Inżynieria Chemiczna Transport masy i ciepła

Wielkość: px
Rozpocząć pokaz od strony:

Download "Inżynieria Chemiczna Transport masy i ciepła"

Transkrypt

1

2 Inżynieria Chemiczna Transport masy i ciepła dr hab. inż. Agnieszka Gubernat gubernat@agh.edu.pl p.1.21; budynek B8

3 Wstęp Pierwsza zasada termodynamiki, przemiany termodynamiczne, praca techniczna

4 PLAN WYKŁADÓW 1. Wprowadzenie, podstawowe zasady, podstawowe zasady technologii chemicznej, schemat procesowy 2. Termodynamika procesów, energia, ciepło 3. Źródła energii, spalanie i właściwości paliw, niekonwencjonalne źródła energii 4. Temperatura, zerowa i trzecia zasada termodynamiki, entropia, termodynamiczna definicja temperatury, 5. Termometria, pomiary temperatury 6. Przepływ ciepła, mechanizmy wymiany ciepła, stałe materiałowe 7. Bilanse: masy, energii i pędu 8. Rozdrabnianie ciał stałych, klasyfikacja ziarnowa, metodyka pomiaru rozkładu i wielkości ziaren, 9. Płyny, statyka, dynamika, równanie ciągłości strugi, prawo Bernouliego 10. Opory przepływu, filtracja, opadanie cząstek w płynach, sedymentacja, 11. Pomiary prędkości i natężenia przepływu, 12. Homogenizacja zawiesin, ocena jednorodności, 13. Segregacja hydrauliczna, odpylanie i oczyszczanie gazów. 14. Reologia, modele reologiczne, zawiesiny i pasty,

5 SIŁA NAPĘDOWA Wszystkie procesy biegną pod wpływem sił. Rozkład w przestrzeni dowolnego parametru generującego siły napędowe możemy przedstawić w postaci linii lub powierzchni ekwipotencjalnych. Równanie powierzchni ekwipotencjalnych ma postać: Pomiędzy powierzchniami występują zmiany parametru G, generujące siły napędowe dążące do likwidacji tych różnic. Wartość zmian parametru G w dowolnym punkcie powierzchni w kierunku normalnej nosi nazwę gradientu pola. Gradient jest wektorem można go rozłożyć w układzie kartezjańskim. Γ x, y, z = C gradγ = lim Γ n n 0 = Γ n

6 gradγ = Γ x SIŁA NAPĘDOWA Siły gradientowe dążąc do wyrównania różnic parametru napotykają na opór. Natężenie (strumień) z jakim wyrównanie następuje jest równe iloczynowi współczynnika transportu, powierzchni przekroju i siły napędowej. Gęstość strumienia jest natomiast równe natężeniu podzielonemu przez powierzchnię przekroju. gdzie: K - współczynnik transportu = 1/R R opór I strumień (natężenie) D - siła i + Γ y I = KΔ j + Γ z k x i + y j + k = to gradγ = Γ z

7 SIŁA NAPĘDOWA Zatem: I = Δ R Równanie to przedstawia prawo Ohma. Jest to prawo uniwersalne, które stwierdza, że natężenie dowolnego procesu biegnącego w przyrodzie jest wprost proporcjonalne do siły go wywołującej a odwrotnie proporcjonalne do oporu, na jaki natrafia przebieg tego procesu.

8 ROZWÓJ POJĘCIA O CIEPLE 1. Arystoteles ( p.n.e.) stwierdził, że świat składa się z czterech składników: ogień, woda, powietrze i ziemia, 2. W XVIII wieku można było spotkać określenie ciepła jako coś materialnego: ogień jest to ciecz nader subtelna, wysoce elastyczna, która przenika wszystkie ciała o różnym od niej powinowactwie i zawarta jest w nich różnorako i w różnej ilości, która przeciwdziała siłom wzajemnego przyciągania (NEWTON) 3. Teoria Arystotelesa została ostatecznie podważona przez stwierdzenie, że powietrze nie jest jednolitym elementem i składa się m.in. z gazu Sylvestre CO 2 ( HELMOUT), 4. I połowa XVIII wieku, przynosi wynalazek termometru i skal termometrycznych, 5. Wynalazek ten stworzył argument podważający teorię Arystotelesa, gdyż stwierdzono, że oprócz ciepła widocznego poprzez zmiany wskazań termometru istnieje jeszcze ciepło występujące przy topnieniu lodu i wrzeniu wody,

9 ROZWÓJ POJĘCIA O CIEPLE c.d. 6. Odkrycie palnego powietrza czyli wodoru i mefistyczno-flogistycznego powietrza czyli azotu oraz stwierdzenie, że przy wybuchu palnego powietrza z odflogistowanym czyli tlenem powstaje woda (CAVENDISH), 7. LAVOISIER stwierdził, że ciała pala się w czystym powietrzu, które się zużywa, a ciężar powstałego ciała jest równy zmniejszeniu się ciężaru powietrza i spalonego ciała. 8. JOULE, MAYER, HELMHOLTZ I HIRN jednocześnie stwierdzili, że praca i ciepło są równoważne,

10 RÓWNOWAŻNOŚĆ CIEPŁA I PRACY Termodynamika zajmuje się zjawiskami i prawami zamiany ciepła na energię mechaniczną, Zjawiska te w bardzo szerokim ujęciu wykorzystywane są w technice i uzupełniane o dziedziny pokrewne (wymiana ciepła, spalanie) i tworzą dział TERMODYNAMIKI TECHNICZNEJ. PRAWO ZACHOWANIA ENERGII Wartość sumy energii układu izolowanego (odosobnionego) bez względu na jej formę (energia kinetyczna, energia potencjalna i inna), mimo, że na zewnątrz mogą zachodzić różne zjawiska, nie ulega zmianie. Jeżeli zatem do układu doprowadzimy L pracy to zostanie ona zużyta na wytworzenie ciepła. Q = L lub L = Q Stwierdzenie to jest słuszne dla układu izolowanego.

11 STAN TERMODYNAMICZNY Parametry stanu zbiór jednoczesnych wartości zdolnych do zmiany wielkości fizycznych. Stan termodynamiczny zmienia się, gdy zmieni się wartość jednego z parametrów stanu układu. PARAMETRY EKSTENSYWNE (GLOBALNE) określone dla całego ciała (zależą od ilości substancji). Są nimi: masa m objętość V; energia wewnętrzna U, entalpia H; entropia S; Istnieją wielkości ekstensywne nie będące parametrami stanu: praca L; ciepło Q; masa m; liczna moli n. (funkcje stanu, funkcje termodynamiczne) ZALEŻĄ OD WIELKOŚCI UKŁADU

12 STAN TERMODYNAMICZNY PARAMETRY INTENSYWNE (LOKALNE) mogą być jednakowe dla całego ciała lub jego części i są to (nie zależą od ilości substancji): temperatura T ciśnienie p. Parametry te można przypisać poszczególnym punktom w przestrzeni. (zależności funkcyjne to równania stanu) NIE ZALEŻĄ OD WIELKOŚCI UKŁADU Stan substancji nie można scharakteryzować za pomocą parametrów ekstensywnych ale za pomocą utworzonych z nich parametrów właściwych intensywnych np. objętości właściwej, gęstości, ciepła właściwego.

13 Parametry ekstensywne jak i intensywne mogą nie zmieniać się w czasie, zarówno przy braku działań otoczenia jak i przy ich istnieniu. Pierwszy z przypadków to stan RÓWNOWAGI. W stanie równowagi znoszą się działania o charakterze sił, ciśnień i nie występują przepływy substancji, ciepła, prądu elektrycznego. W stanie USTALONYM znoszą się działania zarówno o charakterze sił jak i przepływów. Stan równowagi oraz stan ustalony występują tylko wówczas gdy na układ działa ustalone pole sił zewnętrznych (niezmienne w czasie). W stanie ustalonym w układzie przepływowym równoważy się ilość dopływającej i odpływającej masy czy energii. Obowiązuje: ZASADA ZACHOWANIA MASY I ZASADA ZACHOWANIA ENERGII

14 Z punktu widzenia termodynamiki układ będący w stanie równowagi nie może wykonywać pracy w stosunku do otoczenia, a układ będący w stanie ustalonym może wykonywać pracę, mogą w nim występować zjawiska rozpraszania pracy i związana z tym produkcja entropii. Układ odosobniony (izolowany) Cechuje brak oddziaływań z otoczeniem. Układ ten samorzutnie osiąga stan równowagi. 3 energia równowaga metastabilna, 2 równowaga obojętna, 3 równowaga chwiejna, 4 równowaga trwała,

15 Obserwując ciało o znanej nam masie m, temperaturze T, objętości V i ciśnieniu p stwierdzimy, że zmieniając jeden z parametrów p, V lub T inicjujemy zmiany pozostałych. PARAMETRY NIEZALEŻNE ich znajomość wystarcza do wyznaczenia pozostałych parametrów stanu, RÓWNANIE STANU (RÓWNANIE CHARAKTERYSTYCZNE) CIAŁA f p, V, T = 0 Parametry stanu nie należące do niezależnych to FUNKCJE STANU.

16 ZEROWA ZASADA TERMODYNAMIKI DWA CIAŁA ZNAJDUJĄCE SIĘ W RÓWNOWADZE TERMICZNEJ Z TRZECIM CIAŁEM SĄ TAKŻE W RÓWNOWADZE ZE SOBĄ. (R. H. Fowler, 1931r.) lub JEŚLI SPOŚROD TRZECH UKLADÓW A, B i C ZNAJDUJĄCYCH SIĘ W STANIE RÓWNOWAGI TERMODYNAMICZNEJ KAŻDY Z UKLADÓW A i B JEST W RÓWNOWADZE TERMICZNEJ Z UKLADEM C, TO UKŁADY A i B SĄ ZE SOBĄ W RÓWNOWADZE TERMICZNEJ (MAJĄ TĘ SAMĄ TEMPERATURĘ). J. C. Maxwell Warunkiem koniecznym i wystarczającym Równowagi termicznej ciał Jest równość ich temperatur. Warunkiem równowagi termodynamicznej Jest występowanie równowagi Chemicznej, mechanicznej i termicznej.

17 ENERGIA WEWNĘTRZNA Opis makroskopowy (fenomenologiczny) Określa zdolność układu do oddawania ciepła do otoczenia. Zależy od temperatury układu, masy i rodzaju substancji z jakiej składa się układ. Opis mikroskopowy lub kinetyczno-molekularny Jest sumą energii kinetycznej i potencjalnej oddziaływań międzycząsteczkowych. Na energię kinetyczną molekuł składa się: energia ruchu postępowego, obrotowego i ruchu drgającego atomów w cząsteczkach.

18 ENERGIA WEWNĘTRZNA Energia wewnętrzna układu to suma energii cząsteczek ciała (kinetycznych i energii wzajemnych oddziaływań). W jej skład wchodzą: energia kinetyczna ruchu postępowego i obrotowego cząsteczek, energia drgań i obrotów atomów wewnątrz cząsteczek, energia potencjalna wzajemnych oddziaływań atomów i cząsteczek, energia elektronowa (energia elektronów w atomie - kinetyczna, potencjalna, grawitacji i potencjalna elektryczna), energia chemiczna związana z możliwością przebudowy drobin, energia jądrowa,

19 PIERWSZA ZASADA TERMODYNAMIKI Energię wewnętrzną układu można zmienić na dwa sposoby: PRZEZ CIEPŁO Jest to mikroskopowy sposób przekazu energii jeśli dwa ciała o różnych temperaturach stykają się ze sobą, cząsteczki zderzają się ze sobą, następuje przekaz energii od ciała o temperaturze wyższej do ciała o temperaturze niższej, PRZEZ PRACĘ Jest to makroskopowy sposób przekazu energii Przykład to sprężanie gazu, siła zewnętrzna przesuwająca tłok wykonuje pracę przez co wzrasta energia wewnętrzna gazu, Q = U + L

20 PIERWSZA ZASADA TERMODYNAMIKI CIEPŁO DOPROWADZONE DO NIERUCHOMEGO UKŁADU ZAMKNIĘTEGO JEST ZUŻYWANE NA ZWIĘKSZENIE JEGO ENERGII WEWNETRZNEJ I WYKONANIE PRACY ZEWNĘTRZNEJ. JEST RZECZĄ NIEMOŻLIWĄ SKONSTRUOWANIE PERPETUM MOBILE PIERWSZEGO RODZAJU TJ. SILNIKA PRACUJĄCEGO BEZ ZASILANIA ENERGIĄ Z ZEWNĄTRZ. Dokładniej można powiedzieć, że spadek energii wewnętrznej funkcji stanu w nieruchomym, zamkniętym układzie adiabatycznym jest równy pracy zewnętrznej. W nieruchomym układzie zamkniętym, nieadiabatycznym przyrost energii wewnętrznej następuje w wyniku doprowadzania ciepła do układu i pracy z zewnątrz układu. U = Q + L

21 PRACA ZEWNĘTRZNA Przy rozszerzaniu (rozprężaniu) się czynnika praca zostaje wykonana na zewnątrz przez pokonanie ciśnienia działającego ze wszystkich stron, praca zostaje wykonana przez układ. Układ zmniejsza swoją energię. dl = pdv L = p V Przy kurczeniu (sprężaniu) czynnik pochłania pracę zewnętrzną, praca jest wykonana na układzie. Układ powiększa swoją energię dl = pdv L = p V Ciepło dostarczone do układu Q>0 Ciepło oddane przez układ Q<0

22 PERPETUM MOBILE PIERWSZEGO RODZAJU (z łac. wiecznie ruchome) Wg pierwszej zasady termodynamiki ciepło doprowadzone do układu może wywoływać podniesienie energii wewnętrznej i może zamienić się w pracę mechaniczną. Wyobraźmy sobie silnik cieplny pracujący na zasadzie zamiany jednej formy energii w drugą, a więc energii cieplnej na mechaniczną, znajdujący się w równowadze wewnętrznej. Zatem doprowadzając ciepło przy zachowaniu stanu równowagi układu otrzyma się, w najlepszym wypadku, tyle pracy ile doprowadzono ciepła, oczywiście gdy układ ma pozostać w równowadze, czyli gdy jego energia wewnętrzna się nie zmienia. Bez doprowadzenia ciepła, pracy wykonać nie można.

23 PRACA TECHNICZNA Ekstensywną funkcją stanu jest entalpia oznaczona przez H. Jest ona zdefiniowana następującym równaniem: H = U + pv Entalpia jest sumą energii wewnętrznej układu i pracy zewnętrznej. Jeżeli w równaniu, wyrażającym pierwszą zasadę termodynamiki dla układu zamkniętego, wstawimy w miejsce energii wewnętrznej entalpię, wówczas praca zewnętrzna zamieni się na pracę techniczną i dla przemian odwracalnych równanie to przyjmie postać: Q 1,2 = H 2 H 1 + p 2 p 1 Vdp lub dq = dh Vdp czyli ciepło doprowadzone do czynnika powoduje przyrost entalpii oraz wykonanie pracy technicznej.

24 PRACA ZEWNĘTRZNA PRACA TECHNICZNA

25 ZNAK CIEPŁA I PRACY TERMODYNAMIKA TECHNICZNA Rozszerzanie (V 2 >V 1 ), rozprężanie (p 2 <p 1 ) i ogrzewanie plus Kompresja (V 2 <V 1 ), sprężanie (p 2 >p 1 ) i ochładzanie minus TERMODYNAMIKA KLASYCZNA PRACA - rozszerzanie (V 2 >V 1 ), rozprężanie (p 2 <p 1 ) minus CIEPŁO ochładzanie minus PRACA - kompresja (V 2 <V 1 ), sprężanie (p 2 >p 1 ) plus CIEPŁO ogrzewanie plus

26 PRZEMIANY TERMODYNAMICZNE Działania występujące między układem a otoczeniem prowadzące do zmian stanu układu, czyli zmian tylko jednego z prametrów stanu układu nazywane są przemianami termodynamicznymi. Przemiany mogą być odwracalne (występujące zwykle w teorii) i nieodwracalne (występujące zwykle w rzeczywistości). Przemiany: Izochoryczne V=const Izobaryczne p=const Izotermiczne T=const Izoentropowe S=const Adiabatyczna wówczas występują dwie zmienne niezależne;

27 PRZEMIANY TERMODYNAMICZNE Funkcje stanu są jednoznacznie określone przez parametry stanu, a zmiany są jednoznacznie określone przez jej wartości w stanach początkowym i końcowym. U = U końc. U pocz. A B

28 GAZ DOSKONAŁY Równanie stanu to zależność funkcji stanu od jednoczesnych wartości parametrów koniecznych do określenia stanów równowagi trwałej. Jest to zwykle jednowartościowa i ciągła zależność funkcyjna pomiędzy parametrami (funkcją) stanu a niezależnymi parametrami stanu. Gaz doskonały Nie występują w nim siły międzycząsteczkowe (nie przyciągają się wzajemnie), Jego cząsteczki rozpatruje się jako punkty materialne nie mające objętości, idealnie rozproszone, Cząsteczki są nieskończenie małe i sztywne (tzn. nie występują drgania), GAZ DOSKONAŁY W TERMODYNAMICE TO POJĘCIE RÓŻNE OD GAZU DOSKONAŁEGO W HYDROMECHANICE (ten jest nielepki)

29 GAZ DOSKONAŁY składa się z identycznych cząstek, cząsteczki poruszają się chaotycznie i podlegają prawom dynamiki Newtona, siły działają na cząsteczki tylko w momentach zderzeń, zderzenia są sprężyste, a czas ich trwania można pominąć, całkowita liczba cząsteczek jest bardzo duża, objętość cząsteczek jest zaniedbywalnie mała w porównaniu z objętością gazu, PARAMETRY CHARAKTERYZUJĄCE GAZ Temperatura, będąca miarą średniej energii kinetycznej ruchu gazu, Objętość, Ciśnienie, cząsteczki gazu zderzając się ze ścianką naczynia działają na nią siłami. Ciśnienie gazu zależy od liczby zderzeń (od gęstości) i od energii kinetycznej cząsteczek (od temperatury),

30 KINETYCZNA TEORIA GAZÓW Właściwości gazu doskonałego wg teorii kinetycznej: ilość molekuł jest bardzo duża równa N A, objętość cząstek 0, gaz znajduje się w naczyniu o kształcie sześcianu o krawędzi l, cząsteczki nie zderzają się ze sobą, jedynie uderzają w ścianki naczynia i zostają odbite sprężyście, kąt odbicia jest równy kątowi padania. średnia energia kinetyczna wytwarzana przez cząstkę temperatury gazu w K,

31 KINETYCZNA TEORIA GAZÓW DOSKONAŁYCH Siła całkowita: F c = pęd t = p t = 2m c l 2 u śr Ciśnienie całkowite: p = F c S = 2m c l u 2 śr 2 1 uśr = m 6l2 3V = 1 3 u śr 2 ρ Ciśnienie całkowite dla 1mola: p = N A m uśr 3V Średnia prędkość ruchu cząstek: 2 m p = N A 3V u śr 2 = RT V u śr = 3RT mn A

32 KINETYCZNA TEORIA GAZÓW DOSKONAŁYCH Energia kinetyczna postępowego (translacyjnego) ruchu cząstek: m u2 E k = = m 2 2 3RT N A m Dla jednej cząsteczki: E k = N A RT Dla n moli: E k = 3 2 nrt Dla 1 mola: E k = 3 2 RT

33 KINETYCZNA TEORIA GAZÓW DOSKONAŁYCH Temperatura: T = 2 3 E k mr = 1 3 u śr R Temperaturę bezwzględną definiujmy jako wielkość wprost proporcjonalną do średniej energii kinetycznej cząsteczek. Gaz jednoatomowy: Molowa energia wewnętrzna: U = 3 2 RT Molowa entalpia: H = 5 2 RT 2

34 Ciepło właściwe molowe przy V=const: C v = 3 2 R Ciepło właściwe molowe przy p=const C p = 5 2 R = C v + R Ciepło właściwe przy stałym ciśnieniu jest większe od ciepła właściwego przy stałej objętości C p > C v. Dzieje się tak dlatego, że w przemianie izobarycznej trzeba dostarczać ciepła nie tylko na zmianę energii wewnętrznej, związaną ze zmianą temperatury, ale i na wykonanie pracy związanej ze zmianą objętości podczas gdy w przemianie izochorycznej praca jest równa zeru.

35 RÓWNANIE STANU GAZU DOSKONAŁEGO pv = nrt gdzie: v objętość właściwa: v = V/m = 1/r [m 3 /kg] Ilość gazu wyrażoną w kg można przedstawić następująco: m 1 m 2 = Nm 1 Nm 2 = n 1M 1 n 2 M 2 n 1 =n 2 =n, bo masy molowe są wprost proporcjonalne do mas cząsteczkowych oraz mas cząsteczek rozpatrywanych gazów, Mol dowolnego gazu zwiera ściśle określoną liczbę cząsteczek czyli N A N A = 6,0268 ± 0, mol 1 Ilość gazu w T,p=const to: ρ 1 ρ 2 T,p = v 2 v 1 T,p = M 1 M 2 objętość właściwa v = V m

36 RÓWNANIE STANU GAZU DOSKONAŁEGO zatem v 1 M 1 = v 2 M 2 = vm = V = const Dlatego, w normalnych warunkach T=273,15 K; p=1atm=101325pa, objętość wynosi: V=22,4 m 3 /kmol

37 PRAWO AVOGADRO PRZY JEDNOKOWYCH CIŚNIENIACH I JEDNAKOWYCH TEMPERATURACH ZAWARTE SĄ W JEDNAKOWYCH OBJĘTOŚCIACH GAZÓW DOSKONAŁYCH JEDNAKOWE LICZBY CZĄSTEK. Przy jednakowych ciśnieniach i jednakowych temperaturach zawarte są w jednakowych objętościach gazów doskonałych jednakowe liczby ich moli lub kilomoli. Mol dowolnego gazu zawiera ściśle określoną liczbę cząstek tzw. liczbę Avogadro N A =6, /mol

38 PRAWO AVOGADRO Uniwersalna stała gazowa: p 1 V 1 = R 1 T 1 p 2 V 2 = R 2 T 2 Otrzymuje się (p,t=const): V 1 V 2 p,t R 2 = R 1 = M 1 R 2 R 1 M 2 Zatem, po uwzględnieniu wcześniejszych zależności: M 1 R 1 = M 2 R 2 = MR = R = const

39 PRAWO AVOGADRO M 1 R 1 = M 2 R 2 = MR = R = const Uniwersalna stała gazowa RM=8314 J/K kmol=8,314 J/K mol mr = nr dla n kilomoli pv = nrt dla 1 kilomola pv = RT R=k N A =(1, [J/K]) (6, [1/mol]) =8,314 [J/mol K]

Pierwsza zasada termodynamiki, przemiany termodynamiczne, praca techniczna

Pierwsza zasada termodynamiki, przemiany termodynamiczne, praca techniczna Pierwsza zasada termodynamiki, przemiany termodynamiczne, praca techniczna Wykłady TRANSPORT MASY I CIEPŁA Prowadzący: dr hab. inż. Agnieszka Gubernat pokój 1.21. budynek B-8 (tel. (0 12) 617 36 96; gubernat@agh.edu.pl)

Bardziej szczegółowo

GAZ DOSKONAŁY W TERMODYNAMICE TO POJĘCIE RÓŻNE OD GAZU DOSKONAŁEGO W HYDROMECHANICE (ten jest nielepki)

GAZ DOSKONAŁY W TERMODYNAMICE TO POJĘCIE RÓŻNE OD GAZU DOSKONAŁEGO W HYDROMECHANICE (ten jest nielepki) Właściwości gazów GAZ DOSKONAŁY Równanie stanu to zależność funkcji stanu od jednoczesnych wartości parametrów koniecznych do określenia stanów równowagi trwałej. Jest to zwykle jednowartościowa i ciągła

Bardziej szczegółowo

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne

Bardziej szczegółowo

Termodynamika Termodynamika

Termodynamika Termodynamika Termodynamika 1. Wiśniewski S.: Termodynamika techniczna, WNT, Warszawa 1980, 1987, 1993. 2. Jarosiński J., Wiejacki Z., Wiśniewski S.: Termodynamika, skrypt PŁ. Łódź 1993. 3. Zbiór zadań z termodynamiki

Bardziej szczegółowo

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki

Bardziej szczegółowo

Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej.

Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej. 1 Ciepło jest sposobem przekazywania energii z jednego ciała do drugiego. Ciepło przepływa pod wpływem różnicy temperatur. Jeżeli ciepło nie przepływa mówimy o stanie równowagi termicznej. Zerowa zasada

Bardziej szczegółowo

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,

Bardziej szczegółowo

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),

Bardziej szczegółowo

Fizyka 14. Janusz Andrzejewski

Fizyka 14. Janusz Andrzejewski Fizyka 14 Janusz Andrzejewski Egzaminy Egzaminy odbywają się w salach 3 oraz 314 budynek A1 w godzinach od 13.15 do 15.00 I termin 4 luty 013 poniedziałek II termin 1 luty 013 wtorek Na wykład zapisanych

Bardziej szczegółowo

Jednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m

Jednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m TERMODYNAMIKA Jednostki podstawowe Wielkość Nazwa Symbol Długość metr m Masa kilogramkg Czas sekunda s Natężenieprąduelektrycznego amper A Temperaturatermodynamicznakelwin K Ilość materii mol mol Światłość

Bardziej szczegółowo

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami WYKŁAD 2 TERMODYNAMIKA Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami Zasada zerowa Kiedy obiekt gorący znajduje się w kontakcie cieplnym z obiektem zimnym następuje

Bardziej szczegółowo

Wykład 7: Przekazywanie energii elementy termodynamiki

Wykład 7: Przekazywanie energii elementy termodynamiki Wykład 7: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ emperatura Fenomenologicznie wielkość informująca o tym jak ciepłe/zimne

Bardziej szczegółowo

DRUGA ZASADA TERMODYNAMIKI

DRUGA ZASADA TERMODYNAMIKI DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy

Bardziej szczegółowo

Wykład Praca (1.1) c Całka liniowa definiuje pracę wykonaną w kierunku działania siły. Reinhard Kulessa 1

Wykład Praca (1.1) c Całka liniowa definiuje pracę wykonaną w kierunku działania siły. Reinhard Kulessa 1 1.6 Praca Wykład 2 Praca zdefiniowana jest jako ilość energii dostarczanej przez siłę działającą na pewnej drodze i matematycznie jest zapisana jako: W = c r F r ds (1.1) ds F θ c Całka liniowa definiuje

Bardziej szczegółowo

DRUGA ZASADA TERMODYNAMIKI

DRUGA ZASADA TERMODYNAMIKI DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy

Bardziej szczegółowo

Termodynamika. Energia wewnętrzna ciał

Termodynamika. Energia wewnętrzna ciał ermodynamika Energia wewnętrzna ciał Cząsteczki ciał stałych, cieczy i gazów znajdują się w nieustannym ruchu oddziałując ze sobą. Sumę energii kinetycznej oraz potencjalnej oddziałujących cząsteczek nazywamy

Bardziej szczegółowo

Stany skupienia materii

Stany skupienia materii Stany skupienia materii Ciała stałe Ciecze Płyny Gazy Plazma 1 Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Temperatura i ciepło Praca jaką wykonuje gaz I zasada termodynamiki Przemiany gazowe izotermiczna izobaryczna izochoryczna adiabatyczna Co to jest temperatura? 40 39 38 Temperatura

Bardziej szczegółowo

3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach?

3. Przyrost temperatury gazu wynosi 20 C. Ile jest równy ten przyrost w kelwinach? 1. Która z podanych niżej par wielkości fizycznych ma takie same jednostki? a) energia i entropia b) ciśnienie i entalpia c) praca i entalpia d) ciepło i temperatura 2. 1 kj nie jest jednostką a) entropii

Bardziej szczegółowo

Gaz rzeczywisty zachowuje się jak modelowy gaz doskonały, gdy ma małą gęstość i umiarkowaną

Gaz rzeczywisty zachowuje się jak modelowy gaz doskonały, gdy ma małą gęstość i umiarkowaną F-Gaz doskonaly/ GAZY DOSKONAŁE i PÓŁDOSKONAŁE Gaz doskonały cząsteczki są bardzo małe w porównaniu z objętością naczynia, które wypełnia gaz cząsteczki poruszają się chaotycznie ruchem postępowym i zderzają

Bardziej szczegółowo

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 14. Termodynamika fenomenologiczna cz.ii Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html GAZY DOSKONAŁE Przez

Bardziej szczegółowo

TERMODYNAMIKA I TERMOCHEMIA

TERMODYNAMIKA I TERMOCHEMIA TERMODYNAMIKA I TERMOCHEMIA Termodynamika - opisuje zmiany energii towarzyszące przemianom chemicznym; dział fizyki zajmujący się zjawiskami cieplnymi. Termochemia - dział chemii zajmujący się efektami

Bardziej szczegółowo

Wykład 6: Przekazywanie energii elementy termodynamiki

Wykład 6: Przekazywanie energii elementy termodynamiki Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak

Bardziej szczegółowo

TERMODYNAMIKA Zajęcia wyrównawcze, Częstochowa, 2009/2010 Ewa Mandowska

TERMODYNAMIKA Zajęcia wyrównawcze, Częstochowa, 2009/2010 Ewa Mandowska 1. Bilans cieplny 2. Przejścia fazowe 3. Równanie stanu gazu doskonałego 4. I zasada termodynamiki 5. Przemiany gazu doskonałego 6. Silnik cieplny 7. II zasada termodynamiki TERMODYNAMIKA Zajęcia wyrównawcze,

Bardziej szczegółowo

Krótki przegląd termodynamiki

Krótki przegląd termodynamiki Wykład I Przejścia fazowe 1 Krótki przegląd termodynamiki Termodynamika fenomenologiczna oferuje makroskopowy opis układów statystycznych w stanie równowagi termodynamicznej bądź w stanach jemu bliskich.

Bardziej szczegółowo

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym). Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Kinetyczna teoria gazów AZ DOSKONAŁY Liczba rozważanych cząsteczek gazu jest bardzo duża. Średnia odległość między cząsteczkami jest znacznie większa niż ich rozmiar. Cząsteczki

Bardziej szczegółowo

Wykład 6: Przekazywanie energii elementy termodynamiki

Wykład 6: Przekazywanie energii elementy termodynamiki Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak

Bardziej szczegółowo

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI.

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI. 0. FALE, ELEMENY ERMODYNAMIKI I HYDRODY- NAMIKI. 0.9. Podstawy termodynamiki i raw gazowych. Podstawowe ojęcia Gaz doskonały: - cząsteczki są unktami materialnymi, - nie oddziałują ze sobą siłami międzycząsteczkowymi,

Bardziej szczegółowo

Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 4 Procesy izoparametryczne Entropia Druga zasada termodynamiki Janusz Brzychczyk, Instytut Fizyki UJ Pierwsza zasada termodynamiki procesy kwazistatyczne Zgodnie z pierwszą zasadą termodynamiki,

Bardziej szczegółowo

termodynamika fenomenologiczna

termodynamika fenomenologiczna termodynamika termodynamika fenomenologiczna własności termiczne ciał makroskopowych uogólnienie licznych badań doświadczalnych opis makro i mikro rezygnacja z przyczynowości znaczenie praktyczne p układ

Bardziej szczegółowo

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23 Stany materii Masa i rozmiary cząstek Masą atomową ierwiastka chemicznego nazywamy stosunek masy atomu tego ierwiastka do masy / atomu węgla C ( C - izoto węgla o liczbie masowej ). Masą cząsteczkową nazywamy

Bardziej szczegółowo

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku TERMODYNAMIKA przykłady zastosowań I.Mańkowski I LO w Lęborku 2016 UKŁAD TERMODYNAMICZNY Dla przykładu układ termodynamiczny stanowią zamknięty cylinder z ruchomym tłokiem, w którym znajduje się gaz tak

Bardziej szczegółowo

TERMODYNAMIKA FENOMENOLOGICZNA

TERMODYNAMIKA FENOMENOLOGICZNA TERMODYNAMIKA FENOMENOLOGICZNA Przedmiotem badań są własności układów makroskopowych w zaleŝności od temperatury. Układ makroskopowy Np. 1 mol substancji - tyle składników ile w 12 gramach węgla C 12 N

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Teoria kinetyczna INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Teoria kinetyczna Kierunek Wyróżniony rzez PKA 1 Termodynamika klasyczna Pierwsza zasada termodynamiki to rosta zasada zachowania energii, czyli ogólna reguła

Bardziej szczegółowo

3. Przejścia fazowe pomiędzy trzema stanami skupienia materii:

3. Przejścia fazowe pomiędzy trzema stanami skupienia materii: Temat: Zmiany stanu skupienia. 1. Energia sieci krystalicznej- wielkość dzięki której można oszacować siły przyciągania w krysztale 2. Energia wiązania sieci krystalicznej- ilość energii potrzebnej do

Bardziej szczegółowo

Podstawowe pojęcia 1

Podstawowe pojęcia 1 Tomasz Lubera Podstawowe pojęcia 1 Układ część przestrzeni wyodrębniona myślowo lub fizycznie z otoczenia Układ izolowany niewymieniający masy i energii z otoczeniem Układ zamknięty wymieniający tylko

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach

Bardziej szczegółowo

Wykład FIZYKA I. 15. Termodynamika statystyczna. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 15. Termodynamika statystyczna.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 15. Termodynamika statystyczna Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html TERMODYNAMIKA KLASYCZNA I TEORIA

Bardziej szczegółowo

Kinetyczna teoria gazów Termodynamika. dr Mikołaj Szopa Wykład

Kinetyczna teoria gazów Termodynamika. dr Mikołaj Szopa Wykład Kinetyczna teoria gazów Termodynamika dr Mikołaj Szopa Wykład 7.11.015 Kinetyczna teoria gazów Kinetyczna teoria gazów. Termodynamika Termodynamika klasyczna opisuje tylko wielkości makroskopowe takie

Bardziej szczegółowo

WYBRANE ZAGADNIENIA Z TERMODYNAMIKI TECHNICZNEJ

WYBRANE ZAGADNIENIA Z TERMODYNAMIKI TECHNICZNEJ Podstawowe pojęcia w termodynamice technicznej 1/1 WYBRANE ZAGADNIENIA Z TERMODYNAMIKI TECHNICZNEJ 1. WIADOMOŚCI WSTĘPNE 1.1. Przedmiot i zakres termodynamiki technicznej Termodynamika jest działem fizyki,

Bardziej szczegółowo

GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych.

GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych. TERMODYNAMIKA GAZ DOSKONAŁY Gaz doskonały to abstrakcyjny, matematyczny model gazu, chociaż wiele gazów (azot, tlen) w warunkach normalnych zachowuje się w przybliżeniu jak gaz doskonały. Model ten zakłada:

Bardziej szczegółowo

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał

Statyka Cieczy i Gazów. Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał Statyka Cieczy i Gazów Temat : Podstawy teorii kinetyczno-molekularnej budowy ciał 1. Podstawowe założenia teorii kinetyczno-molekularnej budowy ciał: Ciała zbudowane są z cząsteczek. Pomiędzy cząsteczkami

Bardziej szczegółowo

S ścianki naczynia w jednostce czasu przekazywany

S ścianki naczynia w jednostce czasu przekazywany FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym

Bardziej szczegółowo

Temperatura, ciepło, oraz elementy kinetycznej teorii gazów

Temperatura, ciepło, oraz elementy kinetycznej teorii gazów Temperatura, ciepło, oraz elementy kinetycznej teorii gazów opis makroskopowy równowaga termodynamiczna temperatura opis mikroskopowy średnia energia kinetyczna molekuł Równowaga termodynamiczna A B A

Bardziej szczegółowo

1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej

1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej 1. 1 J/(kg K) nie jest jednostką a) entropii właściwej b) indywidualnej stałej gazowej c) ciepła właściwego d) pracy jednostkowej 2. 1 kmol każdej substancji charakteryzuje się taką samą a) masą b) objętością

Bardziej szczegółowo

Podstawy fizyki sezon 1 X. Elementy termodynamiki

Podstawy fizyki sezon 1 X. Elementy termodynamiki Podstawy fizyki sezon 1 X. Elementy termodynamiki Agnieszka Obłąkowska-Mucha AGH, WFIiS, Katedra Oddziaływań i Detekcji Cząstek, D11, pok. 111 amucha@agh.edu.pl http://home.agh.edu.pl/~amucha Temodynamika

Bardziej szczegółowo

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36 Wykład 1 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 5 października 2015 1 / 36 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną

Bardziej szczegółowo

Fizykochemiczne podstawy inżynierii procesowej

Fizykochemiczne podstawy inżynierii procesowej Fizykochemiczne podstawy inżynierii procesowej Wykład II Podstawowe definicje cd. Podstawowe idealizacje termodynamiczne I i II Zasada termodynamiki Proste przemiany termodynamiczne PRZYPOMNIENIE Z OSTATNIEGO

Bardziej szczegółowo

Wykład 6. Klasyfikacja przemian fazowych

Wykład 6. Klasyfikacja przemian fazowych Wykład 6 Klasyfikacja przemian fazowych JS Klasyfikacja Ehrenfesta Ehrenfest klasyfikuje przemiany fazowe w oparciu o potencjał chemiczny. nieciągłość Przemiany fazowe pierwszego rodzaju pochodne potencjału

Bardziej szczegółowo

Równanie gazu doskonałego

Równanie gazu doskonałego Równanie gazu doskonałego Gaz doskonały to abstrakcyjny model gazu, który zakłada, że gaz jest zbiorem sprężyście zderzających się kulek. Wiele gazów w warunkach normalnych zachowuje się jak gaz doskonały.

Bardziej szczegółowo

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach

Bardziej szczegółowo

FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w

FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym

Bardziej szczegółowo

Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny

Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny Janusz Brzychczyk, Instytut Fizyki UJ Związek pomiędzy równaniem

Bardziej szczegółowo

Zasady termodynamiki

Zasady termodynamiki Zasady termodynamiki Energia wewnętrzna (U) Opis mikroskopowy: Jest to suma średnich energii kinetycznych oraz energii oddziaływań międzycząsteczkowych i wewnątrzcząsteczkowych. Opis makroskopowy: Jest

Bardziej szczegółowo

Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski

Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski Chemia Fizyczna Technologia Chemiczna II rok Wykład 1 Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski Kontakt,informacja i konsultacje Chemia A ; pokój 307 Telefon: 347-2769 E-mail: wojtek@chem.pg.gda.pl

Bardziej szczegółowo

Przemiany termodynamiczne

Przemiany termodynamiczne Przemiany termodynamiczne.:: Przemiana adiabatyczna ::. Przemiana adiabatyczna (Proces adiabatyczny) - proces termodynamiczny, podczas którego wyizolowany układ nie nawiązuje wymiany ciepła, lecz całość

Bardziej szczegółowo

Wykład 4. Przypomnienie z poprzedniego wykładu

Wykład 4. Przypomnienie z poprzedniego wykładu Wykład 4 Przejścia fazowe materii Diagram fazowy Ciepło Procesy termodynamiczne Proces kwazistatyczny Procesy odwracalne i nieodwracalne Pokazy doświadczalne W. Dominik Wydział Fizyki UW Termodynamika

Bardziej szczegółowo

4. 1 bar jest dokładnie równy a) Pa b) 100 Tr c) 1 at d) 1 Atm e) 1000 niutonów na metr kwadratowy f) 0,1 MPa

4. 1 bar jest dokładnie równy a) Pa b) 100 Tr c) 1 at d) 1 Atm e) 1000 niutonów na metr kwadratowy f) 0,1 MPa 1. Adiatermiczny wymiennik ciepła to wymiennik, w którym a) ciepło płynie od czynnika o niższej temperaturze do czynnika o wyższej temperaturze b) nie ma strat ciepła na rzecz otoczenia c) czynniki wymieniające

Bardziej szczegółowo

Ciepło właściwe. Autorzy: Zbigniew Kąkol Bartek Wiendlocha

Ciepło właściwe. Autorzy: Zbigniew Kąkol Bartek Wiendlocha Ciepło właściwe Autorzy: Zbigniew Kąkol Bartek Wiendlocha 01 Ciepło właściwe Autorzy: Zbigniew Kąkol, Bartek Wiendlocha W module zapoznamy się z jednym z kluczowych pojęć termodynamiki - ciepłem właściwym.

Bardziej szczegółowo

Aerodynamika i mechanika lotu

Aerodynamika i mechanika lotu Prędkość określana względem najbliższej ścianki nazywana jest prędkością względną (płynu) w. Jeśli najbliższa ścianka porusza się względem ciał bardziej oddalonych, to prędkość tego ruchu nazywana jest

Bardziej szczegółowo

Termodynamika cz.1. Ziarnista budowa materii. Jak wielka jest liczba Avogadro? Podstawowe definicje. Notes. Notes. Notes. Notes

Termodynamika cz.1. Ziarnista budowa materii. Jak wielka jest liczba Avogadro? Podstawowe definicje. Notes. Notes. Notes. Notes Termodynamika cz.1 dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Termodynamika cz.1 Ziarnista budowa materii Ziarnista budowa

Bardziej szczegółowo

Temperatura. Zerowa zasada termodynamiki

Temperatura. Zerowa zasada termodynamiki Temperatura Istnieje wielkość skalarna zwana temperaturą, która jest właściwością wszystkich ciał izolowanego układu termodynamicznego pozostających w równowadze wzajemnej. Równowaga polega na tym, że

Bardziej szczegółowo

Ciśnienie i temperatura model mikroskopowy

Ciśnienie i temperatura model mikroskopowy Ciśnienie i temperatura model mikroskopowy Mikroskopowy model ciśnienia gazu wzór na ciśnienie gazu Mikroskopowa interpretacja temperatury Średnia energia cząsteczki gazu zasada ekwipartycji energii Czy

Bardziej szczegółowo

wymiana energii ciepła

wymiana energii ciepła wymiana energii ciepła Karolina Kurtz-Orecka dr inż., arch. Wydział Budownictwa i Architektury Katedra Dróg, Mostów i Materiałów Budowlanych 1 rodzaje energii magnetyczna kinetyczna cieplna światło dźwięk

Bardziej szczegółowo

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY

FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY RUCH PROSTOLINIOWY JEDNOSTAJNIE PRZYSPIESZONY RUCH PROSTOLINIOWY JEDNOSTAJNIE OPÓŹNIONY FIZYKA I ASTRONOMIA RUCH JEDNOSTAJNIE PROSTOLINIOWY Każdy ruch jest zmienną położenia w czasie danego ciała lub układu ciał względem pewnego wybranego układu odniesienia. v= s/t RUCH

Bardziej szczegółowo

Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5. Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego

Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5. Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5 Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego Czy przejście szkliste jest termodynamicznym przejściem fazowym?

Bardziej szczegółowo

Wykład 3. Zerowa i pierwsza zasada termodynamiki:

Wykład 3. Zerowa i pierwsza zasada termodynamiki: Wykład 3 Zerowa i pierwsza zasada termodynamiki: Termodynamiczne funkcje stanu. Parametry extensywne i intensywne. Pojęcie równowagi termodynamicznej. Tranzytywność stanu równowagi i pojęcie temperatury

Bardziej szczegółowo

Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej

Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej rok szkolny 204/205 Warszawa, 29 sierpnia 204r. Zespół Przedmiotowy z chemii i fizyki Temat lekcji

Bardziej szczegółowo

Plan wykładu. Termodynamika cz.1. Jak wielka jest liczba Avogadro? Ziarnista budowa materii

Plan wykładu. Termodynamika cz.1. Jak wielka jest liczba Avogadro? Ziarnista budowa materii Plan wykładu Termodynamika cz1 dr inż Ireneusz Owczarek CMF PŁ ireneuszowczarek@plodzpl http://cmfplodzpl/iowczarek 2013/14 1 Ziarnista budowa materii Liczba Avogadro 2 Pomiary temperatury Temperatura

Bardziej szczegółowo

Przegląd termodynamiki II

Przegląd termodynamiki II Wykład II Mechanika statystyczna 1 Przegląd termodynamiki II W poprzednim wykładzie po wprowadzeniu podstawowych pojęć i wielkości, omówione zostały pierwsza i druga zasada termodynamiki. Tutaj wykorzystamy

Bardziej szczegółowo

Teoria kinetyczna gazów

Teoria kinetyczna gazów Teoria kinetyczna gazów Mikroskopowy model ciśnienia gazu wzór na ciśnienie gazu Mikroskopowa interpretacja temperatury Średnia energia cząsteczki gazu zasada ekwipartycji energii Czy ciepło właściwe przy

Bardziej szczegółowo

1 Wymagania egzaminacyjne na egzamin maturalny - poziom rozszerzony: fizyka

1 Wymagania egzaminacyjne na egzamin maturalny - poziom rozszerzony: fizyka 1 Termodynamika 1 Wymagania egzaminacyjne na egzamin maturalny - poziom rozszerzony: fizyka 2005-2006 Termodynamika Standard 1. Posługiwanie się wielkościami i pojęciami fizycznymi do opisywania zjawisk

Bardziej szczegółowo

TERMOCHEMIA. TERMOCHEMIA: dział chemii, który bada efekty cieplne towarzyszące reakcjom chemicznym w oparciu o zasady termodynamiki.

TERMOCHEMIA. TERMOCHEMIA: dział chemii, który bada efekty cieplne towarzyszące reakcjom chemicznym w oparciu o zasady termodynamiki. 1 TERMOCHEMIA TERMOCHEMIA: dział chemii, który bada efekty cieplne towarzyszące reakcjom chemicznym w oparciu o zasady termodynamiki. TERMODYNAMIKA: opis układu w stanach o ustalonych i niezmiennych w

Bardziej szczegółowo

1. PIERWSZA I DRUGA ZASADA TERMODYNAMIKI TERMOCHEMIA

1. PIERWSZA I DRUGA ZASADA TERMODYNAMIKI TERMOCHEMIA . PIERWSZA I DRUGA ZASADA ERMODYNAMIKI ERMOCHEMIA Zadania przykładowe.. Jeden mol jednoatomowego gazu doskonałego znajduje się początkowo w warunkach P = 0 Pa i = 300 K. Zmiana ciśnienia do P = 0 Pa nastąpiła:

Bardziej szczegółowo

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej

Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej Materiały pomocnicze do laboratorium z przedmiotu Metody i Narzędzia Symulacji Komputerowej w Systemach Technicznych Symulacja prosta dyszy pomiarowej Bendemanna Opracował: dr inż. Andrzej J. Zmysłowski

Bardziej szczegółowo

4. Przyrost temperatury gazu wynosi 20 C. W kelwinach przyrost ten jest równy

4. Przyrost temperatury gazu wynosi 20 C. W kelwinach przyrost ten jest równy 1. Która z podanych niżej par wielkości fizycznych ma takie same jednostki? a) energia i entropia b) ciśnienie i entalpia c) praca i entalpia d) ciepło i temperatura 2. 1 bar jest dokładnie równy a) 10000

Bardziej szczegółowo

Termodynamika Część 3

Termodynamika Część 3 Termodynamika Część 3 Formy różniczkowe w termodynamice Praca i ciepło Pierwsza zasada termodynamiki Pojemność cieplna i ciepło właściwe Ciepło właściwe gazów doskonałych Ciepło właściwe ciała stałego

Bardziej szczegółowo

Plan wykładu. Termodynamika cz.1. Jak wielka jest liczba Avogadro? Ziarnista budowa materii

Plan wykładu. Termodynamika cz.1. Jak wielka jest liczba Avogadro? Ziarnista budowa materii Plan wykładu Termodynamika cz1 dr inż Ireneusz Owczarek CMF PŁ ireneuszowczarek@plodzpl http://cmfplodzpl/iowczarek 2012/13 1 Ziarnista budowa materii Liczba Avogadro 2 Temperatura termodynamiczna 3 Sposoby

Bardziej szczegółowo

Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej rok szkolny 2015/2016

Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej rok szkolny 2015/2016 Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej rok szkolny 2015/2016 Warszawa, 31 sierpnia 2015r. Zespół Przedmiotowy z chemii i fizyki Temat

Bardziej szczegółowo

Termochemia elementy termodynamiki

Termochemia elementy termodynamiki Termochemia elementy termodynamiki Termochemia nauka zajmująca się badaniem efektów cieplnych reakcji chemicznych Zasada zachowania energii Energia całkowita jest sumą energii kinetycznej i potencjalnej.

Bardziej szczegółowo

Termodynamika. Cel. Opis układu niezależny od jego struktury mikroskopowej Uniwersalne prawa. William Thomson 1. Baron Kelvin

Termodynamika. Cel. Opis układu niezależny od jego struktury mikroskopowej Uniwersalne prawa. William Thomson 1. Baron Kelvin Cel Termodynamika Opis układu niezależny od jego struktury mikroskopowej Uniwersalne prawa Nicolas Léonard Sadi Carnot 1796 1832 Rudolf Clausius 1822 1888 William Thomson 1. Baron Kelvin 1824 1907 i inni...

Bardziej szczegółowo

Obieg Ackereta-Kellera i lewobieżny obieg Philipsa(Stirlinga)

Obieg Ackereta-Kellera i lewobieżny obieg Philipsa(Stirlinga) Obieg Ackereta-Kellera i lewobieżny obieg Philipsa(Stirlinga) Opracowała: Natalia Strzęciwilk nr albumu 127633 IM-M sem.01 Gdańsk 2013 Spis treści 1. Obiegi gazowe 2. Obieg Ackereta-Kellera 2.1. Podstawy

Bardziej szczegółowo

Termodynamiczny opis przejść fazowych pierwszego rodzaju

Termodynamiczny opis przejść fazowych pierwszego rodzaju Wykład II Przejścia fazowe 1 Termodynamiczny opis przejść fazowych pierwszego rodzaju Woda występuje w trzech stanach skupienia jako ciecz, jako gaz, czyli para wodna, oraz jako ciało stałe, a więc lód.

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ KALORYMETRIA - CIEPŁO ZOBOJĘTNIANIA WSTĘP Według pierwszej zasady termodynamiki, w dowolnym procesie zmiana energii wewnętrznej, U układu, równa się sumie ciepła wymienionego z otoczeniem, Q, oraz pracy,

Bardziej szczegółowo

1 I zasada termodynamiki

1 I zasada termodynamiki 1 I zasada termodynamiki 1.1 Pojęcie podstawowe W chemii fizycznej wszechświat dzielimy na dwie części : układ i otoczenie. Układ jest interesującą nas częścią rzeczywistości (przyrody, wszechświata) może

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA

Podstawy Procesów i Konstrukcji Inżynierskich. Praca, moc, energia INZYNIERIAMATERIALOWAPL. Kierunek Wyróżniony przez PKA Podstawy Procesów i Konstrukcji Inżynierskich Praca, moc, energia Energia Energia jest to wielkość skalarna, charakteryzująca stan, w jakim znajduje się jedno lub wiele ciał. Energia jest miarą różnych

Bardziej szczegółowo

WYZNACZANIE STOSUNKU c p /c v

WYZNACZANIE STOSUNKU c p /c v Uniwersytet Wrocławski, Instytut Fizyki Doświadczalnej, I Pracownia Ćwiczenie nr 33 WYZNACZANIE STOSUNKU c p /c v I WSTĘP Układ termodynamiczny Rozważania dotyczące przekazywania energii poprzez wykonywanie

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,

Bardziej szczegółowo

Elementy fizyki statystycznej

Elementy fizyki statystycznej 5-- lementy fizyki statystycznej ermodynamika Gęstości stanów Funkcje rozkładu Gaz elektronów ermodynamika [K] 9 wszechświat tuż po powstaniu ermodynamika to dział fizyki zajmujący się energią termiczną

Bardziej szczegółowo

Zasady oceniania karta pracy

Zasady oceniania karta pracy Zadanie 1.1. 5) stosuje zasadę zachowania energii oraz zasadę zachowania pędu do opisu zderzeń sprężystych i niesprężystych. Zderzenie, podczas którego wózki łączą się ze sobą, jest zderzeniem niesprężystym.

Bardziej szczegółowo

Przemiany energii w zjawiskach cieplnych. 1/18

Przemiany energii w zjawiskach cieplnych. 1/18 Przemiany energii w zjawiskach cieplnych. 1/18 Średnia energia kinetyczna cząsteczek Średnia energia kinetyczna cząsteczek to suma energii kinetycznych wszystkich cząsteczek w danej chwili podzielona przez

Bardziej szczegółowo

Fizyka Termodynamika Chemia reakcje chemiczne

Fizyka Termodynamika Chemia reakcje chemiczne Termodynamika zajmuje się badaniem efektów energetycznych towarzyszących procesom fizykochemicznym i chemicznym. Termodynamika umożliwia: 1. Sporządzanie bilansów energetycznych dla reakcji chemicznych

Bardziej szczegółowo

(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca.

(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca. (1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca. 1. Aby określić dokładną wartość stałej gazowej R, student ogrzał zbiornik o objętości 20,000 l wypełniony 0,25132 g gazowego

Bardziej szczegółowo

Termodynamika program wykładu

Termodynamika program wykładu Termodynamika program wykładu Wiadomości wstępne: fizyka statystyczna a termodynamika masa i rozmiary cząstek stan układu, przemiany energia wewnętrzna pierwsza zasada termodynamiki praca wykonana przez

Bardziej szczegółowo

Temperatura i ciepło E=E K +E P +U. Q=c m T=c m(t K -T P ) Q=c przem m. Fizyka 1 Wróbel Wojciech

Temperatura i ciepło E=E K +E P +U. Q=c m T=c m(t K -T P ) Q=c przem m. Fizyka 1 Wróbel Wojciech emeratura i cieło E=E K +E P +U Energia wewnętrzna [J] - ieło jest energią rzekazywaną między układem a jego otoczeniem na skutek istniejącej między nimi różnicy temeratur na sosób cielny rzez chaotyczne

Bardziej szczegółowo

Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron

Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron Zagadka na początek wykładu Diagram fazowy wody w powiększeniu, problem metastabilności aktualny (Nature, 2011) Niższa temperatura topnienia

Bardziej szczegółowo

SPIS TREŚCI ««*» ( # * *»»

SPIS TREŚCI ««*» ( # * *»» ««*» ( # * *»» CZĘŚĆ I. POJĘCIA PODSTAWOWE 1. Co to jest fizyka? 11 2. Wielkości fizyczne 11 3. Prawa fizyki 17 4. Teorie fizyki 19 5. Układ jednostek SI 20 6. Stałe fizyczne 20 CZĘŚĆ II. MECHANIKA 7.

Bardziej szczegółowo