Miejsce biofizyki we współczesnej nauce. Obszary zainteresowania biofizyki. - Powrót do współczesności. - obiekty mikroświata.
|
|
- Karolina Dorota Wilk
- 6 lat temu
- Przeglądów:
Transkrypt
1 Zakład Biofizyki
2 Miejsce biofizyki we współczesnej nauce - trochę historii - Powrót do współczesności Obszary zainteresowania biofizyki - ekosystemy - obiekty makroświata - obiekty mikroświata - język biofizyki
3 Obszar zainteresowań termodynamiki klasycznej (fenomenologicznej) i statystycznej transport ciepła i praca mechaniczna czarna skrzynka i relacja we-wy struktura wewnętrzna i statystyka Relacje między termodynamiką i współczesną fizyką zasada korespondencji niezgodności termodynamiki z fizyką współczesneą Zastosowania i ograniczenia termodynamiki
4 układ izolowany (lbrak wymiany jakiejkolwiek formy energii i materii z otoczeniem) układ teoretyczny układ adiabatyczny (możliwość wymiany energii z pominięciem energii cieplnej) układ teoretyczny układ zamknięty (izotermiczny) (wymienia wszystkie formy energii ale nie wymienia materii) - układ rzeczywisty układ otwarty (wymienia wszystkie formy energii i materii) - układ rzeczywisty
5 parametry ekstensywne - addytywne (masa, objętość, rozmiary liniowe) parametry intensywne - nie addytywne liniowa kombinacja parametrów ekstensywnych (ciśnienie, stężenie, temperatura)
6 parametry praca intensywne extensywne równanie Objętościowa Ciśnienie (p) Objętość(V) dw = - pdv Powierzchnowa Napięcie (S) Powierzchnia (A) dw = - SdA powierzchniowe Elektrochemiczna Siła (E) Ładunek (Z) dw = - EdZ elektromotoreyczna Magnetyczna Indukcja (B) Moment (M) dw = - BdM magnetyczna magnetyczny
7 Stan równowagi (parametry wewnętrzne systemu są całkowicie zdeterminowane przez parametry zewnętrzne) Stan stacjonarny (parametry wewnętrzne systemu są ustalone ale nie są równe wartościom parametrów zewnętrznych. Stan stacjonarny jest osiągnięty dzięki obecności przepływów (strumieni) miedzy układem i otoczeniem Stan ten nazywany jest także Stanem równowagi wymiany )
8 Równanie stanu (równanie opisujące stan układu z wykorzystaniem parametrów termodynamicznych, dla przykładu: pv=nrt) Proces termodynamiczny (przejście układu z jednego stanu do drugiego, Dla przykładu: gaz w cyliondrze ściśnięty do mniejszej objętości)
9 V=const Energia wewnętrzna U U=Q+W ; Q v = du gdy W=0 Energia swobodna F F=U-TS ; S entropia Część energii wewnętrznej dostępna dla wykonania pracy
10 p=const Entalpia H H=U+pV; Q p = dh, (Ilość ciepła dostarczona do systemu przy p=const, użytego dla wzrostu energii wewnętrznej i wykonania pracy, dh=du+pdv Entalpia swobodna G G=H-TS; (potencjał Gibbsa) Część entalpii dostępna dla wykonania pracy innej niż objętościowa, dg=h-tds)
11 Zmiana swobodnej energii lub entalpii: - W procesach egzotermicznych dg < 0 df < 0 - W procesach endotermicznych dg > 0 df > 0 Pomierzone ciepło reakcji w procesie izochorycznym odpowiada energii wewnętrznej (Q V = du), a w procesie izobarycznym zmianie entalpii (Q p = dh) Prawo Hessa: ciepło reakcji nie zależy od drogi przejścia, ale od początkowego i końcowego stanu reagentów
12 ciepło zredukowane Q/T zdegradowana forma energii ds = dq/t, miara nieuporządkowania (Boltzman s equation) S = k lnw, k - stała Boltzmana; k=1,38x10-23 J/K) W prawdopodobieństwo termodynamiczne
13 Case number Number of bills in the first chamber Number of bills in the second chamber Thermodynamic probability (Sum of states W) n! W = n 1! n 2!... n m! n liczba dostępnych kul n i liczba kul w i-tym cylindrze n! = 1 x 2 x 3 x... x n
14 Entropia jest funkcją prawdopodobieństwa termodynamicznego S = f(w) Jeżeli S 1 i S 2 są entropiami dwóch podukładów a W 1 i W 2 są odpowiednimi prawdopodobieństwami termodynamicznymi tych podukładów, to entropia całego układu jest dana przez: S = f(w) = S 1 + S 2 = f(w 1 ) + f(w 2 ) Prawdopodobieństwo termodynamiczne układu jest iloczynem prawdopodobieństw podukładów: f(w) = f(w 1 ) + f(w 2 ) = f (W 1 W 2 ); Tylko funkcja logarytmiczna spełnia taki warunek: lna + lnb = ln (A B) Entropia musi mieć postać: S = k lnw
15 W układzie izolowanym suma wszystkich form energii jest wartością stałą: (U+Q+W=const)
16 ds > 0 dla procesów nieodwracalnych (procesy rzeczywiste) ds = 0 dla procesów odwracalnych (procesy teoretyczne)
17 (przykład) Przykład: Zmiana entropii w trakcie procesu fermentacji alkoholowej: C 6 H 12 O 6 ---> 2 C 2 H 5 OH + 2 CO 2 Standardowe entropie molowe wynoszą odpowiednio: C 6 H 12 O cal/k C 2 H 5 OH cal/k CO cal/k ds = 2x38.4 cal/k + 2x51.08 cal/k cal/k = 128,26 cal/k Proces może przebiegać tylko w prawą stronę, tak jak wskazuje na to wartość entropii
18 (lim S =0) T => 0 Pozostałe funkcje stanu (U,F,H,G) w T=0 osiągają minimalne wartości ale nie zero. W T=0 procesy rzeczywiste mogą przebiegać bez zmiany entropii, oznacza to, że w T=0 procesy rzeczywiste mogą być odwracalnymi.
Termodynamika (1) Bogdan Walkowiak. Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka. poniedziałek, 23 października 2017
Wykład 1 Termodynamika (1) Bogdan Walkowiak Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka Biofizyka 1 Zaliczenie Aby zaliczyć przedmiot należy: uzyskać pozytywną ocenę z laboratorium
Zasady termodynamiki
Zasady termodynamiki Energia wewnętrzna (U) Opis mikroskopowy: Jest to suma średnich energii kinetycznych oraz energii oddziaływań międzycząsteczkowych i wewnątrzcząsteczkowych. Opis makroskopowy: Jest
Podstawy termodynamiki
Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach
Elementy termodynamiki i wprowadzenie do zespołów statystycznych. Katarzyna Sznajd-Weron
Elementy termodynamiki i wprowadzenie do zespołów statystycznych Katarzyna Sznajd-Weron Wielkości makroskopowe - termodynamika Termodynamika - metoda fenomenologiczna Fenomenologia w fizyce: widzimy jak
BIOPHYSICS. Politechnika Łódzka, ul. Żeromskiego 116, Łódź, tel. (042)
BIOPHYSICS Prezentacja multimedialna współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka bez ograniczeń - zintegrowany rozwój Politechniki
DRUGA ZASADA TERMODYNAMIKI
DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy
Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny
Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny Janusz Brzychczyk, Instytut Fizyki UJ Związek pomiędzy równaniem
TERMODYNAMIKA I TERMOCHEMIA
TERMODYNAMIKA I TERMOCHEMIA Termodynamika - opisuje zmiany energii towarzyszące przemianom chemicznym; dział fizyki zajmujący się zjawiskami cieplnymi. Termochemia - dział chemii zajmujący się efektami
Elementy termodynamiki
Elementy termodynamiki Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej Politechnika Wrocławska 5 stycznia 2019 Katarzyna Sznajd-Weron (K4) Wstęp do Fizyki Statystycznej 5 stycznia 2019 1 / 27 Wielkości
Wykład 3. Entropia i potencjały termodynamiczne
Wykład 3 Entropia i potencjały termodynamiczne dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej
DRUGA ZASADA TERMODYNAMIKI
DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy
Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały
Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki
Fizyka Termodynamika Chemia reakcje chemiczne
Termodynamika zajmuje się badaniem efektów energetycznych towarzyszących procesom fizykochemicznym i chemicznym. Termodynamika umożliwia: 1. Sporządzanie bilansów energetycznych dla reakcji chemicznych
Fizykochemiczne podstawy inżynierii procesowej
Fizykochemiczne podstawy inżynierii procesowej Wykład II Podstawowe definicje cd. Podstawowe idealizacje termodynamiczne I i II Zasada termodynamiki Proste przemiany termodynamiczne PRZYPOMNIENIE Z OSTATNIEGO
Podstawy termodynamiki
Podstawy termodynamiki Temperatura i ciepło Praca jaką wykonuje gaz I zasada termodynamiki Przemiany gazowe izotermiczna izobaryczna izochoryczna adiabatyczna Co to jest temperatura? 40 39 38 Temperatura
Krótki przegląd termodynamiki
Wykład I Przejścia fazowe 1 Krótki przegląd termodynamiki Termodynamika fenomenologiczna oferuje makroskopowy opis układów statystycznych w stanie równowagi termodynamicznej bądź w stanach jemu bliskich.
Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron
Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron Zagadka na początek wykładu Diagram fazowy wody w powiększeniu, problem metastabilności aktualny (Nature, 2011) Niższa temperatura topnienia
Wykład 10 Równowaga chemiczna
Wykład 10 Równowaga chemiczna REAKCJA CHEMICZNA JEST W RÓWNOWADZE, GDY NIE STWIERDZAMY TENDENCJI DO ZMIAN ILOŚCI (STĘŻEŃ) SUBSTRATÓW ANI PRODUKTÓW RÓWNOWAGA CHEMICZNA JEST RÓWNOWAGĄ DYNAMICZNĄ W rzeczywistości
Obraz statyczny układu
Termodynamika Obraz statyczny układu energia kinetyczna E k = mv 2 / 2 energia wewnetrzna energia powierzchniowa inne energie U inne parametry: T, m, P, V, S... Ep= mgh energia potencjalna STAN I PRZEMIANA
Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12
Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,
TERMODYNAMIKA FENOMENOLOGICZNA
TERMODYNAMIKA FENOMENOLOGICZNA Przedmiotem badań są własności układów makroskopowych w zaleŝności od temperatury. Układ makroskopowy Np. 1 mol substancji - tyle składników ile w 12 gramach węgla C 12 N
Stany równowagi i zjawiska transportu w układach termodynamicznych
Stany równowagi i zjawiska transportu w układach termodynamicznych dr hab. Jerzy Nakielski Katedra Biofizyki i Biologii Komórki plan wykładu: 1. Funkcje stanu dla termodynamicznego układu otwartego 2.
Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej
termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,
Kryteria samorzutności procesów fizyko-chemicznych
Kryteria samorzutności procesów fizyko-chemicznych 2.5.1. Samorzutność i równowaga 2.5.2. Sens i pojęcie entalpii swobodnej 2.5.3. Sens i pojęcie energii swobodnej 2.5.4. Obliczanie zmian entalpii oraz
Biofizyka. wykład: dr hab. Jerzy Nakielski. Katedra Biofizyki i Morfogenezy Roślin
Biofizyka wykład: dr hab. Jerzy Nakielski Katedra Biofizyki i Morfogenezy Roślin Biofizyka - wykłady Biotechnologia III rok Tematyka (15 godz.): dr hab. Jerzy Nakielski dr Joanna Szymanowska-Pułka dr
= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A
Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),
1. PIERWSZA I DRUGA ZASADA TERMODYNAMIKI TERMOCHEMIA
. PIERWSZA I DRUGA ZASADA ERMODYNAMIKI ERMOCHEMIA Zadania przykładowe.. Jeden mol jednoatomowego gazu doskonałego znajduje się początkowo w warunkach P = 0 Pa i = 300 K. Zmiana ciśnienia do P = 0 Pa nastąpiła:
Elementy termodynamiki
Elementy termodynamiki Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej Politechnika Wrocławska 11 marca 2019 Katarzyna Sznajd-Weron (K4) Wstęp do Fizyki Statystycznej 11 marca 2019 1 / 37 Dwa poziomy
Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski
Chemia Fizyczna Technologia Chemiczna II rok Wykład 1 Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski Kontakt,informacja i konsultacje Chemia A ; pokój 307 Telefon: 347-2769 E-mail: wojtek@chem.pg.gda.pl
Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne
Termodynamika Część 7 Trzecia zasada termodynamiki Metody otrzymywania niskich temperatur Zjawisko Joule'a Thomsona Chłodzenie magnetyczne Janusz Brzychczyk, Instytut Fizyki UJ Postulat Nernsta (1906):
Termodynamika. Energia wewnętrzna ciał
ermodynamika Energia wewnętrzna ciał Cząsteczki ciał stałych, cieczy i gazów znajdują się w nieustannym ruchu oddziałując ze sobą. Sumę energii kinetycznej oraz potencjalnej oddziałujących cząsteczek nazywamy
Fizykochemiczne podstawy inżynierii procesowej
Fizykochemiczne podstawy inżynierii procesowej Wykład I - 1 Sprawy formalne 2 Fizykochemiczne podstawy inżynierii procesowej Sprawy formalne: Forma: Wykład w postaci prezentacji komputerowych Przeznaczenie:
Termodynamika. Cel. Opis układu niezależny od jego struktury mikroskopowej Uniwersalne prawa. William Thomson 1. Baron Kelvin
Cel Termodynamika Opis układu niezależny od jego struktury mikroskopowej Uniwersalne prawa Nicolas Léonard Sadi Carnot 1796 1832 Rudolf Clausius 1822 1888 William Thomson 1. Baron Kelvin 1824 1907 i inni...
Przemiany termodynamiczne
Przemiany termodynamiczne.:: Przemiana adiabatyczna ::. Przemiana adiabatyczna (Proces adiabatyczny) - proces termodynamiczny, podczas którego wyizolowany układ nie nawiązuje wymiany ciepła, lecz całość
ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa
Prawo zachowania energii: ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Ogólny zasób energii jest niezmienny. Jeżeli zwiększa się zasób energii wybranego układu, to wyłącznie kosztem
Funkcje termodynamiczne określają stan układu termodynamicznego
Funkcje termodynamiczne określają stan układu termodynamicznego Należą do nich: funkcje stanu i parametry stanu Funkcje stanu to wielkości fizyczne, których zmiana równa jest różnicy wartości w stanie
Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA I 14. Termodynamika fenomenologiczna cz.ii Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html GAZY DOSKONAŁE Przez
Przegląd termodynamiki II
Wykład II Mechanika statystyczna 1 Przegląd termodynamiki II W poprzednim wykładzie po wprowadzeniu podstawowych pojęć i wielkości, omówione zostały pierwsza i druga zasada termodynamiki. Tutaj wykorzystamy
WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami
WYKŁAD 2 TERMODYNAMIKA Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami Zasada zerowa Kiedy obiekt gorący znajduje się w kontakcie cieplnym z obiektem zimnym następuje
Termochemia elementy termodynamiki
Termochemia elementy termodynamiki Termochemia nauka zajmująca się badaniem efektów cieplnych reakcji chemicznych Zasada zachowania energii Energia całkowita jest sumą energii kinetycznej i potencjalnej.
Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ
Termodynamika Część 4 Procesy izoparametryczne Entropia Druga zasada termodynamiki Janusz Brzychczyk, Instytut Fizyki UJ Pierwsza zasada termodynamiki procesy kwazistatyczne Zgodnie z pierwszą zasadą termodynamiki,
TERMODYNAMIKA PROCESOWA
TERMODYNAMIKA PROCESOWA Wykład I Sprawy formalne Przypomnienie podstawowych definicji i pojęć termodynamicznych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 TERMODYNAMIKA PROCESOWA
Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1
Termodynamika techniczna i chemiczna, 2015/16, zadania do kol. 1, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący 1. Obliczyć zmianę entalpii dla izobarycznej (p = 1 bar) reakcji chemicznej zapoczątkowanej
I. Podstawowe pojęcia termodynamiki Termodynamika (nauka o transformacjach energii; zajmuje się badaniem efektów energetycznych przemian fizycznych i
I. Podstawowe pojęcia termodynamiki Termodynamika (nauka o transformacjach energii; zajmuje się badaniem efektów energetycznych przemian fizycznych i chemicznych) Termodynamika chemiczna - nauka zajmująca
Jak mierzyć i jak liczyć efekty cieplne reakcji?
Jak mierzyć i jak liczyć efekty cieplne reakcji? Energia Zdolność do wykonywania pracy lub do produkowania ciepła Praca objętościowa praca siła odległość 06_73 P F A W F h N m J P F A Area A ciśnienie
Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej.
1 Ciepło jest sposobem przekazywania energii z jednego ciała do drugiego. Ciepło przepływa pod wpływem różnicy temperatur. Jeżeli ciepło nie przepływa mówimy o stanie równowagi termicznej. Zerowa zasada
TERMOCHEMIA. TERMOCHEMIA: dział chemii, który bada efekty cieplne towarzyszące reakcjom chemicznym w oparciu o zasady termodynamiki.
1 TERMOCHEMIA TERMOCHEMIA: dział chemii, który bada efekty cieplne towarzyszące reakcjom chemicznym w oparciu o zasady termodynamiki. TERMODYNAMIKA: opis układu w stanach o ustalonych i niezmiennych w
Podstawowe pojęcia 1
Tomasz Lubera Podstawowe pojęcia 1 Układ część przestrzeni wyodrębniona myślowo lub fizycznie z otoczenia Układ izolowany niewymieniający masy i energii z otoczeniem Układ zamknięty wymieniający tylko
Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36
Wykład 1 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 5 października 2015 1 / 36 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną
WYKŁAD 3 TERMOCHEMIA
WYKŁAD 3 TERMOCHEMIA Termochemia jest działem termodynamiki zajmującym się zastosowaniem pierwszej zasady termodynamiki do obliczania efektów cieplnych procesów fizykochemicznych, a w szczególności przemian
Elementy termodynamiki chemicznej. Entalpia:
Elementy termodynamiki chemicznej 1 - układ fizyczny otwarty (możliwa wymiana energii i materii z otoczeniem), zamknięty (możliwa tylko wymiana energii), izolowany wielkości ekstensywne zależne od ilości
Inżynieria Biomedyczna Wykład V
Inżynieria Biomedyczna Wykład V 1 Plan Reakcje samorzutne Entropia II zasada termodynamiki Entalpia i energia swobodna Kryteria samorzutności Termodynamika a stała równowagi K r 2 Woda zawsze spływa w
Kontakt,informacja i konsultacje
Kontakt,informacja i konsultacje Chemia A ; pokój 307 elefon: 347-2769 E-mail: wojtek@chem.pg.gda.pl tablica ogłoszeń Katedry Chemii Fizycznej http://www.pg.gda.pl/chem/dydaktyka/ lub http://www.pg.gda.pl/chem/katedry/fizyczna
Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1
Chemia fizyczna/ termodynamika, 2015/16, zadania do kol. 1, zadanie nr 1 1 [Imię, nazwisko, grupa] prowadzący Uwaga! Proszę stosować się do następującego sposobu wprowadzania tekstu w ramkach : pola szare
Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne
Entropia - obliczanie. Podsumowanie
Chem. Fiz. CH II/4 Entropia - obliczanie. Podsumowanie 2 ) ( 2 V d C S S S 2 ) ( 2 P d C S S S S k S p S 2 2 ln ln V V R C S V + 2 2 ln ln P P R C S P w izobarze: Funkcja stanu! w izochorze: dla gazu doskonałego:
Maszyny cieplne substancja robocza
Maszyny cieplne cel: zamiana ciepła na pracę (i odwrotnie) pracują cyklicznie pracę wykonuje substancja robocza (np.gaz, mieszanka paliwa i powietrza) która: pochłania ciepło dostarczane ze źródła ciepła
Termodynamika materiałów
Termodynamika materiałów Plan wykładu 1. Funkcje termodynamiczne, pojemność cieplna. 2. Warunki równowagi termodynamicznej w układach jedno- i wieloskładnikowych, pojęcie potencjału chemicznego. 3. Modele
BIOTERMODYNAMIKA. PODSTAWY BIOENERGETYKI I TERMOKINETYKI
BIOTERMODYNAMIKA. PODSTAWY BIOENERGETYKI I TERMOKINETYKI Rozdział 7 BIOTERMODYNAMIKA 7.1. Wstęp Feliks Jaroszyk Biotermodynamika jest dyscypliną naukową, wykorzystującą rozważania termodynamiki fenomenologicznej
Jednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m
TERMODYNAMIKA Jednostki podstawowe Wielkość Nazwa Symbol Długość metr m Masa kilogramkg Czas sekunda s Natężenieprąduelektrycznego amper A Temperaturatermodynamicznakelwin K Ilość materii mol mol Światłość
Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19)
Ćwiczenia audytoryjne z Chemii fizycznej 1 Zalecane zadania kolokwium 1. (2018/19) Uwaga! Uzyskane wyniki mogą się nieco różnić od podanych w materiałach, ze względu na uaktualnianie wartości zapisanych
II Zasada Termodynamiki c.d.
Wykład 5 II Zasada Termodynamiki c.d. Pojęcie entropii i temperatury absolutnej II zasada termodynamiki dla procesów nierównowagowych Równania Gibbsa dla procesów quasistatycznych Równania Eulera Relacje
POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ
KALORYMETRIA - CIEPŁO ZOBOJĘTNIANIA WSTĘP Według pierwszej zasady termodynamiki, w dowolnym procesie zmiana energii wewnętrznej, U układu, równa się sumie ciepła wymienionego z otoczeniem, Q, oraz pracy,
Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej. Część IV - Elementy termodynamiki i kinetyki chemicznej
Materiały do zajęć dokształcających z chemii nieorganicznej i fizycznej Część IV - Elementy termodynamiki i kinetyki chemicznej Wydział Chemii UAM Poznań 2011 POJĘCIA CIA PODSTAWOWE UKŁAD AD pewna część
Termodynamiczny opis przejść fazowych pierwszego rodzaju
Wykład II Przejścia fazowe 1 Termodynamiczny opis przejść fazowych pierwszego rodzaju Woda występuje w trzech stanach skupienia jako ciecz, jako gaz, czyli para wodna, oraz jako ciało stałe, a więc lód.
Wykład Temperatura termodynamiczna 6.4 Nierówno
ykład 8 6.3 emperatura termodynamiczna 6.4 Nierówność Clausiusa 6.5 Makroskopowa definicja entropii oraz zasada wzrostu entropii 6.6 Entropia dla czystej substancji 6.8 Cykl Carnota 6.7 Entropia dla gazu
Podstawy termodynamiki.
Podstawy termodynamiki. Termodynamika opisuje ogólne prawa przemian energetycznych w układach makroskopowych. Określa kierunki procesów zachodzących w przyrodzie w sposób samorzutny, jak i stanów końcowych,
Jak mierzyć i jak liczyć efekty cieplne reakcji?
Jak mierzyć i jak liczyć efekty cieplne reakcji? Energia Zdolność do wykonywania pracy lub produkowania ciepła Praca objętościowa praca siła odległość 06_73 P F A W F h N m J P F A Area A ciśnienie siła/powierzchnia
termodynamika fenomenologiczna
termodynamika termodynamika fenomenologiczna własności termiczne ciał makroskopowych uogólnienie licznych badań doświadczalnych opis makro i mikro rezygnacja z przyczynowości znaczenie praktyczne p układ
Spis treści. Przedmowa WPROWADZENIE DO PRZEDMIOTU... 11
Spis treści Przedmowa... 10 1. WPROWADZENIE DO PRZEDMIOTU... 11 2. PODSTAWOWE OKREŚLENIA W TERMODYNAMICE... 13 2.1. Układ termodynamiczny... 13 2.2. Wielkości fizyczne, układ jednostek miary... 14 2.3.
Warunki izochoryczno-izotermiczne
WYKŁAD 5 Pojęcie potencjału chemicznego. Układy jednoskładnikowe W zależności od warunków termodynamicznych potencjał chemiczny substancji czystej definiujemy następująco: Warunki izobaryczno-izotermiczne
Praca objętościowa - pv (wymiana energii na sposób pracy) Ciepło reakcji Q (wymiana energii na sposób ciepła) Energia wewnętrzna
Energia - zdolność danego układu do wykonania dowolnej pracy. Potencjalna praca, którą układ może w przyszłości wykonać. Praca wykonana przez układ jak i przeniesienie energii może manifestować się na
Elementy fizyki statystycznej
5-- lementy fizyki statystycznej ermodynamika Gęstości stanów Funkcje rozkładu Gaz elektronów ermodynamika [K] 9 wszechświat tuż po powstaniu ermodynamika to dział fizyki zajmujący się energią termiczną
Wykład 6: Przekazywanie energii elementy termodynamiki
Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak
Wykład 6: Przekazywanie energii elementy termodynamiki
Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak
Elementy termodynamiki chemicznej. Entalpia:
Elementy termodynamiki chemicznej 1 - układ fizyczny otwarty (możliwa wymiana energii i materii z otoczeniem), zamknięty (możliwa tylko wymiana energii), izolowany wielkości ekstensywne zależne od ilości
1 I zasada termodynamiki
1 I zasada termodynamiki 1.1 Pojęcie podstawowe W chemii fizycznej wszechświat dzielimy na dwie części : układ i otoczenie. Układ jest interesującą nas częścią rzeczywistości (przyrody, wszechświata) może
PODSTAWY TERMODYNAMIKI
ODAWY ERMODYNAMIKI ( punkty (OŚ_3--7 Zad.. W zbiorniku zamkniętym tłokiem znajduje się moli metanu, który można z powodzeniem potraktować jako az doskonały. emperatura początkowa metanu wynosi 5 C a ciśnienie
TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku
TERMODYNAMIKA przykłady zastosowań I.Mańkowski I LO w Lęborku 2016 UKŁAD TERMODYNAMICZNY Dla przykładu układ termodynamiczny stanowią zamknięty cylinder z ruchomym tłokiem, w którym znajduje się gaz tak
Wielki rozkład kanoniczny
, granica termodynamiczna i przejścia fazowe Instytut Fizyki 2015 Podukład otwarty Podukład otwarty S opisywany układ + rezerwuar R Podukład otwarty S opisywany układ + rezerwuar R układ S + R jest izolowany
Obieg Ackereta-Kellera i lewobieżny obieg Philipsa(Stirlinga)
Obieg Ackereta-Kellera i lewobieżny obieg Philipsa(Stirlinga) Opracowała: Natalia Strzęciwilk nr albumu 127633 IM-M sem.01 Gdańsk 2013 Spis treści 1. Obiegi gazowe 2. Obieg Ackereta-Kellera 2.1. Podstawy
S ścianki naczynia w jednostce czasu przekazywany
FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym
Wykład 7: Przekazywanie energii elementy termodynamiki
Wykład 7: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ emperatura Fenomenologicznie wielkość informująca o tym jak ciepłe/zimne
Temperatura. Zerowa zasada termodynamiki
Temperatura Istnieje wielkość skalarna zwana temperaturą, która jest właściwością wszystkich ciał izolowanego układu termodynamicznego pozostających w równowadze wzajemnej. Równowaga polega na tym, że
Wykład 6. Klasyfikacja przemian fazowych
Wykład 6 Klasyfikacja przemian fazowych JS Klasyfikacja Ehrenfesta Ehrenfest klasyfikuje przemiany fazowe w oparciu o potencjał chemiczny. nieciągłość Przemiany fazowe pierwszego rodzaju pochodne potencjału
Pole elektrostatyczne
Termodynamika 1. Układ termodynamiczny 5 2. Proces termodynamiczny 5 3. Bilans cieplny 5 4. Pierwsza zasada termodynamiki 7 4.1 Pierwsza zasada termodynamiki w postaci różniczkowej 7 5. Praca w procesie
3 Potencjały termodynamiczne i transformacja Legendre a
3 Potencjały termodynamiczne i transformacja Legendre a literatura: Ingarden, Jamiołkowski i Mrugała, Fizyka Statystyczna i ermodynamika, 9 W.I Arnold, Metody matematyczne mechaniki klasycznej, 14 3.1
Obieg Ackeret Kellera i lewobieżny obieg Philipsa (Stirlinga) podstawy teoretyczne i techniczne możliwości realizacji
Obieg Ackeret Kellera i lewobieżny obieg Philipsa (Stirlinga) podstawy teoretyczne i techniczne możliwości realizacji Monika Litwińska Inżynieria Mechaniczno-Medyczna GDAŃSKA 2012 1. Obieg termodynamiczny
(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca.
(1) Równanie stanu gazu doskonałego. I zasada termodynamiki: ciepło, praca. 1. Aby określić dokładną wartość stałej gazowej R, student ogrzał zbiornik o objętości 20,000 l wypełniony 0,25132 g gazowego
Kiedy przebiegają reakcje?
Kiedy przebiegają reakcje? Thermodynamics lets us predict whether a process will occur but gives no information about the amount of time required for the process. Termodynamika dziedzina termodynamiki
Fizyka 1 Wróbel Wojciech. w poprzednim odcinku
w poprzednim odcinku 1 Kinetyczna teoria gazów AZ DOSKONAŁY Liczba rozważanych cząsteczek gazu jest bardzo duża. Średnia odległość między cząsteczkami jest znacznie większa niż ich rozmiar. Cząsteczki
Enzymologia I. Kinetyka - program Gepasi. Uniwersytet Warszawski Wydział Biologii Zakład Regulacji Metabolizmu
Enzymologia I Kinetyka - program Gepasi Uniwersytet Warszawski Wydział Biologii Zakład Regulacji Metabolizmu I zasada + II zasada termodynamiki zmiana entalpii i entropii może zostać wyrażona ilościowo
Plan wykładu. Termodynamika cz.1. Jak wielka jest liczba Avogadro? Ziarnista budowa materii
Plan wykładu Termodynamika cz1 dr inż Ireneusz Owczarek CMF PŁ ireneuszowczarek@plodzpl http://cmfplodzpl/iowczarek 2012/13 1 Ziarnista budowa materii Liczba Avogadro 2 Temperatura termodynamiczna 3 Sposoby
Plan wykładu. Termodynamika cz.1. Jak wielka jest liczba Avogadro? Ziarnista budowa materii
Plan wykładu Termodynamika cz1 dr inż Ireneusz Owczarek CMF PŁ ireneuszowczarek@plodzpl http://cmfplodzpl/iowczarek 2013/14 1 Ziarnista budowa materii Liczba Avogadro 2 Pomiary temperatury Temperatura
Fizyka statystyczna. This Book Is Generated By Wb2PDF. using
http://pl.wikibooks.org/wiki/fizyka_statystyczna This Book Is Generated By Wb2PDF using RenderX XEP, XML to PDF XSL-FO Formatter 18-05-2014 Table of Contents 1. Fizyka statystyczna...4 Spis treści..........................................................................?
Termodynamika Część 3
Termodynamika Część 3 Formy różniczkowe w termodynamice Praca i ciepło Pierwsza zasada termodynamiki Pojemność cieplna i ciepło właściwe Ciepło właściwe gazów doskonałych Ciepło właściwe ciała stałego
Termodynamika cz.1. Ziarnista budowa materii. Jak wielka jest liczba Avogadro? Podstawowe definicje. Notes. Notes. Notes. Notes
Termodynamika cz.1 dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Termodynamika cz.1 Ziarnista budowa materii Ziarnista budowa
FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w
FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym
Zadanie 1. Zadanie: Odpowiedź: ΔU = 2,8663 10 4 J
Tomasz Lubera Zadanie: Zadanie 1 Autoklaw zawiera 30 dm 3 azotu o temperaturze 15 o C pod ciśnieniem 1,48 atm. Podczas ogrzewania autoklawu ciśnienie wzrosło do 3800,64 mmhg. Oblicz zmianę energii wewnętrznej
Spis treści. PRZEDMOWA. 11 WYKAZ WAśNIEJSZYCH OZNACZEŃ. 13 I. POJĘCIA PODSTAWOWE W TERMODYNAMICE. 19
Spis treści PRZEDMOWA. 11 WYKAZ WAśNIEJSZYCH OZNACZEŃ. 13 I. POJĘCIA PODSTAWOWE W TERMODYNAMICE. 19 Wykład 1: WPROWADZENIE DO PRZEDMIOTU 19 1.1. Wstęp... 19 1.2. Metody badawcze termodynamiki... 21 1.3.