem pola zewnętrznego: 2I +1 Protony - dwa połoŝenia, bo I = ½ Stan o niskiej energii zgodnie z wektorem pola Stan o wysokiej energii przeciwnie do wektora pola B 0 Rozszczepienie energii E = h f L E = hf L B 0 bez pola zewnętrznego przyłoŝone pole zewnętrzne B

14 NMR i pole magnetyczne 14/32 Do wzbudzenia efektów potrzebne silne pola magnetyczne Pole magnetyczne Ziemi: 10-4 T (Tesli) na poziomie gruntu Magnesy aparatury NMR: 1 20 T

15 Wielkość pola magnetycznego 15/32 RóŜnica energetyczna między stanami spinowymi to 0.1 cal/mol (dla IR to ok. 10 cal/mol, dla UV-VIS ok cal/mol) E moŝna wyrazić jako częstość: z zatem w zakresie częstości radiowych - 1/2 ν [Mz] / B 0 [T] Wzbudzenie jądrowe wypada w zakresie, w którym nadawane są audycje radiowe i telewizyjne

16 Widmo 1 NMR 16/32 Częstotliwość przy której proton absorbuje (pojawia się sygnał) zaleŝy od pola magnetycznego odczuwanego przez proton efektywnego pola, róŝnego od przyłoŝonego B efektywne B 0 Efektywne natęŝenie pola zaleŝy od otoczenia Gęstości elektronowej wokół protonu Obecności sąsiadujących protonów

17 Widmo 1 NMR 17/32 Wszystkie protony absorbują przy takim samym efektywnym natęŝeniu pola lecz przy róŝnych natęŝeniach pola przyłoŝonego Widmo NMR charakteryzuje: 1. Liczba sygnałów Liczba protonów róŝnego rodzaju 2. PołoŜenie sygnałów Elektronowe otoczenie protonów 3. Intensywność sygnałów Liczba protonów kaŝdego rodzaju 4. Rozszczepienie sygnałów Otoczenie protonu w odniesieniu do innych, sąsiadujących protonów

18 1. Liczba sygnałów 18/32 Protony znajdujące się w takim samym otoczeniu absorbują przy takim samym natęŝeniu pola przyłoŝonego protony równocenne Liczba sygnałów w widmie NMR = liczba grup równocennych protonów Cl C C Cl C C C a b a b a 2 sygnały 2 sygnały

19 2. PołoŜenie sygnałów 19/32 Identyfikacja najbliŝszego otoczenia danego protonu Aromatyczne, alifatyczne, 1 o, 2 o, 3 o, benzylowe itd... Dlaczego? Cząstka w polu magnetycznym - zmiana w ruchu jej elektronów wytwarza się wtórne pole magnetyczne magnetyczne pole indukowane B 0 Pole indukowane

20 2. PołoŜenie sygnałów 20/32 Indukowanie pola KrąŜenie elektronów wokół danego jądra osłabienie pola zewnętrznego (ekranowanie) KrąŜenie elektronów wokół innych jąder moŝe efekt pola wzmacniać lub osłabiać, w zaleŝności od ich ułoŝenia względem pola zewnętrznego B 0 rejon rejon osłaniany osłaniany Indukowane Indukowane pole pole magnetyczne magnetyczne rejon rejon odsłaniany odsłaniany rejon rejon odsłaniany odsłaniany Efekt wzmocnienia pola zewnętrznego rejon rejon osłaniany osłaniany Efekt osłabienia pola zewnętrznego

21 2. PołoŜenie sygnałów przesunięcie chemiczne 21/32 Przesunięcie chemiczne przesunięcie połoŝenia sygnałów absorpcji w widmie NMR, wynikające z przesłaniania lub odsłaniania przez elektrony Jednostki przesunięcia: ppm parts per million 1 ppm = 10-6 natęŝenia całkowitego przyłoŝonego pola magnetycznego Przesłanianie i odsłanianie Wynik działania wtórnych pól magnetycznych Wielkość zaleŝna od natęŝenia pola przyłoŝonego WyraŜona jako iloraz: przesunięcie/częstotliwość NiezaleŜna od częstości rezonansowej NiezaleŜna od wielkości przyłoŝonego pola W praktyce stosuje się przesunięcie wobec TMS

22 Skala NMR 22/32 Wzorzec: TMS tetrametylosilan C 3 Dlaczego? 3 C C 3 C 3 W związkach chemicznych elektroujemność decyduje o przesunięciu chmury elektronowej: Elektroujemności (w skali Paulinga): C = 2.55, Si = 1.90, = 2.20 Si jest słabo elektroujemny chmura elektronowa przesunięta w kierunku grup C 3 silne ekranowanie protonów W praktyce - skala zawiera praktycznie tylko wartości dodatnie

23 Skala 1 NMR 23/32 Generalna zasada: Im lepsze przesłanianie, tym bardziej sygnał NMR przesunięty w kierunku wyŝszych częstotliwości Im mniejsze δ tym większe osłanianie Wzrost indukcji pola magnetycznego przy stałej częstości Wzrost często stości przy stałej indukcji pola magnetycznego Efektywność osłaniania przez zewnętrzne elektrony

24 Przykłady Wpływ obecności innych protonów C δ = 1.50 ppm C 2 δ = 1.25 ppm C 3 δ = 0.90 ppm gorsze ekranowanie C C 2 C 3 δ odsłanianie δ odsłanianie TMS 24/32 lepsze ekranowanie δ [ppm] Wpływ rodzaju podstawnika CCl δ = 3.0 ppm E Cl = 3.16 CBr δ = 2.7 ppm E Br = 2.96 CI δ = 2.1 ppm E = 2.66 I gorsze ekranowanie CCl CBr CI TMS lepsze ekranowanie δ [ppm]

25 Przykłady 25/32 Wpływ połoŝenia podstawnika C 3 -Cl δ = 3.0 ppm C 3 -C-Cl δ = 1.5 ppm R-C 2 -Cl δ = 3.4 ppm R-C 2 -C-Cl δ = 1.7 ppm R 2 -C-Cl δ = 4.0 ppm R 2 -C-C-Cl δ = 1.6 ppm Problem: Wyjaśnić róŝnice w wartości przesunięć chemicznych: benzen, δ = 7.37 ppm toluen, δ = 7.17 ppm p-ksylen, δ = 7.05 ppm mezytylen, δ = 6.78 ppm

26 Skala 1 NMR 26/32 Orientacyjne wartości przesunięć chemicznych

27 3. Intensywność sygnału 27/32 Intensywność sygnału NMR jest proporcjonalna do liczby protonów które powodują jego powstanie I III IV II

28 4. Rozszczepienie sygnału 28/32 SprzęŜenie spinowo-spinowe Osłanianie lub odsłanianie danego protonu przez protony z najbliŝszego sąsiedztwa B 0 J sygnał protonu niesprzęŝonego kombinacje spinów sąsiedniej grupy C dublet B 0 J J sygnał protonu niesprzęŝonego kombinacje spinów sąsiedniej grupy C 2 tryplet

29 4. Rozszczepienie sygnału 29/32 Ogólnie: Krotność sprzęŝenia: n+1 gdy n ilość nierównowaŝnych protonów w sąsiedztwie brak sprzęŝenia dublet brak sąsiednich protonów 1 sąsiadujący proton tryplet sąsiadujące protony kwartet sąsiadujące protony Trójkąt Pascala

30 4. Rozszczepienie sygnału 30/32 SprzęŜenie spinowo-spinowe Zachodzi tylko między nierównocennymi protonami Brak rozszczepienia: C 3 2 C C 2 C 3 C C 2 Br Cl Cl Br równocenne brak sąsiadów brak sąsiadów 3 C 3 C C = C równocenne C 3 arylowo-alkilowe

31 4. Rozszczepienie sygnału 31/32 Stała rozszczepienia J Miara efektywności sprzęŝenia spinowo-spinowego Im większe J, tym silniejsze sprzęŝenie NiezaleŜna od wielkości pola przyłoŝonego J = 2-15 z C = C J = 0-7 z J = z

32 Podsumowanie 32/32 Jakie dane uzyskujemy korzystając z widm: MS Masa cząsteczkowa Uzyskanie wzorów izotopowych IR Obecność grup funkcyjnych RozróŜnienie rodzajów wiązań 1 NMR Liczba równocennych protonów Liczba protonów kaŝdego typu Rodzaj protonów Połączenia między protonami

SPEKTROSKOPIA NMR. No. 0

SPEKTROSKOPIA NMR. No. 0 No. 0 Spektroskopia magnetycznego rezonansu jądrowego, spektroskopia MRJ, spektroskopia NMR jedna z najczęściej stosowanych obecnie technik spektroskopowych w chemii i medycynie. Spektroskopia ta polega

Bardziej szczegółowo

ĆWICZENIE NR 5 ANALIZA NMR PRODUKTÓW FERMENTACJI ALKOHOLOWEJ

ĆWICZENIE NR 5 ANALIZA NMR PRODUKTÓW FERMENTACJI ALKOHOLOWEJ ĆWICZENIE NR 5 ANALIZA NMR PRODUKTÓW FERMENTACJI ALKOHOLOWEJ Uwaga: Ze względu na laboratoryjny charakter zajęć oraz kontakt z materiałem biologicznym, studenci zobowiązani są uŝywać fartuchów i rękawiczek

Bardziej szczegółowo

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan Spis zagadnień Fizyczne podstawy zjawiska NMR Parametry widma NMR Procesy relaksacji jądrowej Metody obrazowania Fizyczne podstawy NMR Proton, neutron,

Bardziej szczegółowo

Zastosowanie spektroskopii NMR do określania struktury związków organicznych

Zastosowanie spektroskopii NMR do określania struktury związków organicznych Zastosowanie spektroskopii NMR do określania struktury związków organicznych Atomy zbudowane są z jąder atomowych i powłok elektronowych. Modelowo można stwierdzić, że jądro atomowe jest kulą, w której

Bardziej szczegółowo

ν 1 = γ B 0 Spektroskopia magnetycznego rezonansu jądrowego Spektroskopia magnetycznego rezonansu jądrowego h S = I(I+1)

ν 1 = γ B 0 Spektroskopia magnetycznego rezonansu jądrowego Spektroskopia magnetycznego rezonansu jądrowego h S = I(I+1) h S = I(I+) gdzie: I kwantowa liczba spinowa jądra I = 0, ½,, /,, 5/,... itd gdzie: = γ S γ współczynnik żyromagnetyczny moment magnetyczny brak spinu I = 0 spin sferyczny I = _ spin elipsoidalny I =,,,...

Bardziej szczegółowo

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Streszczenie Spektroskopia magnetycznego rezonansu jądrowego jest jedną z technik spektroskopii absorpcyjnej mającej zastosowanie w chemii,

Bardziej szczegółowo

Magnetyczny rezonans jądrowy

Magnetyczny rezonans jądrowy Magnetyczny rezonans jądrowy Widmo NMR wykres absorpcji promieniowania magnetycznego od jego częstości Częstość pola wyraża się w częściach na milion (ppm) częstości pola magnetycznego pochłanianego przez

Bardziej szczegółowo

Spektroskopowe metody identyfikacji związków organicznych

Spektroskopowe metody identyfikacji związków organicznych Spektroskopowe metody identyfikacji związków organicznych Wstęp Spektroskopia jest metodą analityczną zajmującą się analizą widm powstających w wyniku oddziaływania promieniowania elektromagnetycznego

Bardziej szczegółowo

SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: II

SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: II SPEKTROSKOPIA NMR PODEJŚIE PRAKTYZNE ZĘŚĆ: II DR INŻ. TOMASZ LASKOWSKI O TO JEST WIDMO? WIDMO NMR wykres ilości kwantów energii promieniowania elektromagnetycznego pochłanianego przez próbkę w funkcji

Bardziej szczegółowo

Zastosowanie spektroskopii NMR do badania związków pochodzenia naturalnego

Zastosowanie spektroskopii NMR do badania związków pochodzenia naturalnego Zastosowanie spektroskopii NMR do badania związków pochodzenia naturalnego Literatura W. Zieliński, A. Rajcy, Metody spektroskopowe i ich zastosowanie do identyfikacji związków organicznych, Wydawnictwa

Bardziej szczegółowo

Spektroskopia magnetyczna

Spektroskopia magnetyczna Spektroskopia magnetyczna Literatura Zbigniew Kęcki, Podstawy spektroskopii molekularnej, PWN W- wa 1992 lub nowsze wydanie Przypomnienie 1) Mechanika ruchu obrotowego - moment bezwładności, moment pędu,

Bardziej szczegółowo

Spin jądra atomowego. Podstawy fizyki jądrowej - B.Kamys 1

Spin jądra atomowego. Podstawy fizyki jądrowej - B.Kamys 1 Spin jądra atomowego Nukleony mają spin ½: Całkowity kręt nukleonu to: Spin jądra to suma krętów nukleonów: Dla jąder parzysto parzystych, tj. Z i N parzyste ( ee = even-even ) I=0 Dla jąder nieparzystych,

Bardziej szczegółowo

Spektroskopia. Spotkanie pierwsze. Prowadzący: Dr Barbara Gil

Spektroskopia. Spotkanie pierwsze. Prowadzący: Dr Barbara Gil Spektroskopia Spotkanie pierwsze Prowadzący: Dr Barbara Gil Temat rozwaŝań Spektroskopia nauka o powstawaniu i interpretacji widm powstających w wyniku oddziaływań wszelkich rodzajów promieniowania na

Bardziej szczegółowo

Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm)

Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm) SPEKTROSKOPIA W PODCZERWIENI Podczerwień bliska: 14300-4000 cm -1 (0,7-2,5 µm) Podczerwień właściwa: 4000-700 cm -1 (2,5-14,3 µm) Podczerwień daleka: 700-200 cm -1 (14,3-50 µm) WIELKOŚCI CHARAKTERYZUJĄCE

Bardziej szczegółowo

Badania trybologiczne materiałów inżynierskich Wyznaczanie przepuszczalności par wody przez materiały opakowań DWUMIESIĘCZNIK 3/ 2018

Badania trybologiczne materiałów inżynierskich Wyznaczanie przepuszczalności par wody przez materiały opakowań DWUMIESIĘCZNIK 3/ 2018 LABORATORIA APARATURA BADANIA ISSN-1427-5619 3/ 2018 DWUMIESIĘCZNIK Badania trybologiczne materiałów inżynierskich Wyznaczanie przepuszczalności par wody przez materiały opakowań ŚRODOWISKO TECHNIKI I

Bardziej szczegółowo

Magnetyczny Rezonans Jądrowy (NMR)

Magnetyczny Rezonans Jądrowy (NMR) Magnetyczny Rezonans Jądrowy (NMR) obserwacja zachowania (precesji) jąder atomowych obdarzonych spinem w polu magnetycznym Magnetic Resonance Imaging (MRI) ( obrazowanie rezonansem magnetycznym potocznie

Bardziej szczegółowo

Spektroskopia magnetycznego rezonansu jądrowego (NMR)

Spektroskopia magnetycznego rezonansu jądrowego (NMR) Spektroskopia magnetycznego rezonansu jądrowego (NM) Fizyczne podstawy spektroskopii NM W spektroskopii magnetycznego rezonansu jądrowego używane jest promieniowanie elektromagnetyczne o częstościach z

Bardziej szczegółowo

Optyczna spektroskopia oscylacyjna. w badaniach powierzchni

Optyczna spektroskopia oscylacyjna. w badaniach powierzchni Optyczna spektroskopia oscylacyjna w badaniach powierzchni Zalety oscylacyjnej spektroskopii optycznej uŝycie fotonów jako cząsteczek wzbudzających i rejestrowanych nie wymaga uŝycia próŝni (moŝliwość

Bardziej szczegółowo

Atomy w zewnętrznym polu magnetycznym i elektrycznym

Atomy w zewnętrznym polu magnetycznym i elektrycznym Atomy w zewnętrznym polu magnetycznym i elektrycznym 1. Kwantowanie przestrzenne momentów magnetycznych i rezonans spinowy 2. Efekt Zeemana (normalny i anomalny) oraz zjawisko Paschena-Backa 3. Efekt Starka

Bardziej szczegółowo

Atomy mają moment pędu

Atomy mają moment pędu Atomy mają moment pędu Model na rysunku jest modelem tylko klasycznym i jak wiemy z mechaniki kwantowej, nie odpowiada dokładnie rzeczywistości Jednakże w mechanice kwantowej elektron nadal ma orbitalny

Bardziej szczegółowo

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej

Bardziej szczegółowo

NMR Nuclear Magnetic Resonance. Co to jest?

NMR Nuclear Magnetic Resonance. Co to jest? 1 NMR Nuclear Magnetic Resonance Co to jest? Spektroskopia NMR ang. Nuclear Magnetic Resonance Spektroskopia Magnetycznego Rezonansu Jądrowego (MRJ) Wykorzystuje własności magnetyczne jąder atomowych Spektroskopia

Bardziej szczegółowo

Atomowa budowa materii

Atomowa budowa materii Atomowa budowa materii Wszystkie obiekty materialne zbudowane są z tych samych elementów cząstek elementarnych Cząstki elementarne oddziałują tylko kilkoma sposobami oddziaływania wymieniając kwanty pól

Bardziej szczegółowo

ZASADY ZALICZENIA PRZEDMIOTU MBS

ZASADY ZALICZENIA PRZEDMIOTU MBS ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll

Bardziej szczegółowo

II.6 Atomy w zewnętrznym polu magnetycznym

II.6 Atomy w zewnętrznym polu magnetycznym II.6 Atomy w zewnętrznym polu magnetycznym 1. Kwantowanie przestrzenne w zewnętrznym polu magnetycznym. Model wektorowy raz jeszcze 2. Zjawisko Zeemana Normalne zjawisko Zeemana i jego wyjaśnienie w modelu

Bardziej szczegółowo

Atom wodoru w mechanice kwantowej. Równanie Schrödingera

Atom wodoru w mechanice kwantowej. Równanie Schrödingera Fizyka atomowa Atom wodoru w mechanice kwantowej Moment pędu Funkcje falowe atomu wodoru Spin Liczby kwantowe Poprawki do równania Schrödingera: struktura subtelna i nadsubtelna; przesunięcie Lamba Zakaz

Bardziej szczegółowo

Własności jąder w stanie podstawowym

Własności jąder w stanie podstawowym Własności jąder w stanie podstawowym Najważniejsze liczby kwantowe charakteryzujące jądro: A liczba masowa = liczbie nukleonów (l. barionów) Z liczba atomowa = liczbie protonów (ładunek) N liczba neutronów

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy

Bardziej szczegółowo

Fizykochemiczne metody w kryminalistyce. Wykład 7

Fizykochemiczne metody w kryminalistyce. Wykład 7 Fizykochemiczne metody w kryminalistyce Wykład 7 Stosowane metody badawcze: 1. Klasyczna metoda analityczna jakościowa i ilościowa 2. badania rentgenostrukturalne 3. Badania spektroskopowe 4. Metody chromatograficzne

Bardziej szczegółowo

Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR

Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR Szczególnym i bardzo charakterystycznym rodzajem oddziaływań międzycząsteczkowych jest wiązanie wodorowe. Powstaje ono między molekułami,

Bardziej szczegółowo

Liczby kwantowe elektronu w atomie wodoru

Liczby kwantowe elektronu w atomie wodoru Liczby kwantowe elektronu w atomie wodoru Efekt Zeemana Atom wodoru wg mechaniki kwantowej ms = magnetyczna liczba spinowa ms = -1/2, do pełnego opisu stanu elektronu potrzebna jest ta liczba własność

Bardziej szczegółowo

Spektroskopia molekularna. Ćwiczenie nr 1. Widma absorpcyjne błękitu tymolowego

Spektroskopia molekularna. Ćwiczenie nr 1. Widma absorpcyjne błękitu tymolowego Spektroskopia molekularna Ćwiczenie nr 1 Widma absorpcyjne błękitu tymolowego Doświadczenie to ma na celu zaznajomienie uczestników ćwiczeń ze sposobem wykonywania pomiarów metodą spektrofotometryczną

Bardziej szczegółowo

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS Zagadnienia teoretyczne. Spektrofotometria jest techniką instrumentalną, w której do celów analitycznych wykorzystuje się przejścia energetyczne zachodzące

Bardziej szczegółowo

Ćwiczenie 10 Badanie protonowego rezonansu magnetycznego

Ćwiczenie 10 Badanie protonowego rezonansu magnetycznego Laboratorium z Fizyki Materiałów 2010 Ćwiczenie 10 adanie protonowego rezonansu magnetycznego Rys. 1 Układ pomiarowy. 1. Wprowadzenie teoretyczne Jedną z podstawowych własności jądra atomowego jest jego

Bardziej szczegółowo

Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego

Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego Wykład 5 Widmo rotacyjne dwuatomowego rotatora sztywnego W5. Energia molekuł Przemieszczanie się całych molekuł w przestrzeni - Ruch translacyjny - Odbywa się w fazie gazowej i ciekłej, w fazie stałej

Bardziej szczegółowo

Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego

Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Paweł Szroeder Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Wykład VI Magnetyczny rezonans jądrowy (NMR) Metody obserwacji NMR: indukcji jądrowej (Blocha), absorpcyjna (Purcella)

Bardziej szczegółowo

impulsowy NMR - podsumowanie

impulsowy NMR - podsumowanie impulsowy NMR - podsumowanie impulsy RF obracają wektor namagnesowania o żądany kąt wokół wybranej osi np. x, -x, y, -y (oś obrotu wybiera się przez regulowanie fazy sygnału względem fazy odnośnika, kąt

Bardziej szczegółowo

Podstawy Fizyki Jądrowej

Podstawy Fizyki Jądrowej Podstawy Fizyki Jądrowej III rok Fizyki Kurs WFAIS.IF-D008.0 Składnik egzaminu licencjackiego (sesja letnia)! OPCJA: Po uzyskaniu zaliczenia z ćwiczeń możliwość zorganizowania ustnego egzaminu (raczej

Bardziej szczegółowo

Metody rezonansowe. Magnetyczny rezonans jądrowy Magnetometr protonowy

Metody rezonansowe. Magnetyczny rezonans jądrowy Magnetometr protonowy Metody rezonansowe Magnetyczny rezonans jądrowy Magnetometr protonowy Co należy wiedzieć Efekt Zeemana, precesja Larmora Wektor magnetyzacji w podstawowym eksperymencie NMR Transformacja Fouriera Procesy

Bardziej szczegółowo

PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR

PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR PRODUKTY CHEMICZNE Ćwiczenie nr 3 Oznaczanie zawartości oksygenatów w paliwach metodą FTIR WSTĘP Metody spektroskopowe Spektroskopia bada i teoretycznie wyjaśnia oddziaływania pomiędzy materią będącą zbiorowiskiem

Bardziej szczegółowo

WIDMA W POLU MAGNETYCZNYM SPEKTROSKOPIA NMR

WIDMA W POLU MAGNETYCZNYM SPEKTROSKOPIA NMR WIDMA W POLU MAGNETYCZNYM SPEKTROSKOPIA NMR Spektroskopia NMR Co to jest? Zjawisko jądrowego rezonansu magnetycznego jest oparte na oddziaływaniu pomiędzy dipolem magnetycznym jądra a zewnętrznym polem

Bardziej szczegółowo

Cząstki elementarne. Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków.

Cząstki elementarne. Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków. Cząstki elementarne Składnikami materii są leptony, mezony i bariony. Leptony są niepodzielne. Mezony i bariony składają się z kwarków. Cząstki elementarne Leptony i kwarki są fermionami mają spin połówkowy

Bardziej szczegółowo

Spektroskopia molekularna. Spektroskopia w podczerwieni

Spektroskopia molekularna. Spektroskopia w podczerwieni Spektroskopia molekularna Ćwiczenie nr 4 Spektroskopia w podczerwieni Spektroskopia w podczerwieni (IR) jest spektroskopią absorpcyjną, która polega na pomiarach promieniowania elektromagnetycznego pochłanianego

Bardziej szczegółowo

II.3 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy

II.3 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy II.3 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy 1. Atom helu: struktura poziomów, reguły wyboru, 2. Zakaz Pauliego, 3. Moment pędu w atomach wieloelektronowych: sprzężenie LS i

Bardziej szczegółowo

W latach dwudziestych XX wieku pojawiły się koncepcje teoretyczne, które pozwoliły przewidzieć jądrowy rezonans magnetyczny, przez szereg lat eksperymentatorzy usiłowali bez skutku odkryć to zjawisko doświadczalnie.

Bardziej szczegółowo

III.1 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy

III.1 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy III.1 Atom helu i zakaz Pauliego. Atomy wieloelektronowe. Układ okresowy r. akad. 2004/2005 1. Atom helu: struktura poziomów, reguły wyboru, 2. Zakaz Pauliego, 3. Moment pędu w atomach wieloelektronowych:

Bardziej szczegółowo

SPEKTROSKOPIA MAGNETYCZNEGO REZONANSU JĄDROWEGO IZOTOPÓW INNYCH NIś 1 H i 13 C

SPEKTROSKOPIA MAGNETYCZNEGO REZONANSU JĄDROWEGO IZOTOPÓW INNYCH NIś 1 H i 13 C SPEKTROSKOPIA MAGETYZEGO REZOASU JĄDROWEGO IZOTOPÓW IY Iś 1 i 13 o moŝna zmierzyć metodami MRJ? e Li Be B O F e a Mg Al Si P S l Ar K a Sc Ti V r Mn Fe o i u Zn Ga Ge As Se Br Kr Rb Sr Y Zr b Mo Tc Ru

Bardziej szczegółowo

Wykład FIZYKA II. 5. Magnetyzm. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA II. 5. Magnetyzm.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA II 5. Magnetyzm Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka2.html MAGNESY Pierwszymi poznanym magnesem był magnetyt

Bardziej szczegółowo

Techniki analityczne. Podział technik analitycznych. Metody spektroskopowe. Spektroskopia elektronowa

Techniki analityczne. Podział technik analitycznych. Metody spektroskopowe. Spektroskopia elektronowa Podział technik analitycznych Techniki analityczne Techniki elektrochemiczne: pehametria, selektywne elektrody membranowe, polarografia i metody pokrewne (woltamperometria, chronowoltamperometria inwersyjna

Bardziej szczegółowo

Elektronowa struktura atomu

Elektronowa struktura atomu Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii

Bardziej szczegółowo

XPS (ESCA) X-ray Photoelectron Spectroscopy (Electron Spectroscopy for Chemical Analysis)

XPS (ESCA) X-ray Photoelectron Spectroscopy (Electron Spectroscopy for Chemical Analysis) XPS (ESCA) X-ray Photoelectron Spectroscopy (Electron Spectroscopy for Chemical Analysis) Wykorzystuje miękkie promieniowanie rentgenowskie o E > 100eV, pozwalające na wybicie elektronów z orbitali rdzenia

Bardziej szczegółowo

II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym

II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym II.4 Kwantowy moment pędu i kwantowy moment magnetyczny w modelu wektorowym Jan Królikowski Fizyka IVBC 1 II.4.1 Ogólne własności wektora kwantowego momentu pędu Podane poniżej własności kwantowych wektorów

Bardziej szczegółowo

SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa przedmiotu SYLABUS A. Informacje ogólne

SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa przedmiotu SYLABUS A. Informacje ogólne SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów

Bardziej szczegółowo

Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR

Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR Ćwiczenie 3 Pomiar równowagi keto-enolowej metodą spektroskopii IR i NMR 1. Wstęp Związki karbonylowe zawierające w położeniu co najmniej jeden atom wodoru mogą ulegać enolizacji przez przesunięcie protonu

Bardziej szczegółowo

Ćwiczenie 3 ANALIZA JAKOŚCIOWA PALIW ZA POMOCĄ SPEKTROFOTOMETRII FTIR (Fourier Transform Infrared Spectroscopy)

Ćwiczenie 3 ANALIZA JAKOŚCIOWA PALIW ZA POMOCĄ SPEKTROFOTOMETRII FTIR (Fourier Transform Infrared Spectroscopy) POLITECHNIKA ŁÓDZKA WYDZIAŁ INśYNIERII PROCESOWEJ I OCHRONY ŚRODOWISKA KATEDRA TERMODYNAMIKI PROCESOWEJ K-106 LABORATORIUM KONWENCJONALNYCH ŹRÓDEŁ ENERGII I PROCESÓW SPALANIA Ćwiczenie 3 ANALIZA JAKOŚCIOWA

Bardziej szczegółowo

PRACOWNIA CHEMII. Wygaszanie fluorescencji (Fiz4)

PRACOWNIA CHEMII. Wygaszanie fluorescencji (Fiz4) PRACOWNIA CHEMII Ćwiczenia laboratoryjne dla studentów II roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Projektowanie molekularne i bioinformatyka Wygaszanie fluorescencji

Bardziej szczegółowo

Wykład Atom o wielu elektronach Laser Rezonans magnetyczny

Wykład Atom o wielu elektronach Laser Rezonans magnetyczny Wykład 21. 12.2016 Atom o wielu elektronach Laser Rezonans magnetyczny Jeszcze o atomach Przypomnienie: liczby kwantowe elektronu w atomie wodoru, zakaz Pauliego, powłoki, podpowłoki, orbitale, Atomy wieloelektronowe

Bardziej szczegółowo

ANALITYKA W KONTROLI JAKOŚCI

ANALITYKA W KONTROLI JAKOŚCI ANALITYKA W KONTROLI JAKOŚCI ANALIZA ŚLADÓW METODA ICP-OES Optyczna spektroskopia emisyjna ze wzbudzeniem w indukcyjnie sprzężonej plazmie WYKŁAD 4 Rodzaje widm i mechanizm ich powstania PODSTAWY SPEKTROSKOPII

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Oddziaływanie cząstek z materią

Oddziaływanie cząstek z materią Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki

Bardziej szczegółowo

METODY SPEKTROSKOPOWE II. UV-VIS od teorii do praktyki Jakub Grynda Katedra Technologii Leków i Biochemii

METODY SPEKTROSKOPOWE II. UV-VIS od teorii do praktyki Jakub Grynda Katedra Technologii Leków i Biochemii METODY SPEKTROSKOPOWE II UV-VIS od teorii do praktyki Jakub Grynda Katedra Technologii Leków i Biochemii Pokój nr 1 w Chemii B Godziny konsultacji: Poniedziałek 11-13 E-mail: jakub.grynda@gmail.com PLAN

Bardziej szczegółowo

Techniki Jądrowe w Diagnostyce i Terapii Medycznej

Techniki Jądrowe w Diagnostyce i Terapii Medycznej Techniki Jądrowe w Diagnostyce i Terapii Medycznej Wykład 5, 4 kwietnia 2017 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Wykład 5 NMR, MRI,

Bardziej szczegółowo

falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi

falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

Zjawisko interferencji fal

Zjawisko interferencji fal Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

Ćw. 5 Absorpcjometria I

Ćw. 5 Absorpcjometria I Ćw. 5 Absorpcjometria I Absorpcja promieniowania elektromagnetycznego z obszaru widzialnego i nadfioletowego przez atomy i cząsteczki powoduje zmianę ich stanu elektronowego. Zjawiska te moŝna badać za

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

Kulka krąży wokół jądra po orbicie, o ustalonych parametrach, które mogą się zmieniać tylko skokowo, kiedy elektron przeskakuje na inną orbitę.

Kulka krąży wokół jądra po orbicie, o ustalonych parametrach, które mogą się zmieniać tylko skokowo, kiedy elektron przeskakuje na inną orbitę. Widmo elektronowe Elektrony w molekule poruszają się wokół jąder, mają więc pewną energię kinetyczną. Ponieważ znajdują się one w polu sil elektrostatycznych przyciągania przez jądra i odpychania przez

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 4 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14

Bardziej szczegółowo

IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni

IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni IR II 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni Promieniowanie podczerwone ma naturę elektromagnetyczną i jego absorpcja przez materię podlega tym samym prawom,

Bardziej szczegółowo

Badanie protonowego rezonansu magnetycznego

Badanie protonowego rezonansu magnetycznego adanie protonowego rezonansu magnetycznego Rys. 1 Układ pomiarowy. Wprowadzenie teoretyczne Jedną z podstawowych własności jądra atomowego jest jego moment pędu. Naukowcy w trakcie badań zaobserwowali

Bardziej szczegółowo

Wykład Budowa atomu 3

Wykład Budowa atomu 3 Wykład 14. 12.2016 Budowa atomu 3 Model atomu według mechaniki kwantowej Równanie Schrödingera dla atomu wodoru i jego rozwiązania Liczby kwantowe n, l, m l : - Kwantowanie energii i liczba kwantowa n

Bardziej szczegółowo

II.1 Serie widmowe wodoru

II.1 Serie widmowe wodoru II.1 Serie widmowe wodoru Jan Królikowski Fizyka IVBC 1 II.1 Serie widmowe wodoru W obszarze widzialnym wystepują 3 silne linie wodoru: H α (656.3 nm), H β (486.1 nm) i H γ (434.0 nm) oraz szereg linii

Bardziej szczegółowo

Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego

Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Paweł Szroeder Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Wykład I Moment magnetyczny a moment pędu czynnik g. Precesja Larmora. Zjawisko rezonansu magnetycznego. Fenomenologiczny

Bardziej szczegółowo

Podstawy fizyki kwantowej i budowy materii

Podstawy fizyki kwantowej i budowy materii Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 12 9 stycznia 2017 A.F.Żarnecki Podstawy

Bardziej szczegółowo

FIZYKOCHEMICZNE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz

FIZYKOCHEMICZNE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz FIZYKOCEMICZNE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYC Witold Danikiewicz Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01-224 Warszawa Interpretacja widm NMR, IR i MS prostych cząsteczek Czyli

Bardziej szczegółowo

Budowa atomu Poziom: podstawowy Zadanie 1. (1 pkt.)

Budowa atomu Poziom: podstawowy Zadanie 1. (1 pkt.) Budowa atomu Poziom: podstawowy Zadanie 1. (1 pkt.) Zadanie 1 2 3 4 5 6 7 8 9 10 Punkty Atomy pewnego pierwiastka w stanie podstawowym mają następującą konfigurację elektronów walencyjnych: 2s 2 2p 3 (

Bardziej szczegółowo

Wykład FIZYKA II. 5. Magnetyzm

Wykład FIZYKA II. 5. Magnetyzm Wykład FIZYKA II 5. Magnetyzm Katedra Optyki i Fotoniki Wydział Podstawowych Problemów Techniki Politechnika Wrocławska http://www.if.pwr.wroc.pl/~wozniak/fizyka2.html ELEKTRYCZNOŚĆ I MAGNETYZM q q magnetyczny???

Bardziej szczegółowo

Spektroskopia UV-VIS zagadnienia

Spektroskopia UV-VIS zagadnienia Spektroskopia absorbcyjna to dziedzina, która obejmuje metody badania materii przy użyciu promieniowania elektromagnetycznego, które może z tą materią oddziaływać. Spektroskopia UV-VS zagadnienia promieniowanie

Bardziej szczegółowo

JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI?

JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? Podstawowe miary masy i objętości stosowane przy oznaczaniu ilości kwasów nukleinowych : 1g (1) 1l (1) 1mg (1g x 10-3 ) 1ml (1l x 10-3 ) 1μg (1g x 10-6 ) 1μl (1l x 10-6 ) 1ng (1g x 10-9 ) 1pg (1g x 10-12

Bardziej szczegółowo

2. Metody, których podstawą są widma atomowe 32

2. Metody, których podstawą są widma atomowe 32 Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola

Bardziej szczegółowo

WYZNACZANIE STAŁEJ DYSOCJACJI p-nitrofenolu METODĄ SPEKTROFOTOMETRII ABSORPCYJNEJ

WYZNACZANIE STAŁEJ DYSOCJACJI p-nitrofenolu METODĄ SPEKTROFOTOMETRII ABSORPCYJNEJ Ćwiczenie nr 13 WYZNCZNIE STŁEJ DYSOCJCJI p-nitrofenolu METODĄ SPEKTROFOTOMETRII BSORPCYJNEJ I. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie metodą spektrofotometryczną stałej dysocjacji słabego kwasu,

Bardziej szczegółowo

Model uogólniony jądra atomowego

Model uogólniony jądra atomowego Model uogólniony jądra atomowego Jądro traktowane jako chmura nukleonów krążąca w średnim potencjale Średni potencjał może być sferyczny ale także trwale zdeformowany lub może zależeć od czasu (wibracje)

Bardziej szczegółowo

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków Budowa atomów Atomy wieloelektronowe Układ okresowy pierwiastków Model atomu Bohra atom zjonizowany (ciągłe wartości energii) stany wzbudzone jądro Energia (ev) elektron orbita stan podstawowy Poziomy

Bardziej szczegółowo

SKUTECZNOŚĆ IZOLACJI JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI?

SKUTECZNOŚĆ IZOLACJI JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? JAK ZMIERZYĆ ILOŚĆ KWASÓW NUKLEINOWYCH PO IZOLACJI? SKUTECZNOŚĆ IZOLACJI Wydajność izolacji- ilość otrzymanego kwasu nukleinowego Efektywność izolacji- jakość otrzymanego kwasu nukleinowego w stosunku do ilości Powtarzalność izolacji- zoptymalizowanie procedury

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 14 Janusz Andrzejewski Atom wodoru Wczesne modele atomu -W czasach Newtona atom uważany była za małą twardą kulkę co dość dobrze sprawdzało się w rozważaniach dotyczących kinetycznej teorii

Bardziej szczegółowo

Temat 1: Budowa atomu zadania

Temat 1: Budowa atomu zadania Budowa atomu Zadanie 1. (0-1) Dany jest atom sodu Temat 1: Budowa atomu zadania 23 11 Na. Uzupełnij poniższą tabelkę. Liczba masowa Liczba powłok elektronowych Ładunek jądra Liczba nukleonów Zadanie 2.

Bardziej szczegółowo

SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: I. Animacje na slajdach przygotował mgr inż.

SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE DR INŻ. TOMASZ LASKOWSKI CZĘŚĆ: I. Animacje na slajdach przygotował mgr inż. SPEKTROSKOPIA NMR PODEJŚCIE PRAKTYCZNE CZĘŚĆ: I DR INŻ. TOMASZ LASKOWSKI Animacje na slajdach 13-30 prgotował mgr inż. Marcin Płosiński MOTTO WYKŁADU Nie treba końcć studiów na kierunku elektronika, ab

Bardziej szczegółowo

Wykłady z Fizyki. Kwanty

Wykłady z Fizyki. Kwanty Wykłady z Fizyki 10 Kwanty Zbigniew Osiak OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K komentarz

Bardziej szczegółowo

Podstawowe własności jąder atomowych

Podstawowe własności jąder atomowych Podstawowe własności jąder atomowych 1. Ilość protonów i neutronów Z, N 2. Masa jądra M j = M p + M n - B 2 2 Q ( M c ) ( M c ) 3. Energia rozpadu p 0 k 0 Rozpad zachodzi jeżeli Q > 0, ta nadwyżka energii

Bardziej szczegółowo

Energetyka Jądrowa. Wykład 28 lutego Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów

Energetyka Jądrowa. Wykład 28 lutego Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów Energetyka Jądrowa Wykład 8 lutego 07 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Model atomu. Promieniowanie atomów 8.II.07 EJ - Wykład / r

Bardziej szczegółowo

CHEMIA 1. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna ATOM.

CHEMIA 1. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna ATOM. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna tel. 0501 38 39 55 www.medicus.edu.pl CHEMIA 1 ATOM Budowa atomu - jądro, zawierające

Bardziej szczegółowo

Zalecenia projektowe i montaŝowe dotyczące ekranowania. Wykład Podstawy projektowania A.Korcala

Zalecenia projektowe i montaŝowe dotyczące ekranowania. Wykład Podstawy projektowania A.Korcala Zalecenia projektowe i montaŝowe dotyczące ekranowania Wykład Podstawy projektowania A.Korcala Mechanizmy powstawania zakłóceń w układach elektronicznych. Głównymi źródłami zakłóceń są: - obce pola elektryczne

Bardziej szczegółowo

Stara i nowa teoria kwantowa

Stara i nowa teoria kwantowa Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż

Bardziej szczegółowo

Ćwiczenie 31. Zagadnienia: spektroskopia absorpcyjna, prawa absorpcji, budowa i działanie. Wstęp

Ćwiczenie 31. Zagadnienia: spektroskopia absorpcyjna, prawa absorpcji, budowa i działanie. Wstęp Ćwiczenie 31 Metodyka poprawnych i dokładnych pomiarów widm absorbancji w zakresie UV-VIS. Wpływ monochromatyczności promieniowania i innych parametrów pomiarowych na kształt widm absorpcji i wartości

Bardziej szczegółowo

MAGNETYCZNY REZONANS JĄDROWY (MRJ) NUCLEAR MAGNETIC RESONANCE (NMR)

MAGNETYCZNY REZONANS JĄDROWY (MRJ) NUCLEAR MAGNETIC RESONANCE (NMR) MAGNETYCZNY REZONANS JĄDROWY (MRJ) 1 H MRJ, 13 C MRJ... NUCLEAR MAGNETIC RESONANCE (NMR) 1 H NMR, 13 C NMR... Program: 1. Podstawy ogólne (zjawisko fizyczne, wykonanie pomiaru, aparatura) 2. Spektroskopia

Bardziej szczegółowo

Elektronowa struktura atomu

Elektronowa struktura atomu Elektronowa struktura atomu Model atomu Bohra oparty na teorii klasycznych oddziaływań elektrostatycznych Elektrony mogą przebywać tylko w określonych stanach, zwanych stacjonarnymi, o określonej energii

Bardziej szczegółowo

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: ATOM WODORU Atom wodoru Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: U = 4πε Opis kwantowy: wykorzystując zasadę odpowiedniości

Bardziej szczegółowo

A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów

A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów Włodzimierz Wolczyński 40 FIZYKA JĄDROWA A - liczba nukleonów w jądrze (protonów i neutronów razem) Z liczba protonów A-Z liczba neutronów O nazwie pierwiastka decyduje liczba porządkowa Z, a więc ilość

Bardziej szczegółowo