Zbiór pyta«zaawansowanej ekonometrii. c Rafaª Wo¹niak 1
|
|
- Anna Markowska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Zbiór pyta«zaawansowanej ekonometrii. c Rafaª Wo¹niak 1 Zadanie 2 Wykorzystuj c zbiór danych crime.dta z ksi»ki Principles of Econometrics, R. Carter Hill, William E. Griths, Guay C. Lim, Wydanie 3, Wiley, 2007 wyestymowano model panelowy postaci: lcrmrte i,t =β 0 + β 1 lprbarr i,t + β 2 lprbconv i,t + β 3 lprbpris i,t + β 4 lavgsen i,t + β 5 lpolpc i,t + β 6 ldensity i,t + β 7 ltaxpc i,t + β 8 lwcon i,t + β 9 lwr i,t + u i + ɛ i,t, (1) a zmienne s opisane w zadaniu 3 w te±cie do zaj 7. Przeprowad¹ procedur doboru zmiennych w modelu od ogóªu do szczegóªu za pomoc testu LR. Krok 1 Oszacowania modelu ogólnego: R-sq: within = Obs per group: min = 7 between = avg = 7.0 overall = max = 7 F(9,531) = corr(u_i, Xb) = Prob > F = lprbarr lprbconv lprbpris lavgsen lpolpc ldensity ltaxpc lwcon lwfir _cons sigma_u sigma_e rho (fraction of variance due to u_i) F test that all u_i=0: F(89, 531) = Prob > F = Chcieliby±my usun zmienn ldensity. eby to zrobi Szacujemy model z ograniczeniem H 0 : β ldensity = 0.
2 Zbiór pyta«z zaawansowanej ekonometrii. c Rafaª Wo¹niak 2 Krok 2 Szacujemy model bez zmiennej ldensity lcrmrte i,t =β 0 + β 1 lprbarr i,t + β 2 lprbconv i,t + β 3 lprbpris i,t + β 4 lavgsen i,t + β 5 lpolpc i,t + β 7 ltaxpc i,t + β 8 lwcon i,t + β 9 lwr i,t + u i + ɛ i,t (2) R-sq: within = Obs per group: min = 7 between = avg = 7.0 overall = max = 7 F(8,532) = corr(u_i, Xb) = Prob > F = lprbarr lprbconv lprbpris lavgsen lpolpc ltaxpc lwcon lwfir _cons sigma_u sigma_e rho (fraction of variance due to u_i) F test that all u_i=0: F(89, 532) = Prob > F = lrtest model_1 model_2 Likelihood-ratio test LR chi2(1) = 0.03 (Assumption: model_2 nested in model_1) Prob > chi2 = Na podstawie testu LR nie ma podstaw do odrzucenia naªo»onego ograniczenia H 0 : β ldensity = 0. Z modelu (1) mo»emy usun zmienn ldensity. Dalej chcieliby±my sprawdzi czy nie nale»y usun zmiennej ltaxpc. eby to zrobi szacujemy model z ograniczeniem H 0 : β ldensity = β ltaxpc = 0.
3 Zbiór pyta«zaawansowanej ekonometrii. c Rafaª Wo¹niak 3 Krok 3 Szacujemy model bez zmiennej ldensity i ltaxpc lcrmrte i,t =β 0 + β 1 lprbarr i,t + β 2 lprbconv i,t + β 3 lprbpris i,t + β 4 lavgsen i,t + β 5 lpolpc i,t + β 8 lwcon i,t + β 9 lwr i,t + u i + ɛ i,t (3) R-sq: within = Obs per group: min = 7 between = avg = 7.0 overall = max = 7 F(7,533) = corr(u_i, Xb) = Prob > F = lprbarr lprbconv lprbpris lavgsen lpolpc lwcon lwfir _cons sigma_u sigma_e rho (fraction of variance due to u_i) F test that all u_i=0: F(89, 533) = Prob > F = lrtest model_1 model_3 Likelihood-ratio test LR chi2(2) = 0.61 (Assumption: model_3 nested in model_1) Prob > chi2 = Na podstawie testu LR nie ma podstaw do odrzucenia naªo»onego ograniczenia H 0 : β ldensity = β ltaxpc = 0. Z modelu (2) mo»emy usun zmienn ltaxpc. Dalej chcieliby±my sprawdzi czy nie nale»y usun zmiennej lavgsen. eby to zrobi Szacujemy model z ograniczeniem H 0 : β ldensity = β ltaxpc = β lavgsen = 0.
4 Zbiór pyta«z zaawansowanej ekonometrii. c Rafaª Wo¹niak 4 Krok 4 Szacujemy model bez zmiennej ldensity, ltaxpc, lavgsen lcrmrte i,t =β 0 + β 1 lprbarr i,t + β 2 lprbconv i,t + β 3 lprbpris i,t + β 5 lpolpc i,t + β 8 lwcon i,t + β 9 lwr i,t + u i + ɛ i,t (4) R-sq: within = Obs per group: min = 7 between = avg = 7.0 overall = max = 7 F(6,534) = corr(u_i, Xb) = Prob > F = lprbarr lprbconv lprbpris lpolpc lwcon lwfir _cons sigma_u sigma_e rho (fraction of variance due to u_i) F test that all u_i=0: F(89, 534) = Prob > F = lrtest model_1 model_4 Likelihood-ratio test LR chi2(3) = 2.65 (Assumption: model_4 nested in model_1) Prob > chi2 = Na podstawie testu LR nie ma podstaw do odrzucenia naªo»onego ograniczenia H 0 : β ldensity = β ltaxpc = β lavgsen = 0. Z modelu (3) mo»emy usun zmienn ldensity. Dalej chcieliby±my sprawdzi czy nie nale»y usun zmiennej lwr. eby to zrobi Szacujemy model z ograniczeniem H 0 : β ldensity = β ltaxpc = β lavgsen = β lwfir = 0.
5 Zbiór pyta«zaawansowanej ekonometrii. c Rafaª Wo¹niak 5 Krok 5 Szacujemy model bez zmiennej ldensity, ltaxpc, lavgsen, lwr lcrmrte i,t =β 0 + β 1 lprbarr i,t + β 2 lprbconv i,t + β 3 lprbpris i,t + β 5 lpolpc i,t + β 8 lwcon i,t + u i + ɛ i,t (5) R-sq: within = Obs per group: min = 7 between = avg = 7.0 overall = max = 7 F(5,535) = corr(u_i, Xb) = Prob > F = lprbarr lprbconv lprbpris lpolpc lwcon _cons sigma_u sigma_e rho (fraction of variance due to u_i) F test that all u_i=0: F(89, 535) = Prob > F = lrtest model_1 model_5 Likelihood-ratio test LR chi2(4) = 5.31 (Assumption: model_5 nested in model_1) Prob > chi2 = Na podstawie testu LR nie ma podstaw do odrzucenia naªo»onego ograniczenia. Z modelu (4) mo»emy usun zmienn ldensity. W tym modelu (5) nie ma ju» zmiennych nieistotnych statystycznie na poziomie istotno±ci 5%. Koniec procedury od ogóªu do szczegóªu.
6 Zbiór pyta«z zaawansowanej ekonometrii. c Rafaª Wo¹niak 6 Kod do estymacji // Krok 1 xtreg lcrmrte lprbarr lprbconv lprbpris lavgsen lpolpc ldensity /// ltaxpc lwcon lwfir, fe estimates store model_1 // Krok 2 xtreg lcrmrte lprbarr lprbconv lprbpris lavgsen lpolpc /// ltaxpc lwcon lwfir, fe estimates store model_2 lrtest model_1 model_2 // Krok 3 xtreg lcrmrte lprbarr lprbconv lprbpris lavgsen lpolpc /// lwcon lwfir, fe estimates store model_3 lrtest model_1 model_3 // Krok 4 xtreg lcrmrte lprbarr lprbconv lprbpris lpolpc /// lwcon lwfir, fe estimates store model_4 lrtest model_1 model_4 // Krok 5 xtreg lcrmrte lprbarr lprbconv lprbpris lpolpc /// lwcon, fe estimates store model_5 lrtest model_1 model_5
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wprowadzenie do danych panelowych a) Charakterystyka danych panelowych b) Zalety i ograniczenia 2. Modele ekonometryczne danych panelowych a) Model efektów nieobserwowalnych
Egzamin z ekonometrii
Pytania teoretyczne Egzamin z ekonometrii 22.06.2012 1. Podaj ogólną postać modeli DL i ADL 2. Wyjaśnij jak należy rozumieć przyczynowość w sensie Grangera i jak jest testowana. 3. Jakie są wady liniowego
Egzamin z ekonometrii IiE
Pytania teoretyczne Egzamin z ekonometrii IiE 22.06.2012 1. Kiedy selekcja próby jest problemem i jaki model można stosować w przypadku samoselekcji próby? 2. Jakie są konieczne założenia, by estymator
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 Diagnostyka a) Test RESET b) Test Jarque-Bera c) Testowanie heteroskedastyczności a) groupwise heteroscedasticity b) cross-sectional correlation d) Testowanie autokorelacji
Ekonometria egzamin semestr drugi 14/06/09
imię, nazwisko, nr indeksu: Ekonometria egzamin semestr drugi 14/06/09 1. Przed przystąpieniem do pisania egzaminu należy podpisać wszystkie kartki arkusza egzaminacyjnego (na dole w przewidzianym miejscu).
Dr Łukasz Goczek. Uniwersytet Warszawski
Dr Łukasz Goczek Uniwersytet Warszawski Penn World Table PWT 6.3 Alan Heston, Robert Summers and Bettina Aten, Penn World Table Version 6.3, Center for International Comparisons of Production, Income and
Wpływ wprowadzenia wspólnej waluty do obiegu gotówkowego na zmiany w poziomie cen krajów strefy euro
Wpływ wprowadzenia wspólnej waluty do obiegu gotówkowego na zmiany w poziomie cen krajów strefy euro Karolina Konopczak NBP, Biuro ds. Integracji ze Strefą Euro Marek Rozkrut NBP, Biuro ds. Integracji
6 Modele wyborów dyskretnych dla danych panelowych
6 Modele wyborów dyskretnych dla danych panelowych Dane do notatek są danymi do podręcznika Cameron & Trivedi (2008), pochodzą z artykułu Deb i Triverdi (2002). Przedmiotem badania jest eksperyment związany
Analiza czynników wpływających na poziom stopy Ŝyciowej
Analiza czynników wpływających na poziom stopy Ŝyciowej Praca zaliczeniowa z ekonometrii Michał Galera Łukasz Siara gr 302 Warszawa 2007 Spis Treści I. Wstęp...2 II. Baza danych...4 III. Budowa modelu...5
Materiaªy do zaawans. ekon. Z10
Faculty of Economic Sciences, University of Warsaw Warsaw, 23-04-2012 Probit wiczenie 1. Moshe Ben-Akiva and Steven Lerman, Discrete Choice Analysis, Theory and Application to Travel Demand, MIT Press,
Ekonometria dla IiE i MSEMat Z12
Ekonometria dla IiE i MSEMat Z12 Rafał Woźniak Faculty of Economic Sciences, University of Warsaw Warszawa, 09-01-2017 Test RESET Ramsey a W pierwszym etapie estymujemy współczynniki regresji w modelu:
Szacowanie modeli wielowartościowych w pakiecie STATA
Szacowanie modeli wielowartościowych w pakiecie STATA Uniwersytet Warszawski Wydział Nauk Ekonomicznych 25 kwietnia 2007 W badaniach ekonomicznych i społecznych często odpowiedzi na pytania są kodowane
1. Pokaż, że estymator MNW parametru β ma postać β = nieobciążony. Znajdź estymator parametru σ 2.
Zadanie 1 Niech y t ma rozkład logarytmiczno normalny o funkcji gęstości postaci [ ] 1 f (y t ) = y exp (ln y t β ln x t ) 2 t 2πσ 2 2σ 2 Zakładamy, że x t jest nielosowe a y t są nieskorelowane w czasie.
Modelowanie wielopoziomowe model z losowym nachyleniem
Modelowanie wielopoziomowe model z losowym nachyleniem Maciej Jakubowski Artur Pokropek październik 2008 Plan dzisiejszych zajęć 1) modelowanie edukacyjnej wartości dodanej 2) model EWD z losową stałą
Analiza Szeregów Czasowych. Egzamin
Analiza Szeregów Czasowych Egzamin 12-06-2018 Zadanie 1: Zadanie 2: Zadanie 3: Zadanie 4: / 12 pkt. / 12 pkt. / 12 pkt. / 14 pkt. Projekt zaliczeniowy: Razem: / 100 pkt. / 50 pkt. Regulamin egzaminu 1.
Analiza czynników wpływających na poziom wykształcenia.
Analiza czynników wpływających na poziom wykształcenia. Celem tej pracy jest potwierdzenie lub odrzucenie opinii, którą większość społeczeństwa uznaje za oczywistą, o tym ė w Polsce lepiej wykształceni
Modele dla zmiennej binarnej w pakiecie STATA materiały na ćwiczenia z ekonometrii 18.03.2005 r. Piotr Wójcik, KTRG WNE UW
Modele dla zmiennej binarnej w pakiecie STATA materiały na ćwiczenia z ekonometrii 18.03.2005 r. Piotr Wójcik, KTRG WNE UW Dane Dane wykorzystane w przykładzie pochodzą z pracy McCall, B.P., 1995, The
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
2.3 Modele nieliniowe
2.3 Modele nieliniowe Do tej pory zajmowaliśmy się modelami liniowymi lub o liniowej formie funkcyjnej i musieliśmy akceptować ich ograniczenia. Metoda Największej Wiarogodności pozwala również na efektywną
Heteroskedastyczość w szeregach czasowyh
Heteroskedastyczość w szeregach czasowyh Czesto zakłada się, że szeregi czasowe wykazuja autokorelację ae sa homoskedastyczne W rzeczywistości jednak często wariancja zmienia się w czasie Dobrym przykładem
Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 0/0/0. Egzamin trwa 90 minut.. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu. Złamanie
Metoda najmniejszych kwadratów
Własności algebraiczne Model liniowy Zapis modelu zarobki = β 0 + β 1 plec + β 2 wiek + ε Oszacowania wartości współczynników zarobki = b 0 + b 1 plec + b 2 wiek + e Model liniowy Tabela: Oszacowania współczynników
Ekonometria - wykªad 8
Ekonometria - wykªad 8 3.1 Specykacja i werykacja modelu liniowego dobór zmiennych obja±niaj cych - cz ± 1 Barbara Jasiulis-Goªdyn 11.04.2014, 25.04.2014 2013/2014 Wprowadzenie Ideologia Y zmienna obja±niana
Analiza skutków handlowych przystąpienia Polski do Europejskiej Unii Monetarnej przy użyciu uogólnionego modelu grawitacyjnego
Analiza skutków handlowych przystąpienia Polski do Europejskiej Unii Monetarnej przy użyciu uogólnionego modelu grawitacyjnego Prof. Andrzej Cieślik* Prof. Jan J. Michałek * Dr Jerzy Mycielski * * Wydział
Systemy podatkowe a atrakcyjność inwestycyjna krajów członkowskich UE
Systemy podatkowe a atrakcyjność inwestycyjna krajów członkowskich UE Seminarium naukowe Polskiego Stowarzyszenia Ekonomicznej Analizy Prawa dr Agata Kocia Wydział Nauk Ekonomicznych UW 11.01.2010 1 Cel
Problem równoczesności w MNK
Problem równoczesności w MNK O problemie równoczesności mówimy, gdy występuje korelacja między wartościa oczekiwana ε i i równoczesnym x i Model liniowy y = Xβ + ε, E (u) = 0 Powiedzmy, że występuje w
Autokorelacja i heteroskedastyczność
Autokorelacja i heteroskedastyczność Założenie o braku autokorelacji Cov (ε i, ε j ) = E (ε i ε j ) = 0 dla i j Oczekiwana wielkość elementu losowego nie zależy od wielkości elementu losowego dla innych
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Testy własności składnika losowego Testy formy funkcyjnej. Diagnostyka modelu. Część 2. Diagnostyka modelu
Część 2 Test Durbina-Watsona Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε t, ε t 1 ) 0 Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε
Modele wielorównaniowe (forma strukturalna)
Modele wielorównaniowe (forma strukturalna) Formę strukturalna modelu o G równaniach AY t = BX t + u t, gdzie Y t = [y 1t,..., y Gt ] X t = [x 1t,..., x Kt ] u t = [u 1t,..., u Gt ] E (u t ) = 0 Var (u
Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 02/02/2011 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
1 Modele ADL - interpretacja współczynników
1 Modele ADL - interpretacja współczynników ZADANIE 1.1 Dany jest proces DL następującej postaci: y t = µ + β 0 x t + β 1 x t 1 + ε t. 1. Wyjaśnić, jaka jest intepretacja współczynników β 0 i β 1. 2. Pokazać
Egzamin z ekonometrii wersja IiE, MSEMAT
Pytania teoretyczne Egzamin z ekonometrii wersja IiE, MSEMAT 08-02-2017 1. W jaki sposób przeprowadzamy test Chowa? 2. Pokazać, że jest nieobciążonym estymatorem. 3. Udowodnić, że w modelu ze stałą TSSESS+RSS.
Metody Ilościowe w Socjologii
Metody Ilościowe w Socjologii wykład 2 i 3 EKONOMETRIA dr inż. Maciej Wolny AGENDA I. Ekonometria podstawowe definicje II. Etapy budowy modelu ekonometrycznego III. Wybrane metody doboru zmiennych do modelu
Ekonometria dla IiE i MSEMat Z7
Ekonometria dla IiE i MSEMat Z7 Rafał Woźniak Faculty of Economic Sciences, University of Warsaw Warszawa, 21-11-2016 Na podstawie zbioru danych cps_small.dat z książki Principles of Econometrics oszacowany
Budowa modelu i testowanie hipotez
Problemy metodologiczne Gdzie jest problem? Obciążenie Lovella Dysponujemy oszacowaniami parametrów następującego modelu y t = β 0 + β 1 x 1 +... + β k x k + ε t Gdzie jest problem? Obciążenie Lovella
Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA
Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi Ważną klasę modeli dynamicznych stanowią
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Ekonometria. Metodologia budowy modelu. Jerzy Mycielski. Luty, 2011 WNE, UW. Jerzy Mycielski (WNE, UW) Ekonometria Luty, / 18
Ekonometria Metodologia budowy modelu Jerzy Mycielski WNE, UW Luty, 2011 Jerzy Mycielski (WNE, UW) Ekonometria Luty, 2011 1 / 18 Sprawy organizacyjne Dyżur: środa godz. 14-15 w sali 302. Strona internetowa
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Ekonometria ćwiczenia Kolokwium 2 semestr 22/05/05. / 4 pkt. / 4 pkt. / 3 pkt. / 4 pkt. /22 pkt. Regulamin i informacje dodatkowe
imię, nazwisko, nr indeksu: Ekonometria ćwiczenia Kolokwium 2 semestr 22/05/05 Zadanie 1 Zadanie 2 Zadanie 3 / 4 pkt / 4 pkt / 3 pkt Zadanie 4 / 7 pkt [1/1/1/2/2] Zadanie 5 Razem / 4 pkt /22 pkt Skala
Ekonometria. Zajęcia
Ekonometria Zajęcia 16.05.2018 Wstęp hipoteza itp. Model gęstości zaludnienia ( model gradientu gęstości ) zakłada, że gęstość zaludnienia zależy od odległości od okręgu centralnego: y t = Ae βx t (1)
Stanisław Cichocki Natalia Nehrebecka. Wykład 7
Stanisław Cichocki Natalia Nehrebecka Wykład 7 1 1. Metoda Największej Wiarygodności MNW 2. Założenia MNW 3. Własności estymatorów MNW 4. Testowanie hipotez w MNW 2 1. Metoda Największej Wiarygodności
Zmienne Binarne w Pakiecie Stata
Karol Kuhl Zbiór (hipotetyczny) dummy.dta zawiera dane, na podstawie których prowadzono analizy opisane poniżej. Nazwy zmiennych oznaczają: doch dochód w jednostkach pieniężnych; plec płeć: kobieta (0),
Egzamin z ekonometrii - wersja ogólna
Egzamin z ekonometrii - wersja ogólna 06-02-2019 Regulamin egzaminu 1. Egzamin trwa 90 min. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Ekonometria. wiczenia 2 Werykacja modelu liniowego. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
Ekonometria wiczenia 2 Werykacja modelu liniowego (2) Ekonometria 1 / 33 Plan wicze«1 Wprowadzenie 2 Ocena dopasowania R-kwadrat Skorygowany R-kwadrat i kryteria informacyjne 3 Ocena istotno±ci zmiennych
Stanisław Cichocki. Natalia Nehrebecka. Wykład 9
Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności
Estymacja modeli ARDL przy u»yciu Staty
Estymacja modeli ARDL przy u»yciu Staty Michaª Kurcewicz 21 lutego 2005 Celem zadania jest oszacowanie dªugookresowego modelu popytu na szeroki pieni dz w Niemczech. Zaª czony zbiór danych beyer.csv pochodzi
Dr Łukasz Goczek. Uniwersytet Warszawski
Dr Łukasz Goczek Uniwersytet Warszawski 10000 2000 4000 6000 8000 M3 use C:\Users\as\Desktop\Money.dta, clear format t %tm (oznaczamy tsset t tsline M3 0 1960m1 1970m1 1980m1 1990m1 2000m1 2010m1 t tsline
Ekonometria. Wprowadzenie do modelowania ekonometrycznego Estymator KMNK. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Wprowadzenie do modelowania ekonometrycznego Estymator Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 1 Estymator 1 / 16 Agenda 1 Literatura Zaliczenie przedmiotu 2 Model
Zamów książkę w księgarni internetowej
Zamów książkę w księgarni internetowej Wydawca Monika Pawłowska Redaktor prowadzący Janina Burek Opracowanie redakcyjne Bogumiła Ziembla Korekta i łamanie Wydawnictwo JAK Projekt graficzny okładki Barbara
Testowanie hipotez statystycznych
Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 28 listopada 2018 Plan zaj eć 1 Rozk lad estymatora b 2 3 dla parametrów 4 Hipotezy l aczne - test F 5 Dodatkowe za lożenie
Stanisław Cichocki. Natalia Nehrebecka. Wykład 13
Stanisław Cichocki Natalia Nehrebecka Wykład 13 1 1. Autokorelacja Konsekwencje Testowanie autokorelacji 2. Metody radzenia sobie z heteroskedastycznością i autokorelacją Uogólniona Metoda Najmniejszych
Ekonometria Ćwiczenia 19/01/05
Oszacowano regresję stopy bezrobocia (unemp) na wzroście realnego PKB (pkb) i stopie inflacji (cpi) oraz na zmiennych zero-jedynkowych związanymi z kwartałami (season). Regresję przeprowadzono na danych
Proces modelowania zjawiska handlu zagranicznego towarami
Załącznik nr 1 do raportu końcowego z wykonania pracy badawczej pt. Handel zagraniczny w województwach (NTS2) realizowanej przez Centrum Badań i Edukacji Statystycznej z siedzibą w Jachrance na podstawie
Ekonometria egzamin 07/03/2018
imię, nazwisko, nr indeksu: Ekonometria egzamin 07/03/2018 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Metody ilościowe i jakościowe w naukach ekonomicznych
Informator 2017/2018 Tytuł oferty Metody ilościowe i jakościowe w naukach ekonomicznych Sygnatura 223190-0854 7,50 pkt. ECTS Prowadzący dr Małgorzata Natalia Podogrodzka A. Cel przedmiotu Celem kursu jest
Ekonometria egzamin 01/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 01/02/2019 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów
Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,
Egzamin z ekonometrii wersja IiE, MSEMAT
Egzamin z ekonometrii wersja IiE, MSEMAT 04-02-2016 Pytania teoretyczne 1. Za pomocą jakiego testu weryfikowana jest normalność składnika losowego? Jakiemu założeniu KMRL odpowiada w tym teście? Jakie
1 Metoda Najmniejszych Kwadratów (MNK) 2 Interpretacja parametrów modelu. 3 Klasyczny Model Regresji Liniowej (KMRL)
1 Metoda Najmniejszych Kwadratów (MNK) 1. Co to jest zmienna endogeniczna, a co to zmienne egzogeniczna? 2. Podaj postać macierzy obserwacji dla modelu y t = a + bt + ε t 3. Co to jest wartość dopasowana,
Egzamin z ekonometrii wersja ogólna Pytania teoretyczne
Egzamin z ekonometrii wersja ogólna 08-02-2017 Pytania teoretyczne 1. Za pomocą którego testu testujemy stabilność parametrów? Jakiemu założeniu KMRL odpowiada H0 w tym teście? Jaka jest hipoteza alternatywna
Ekonometria egzamin wersja Informatyka i Ekonometria 29/01/08
imię, nazwisko, nr indeksu: Ekonometria egzamin wersja Informatyka i Ekonometria 29/0/08. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz
Wprowadzenie Testy własności składnika losowego. Diagnostyka modelu. Część 1. Diagnostyka modelu
Część 1 Testy i ich rodzaje Statystyka NR 2 Cel testowania Testy i ich rodzaje Statystyka NR 2 Cel testowania Testy małej próby Testy i ich rodzaje Statystyka NR 2 Cel testowania Testy małej próby Testy
Stanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 12 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne 2. Autokorelacja o Testowanie autokorelacji 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne
Test niezależności chi-kwadrat stosuje się (między innymi) w celu sprawdzenia związku pomiędzy dwiema zmiennymi nominalnymi (lub porządkowymi)
Test niezależności chi-kwadrat stosuje się (między innymi) w celu sprawdzenia związku pomiędzy dwiema zmiennymi nominalnymi (lub porządkowymi) Czy miejsce zamieszkania różnicuje uprawianie sportu? Mieszkańcy
1.7 Ograniczenia nakładane na równanie regresji
1.7 Ograniczenia nakładane na równanie regresji Często teoria ekonomiczna wskazuje dobór zmiennych do modelu. Jednak nie w każdym przypadku oceny wartości parametrów są statystycznie istotne. Zastanowimy
Czasowy wymiar danych
Problem autokorelacji Model regresji dla szeregów czasowych Model regresji dla szeregów czasowych y t = X t β + ε t Zasadnicze różnice 1 Budowa prognoz 2 Problem stabilności parametrów 3 Problem autokorelacji
Ekonometria egzamin 06/03/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 06/03/2019 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Stanisław Cichocki. Natalia Nehrebecka. Wykład 10
Stanisław Cichocki Natalia Nehrebecka Wykład 10 1 1. Testy diagnostyczne Testowanie prawidłowości formy funkcyjnej: test RESET Testowanie normalności składników losowych: test Jarque-Berra Testowanie stabilności
, a reszta dla pominiętej obserwacji wynosi 0, RSS jest stałe, T SS rośnie, więc zarówno R 2 jak i R2 rosną. R 2 = 1 n 1 n. rosnie. n 2 (1 R2 ) = 1 59
Zadanie 1. Ekonometryk szacując funkcję konsumpcji przeprowadził estymację osobno dla tzw. Polski A oraz Polski B. Dla Polski A posiadał n 1 = 40 obserwacji i uzyskał współczynnik dopasowania RA 2 = 0.4,
Stanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Testy diagnostyczne Testowanie stabilności parametrów modelu: test Chowa. Heteroskedastyczność Konsekwencje Testowanie heteroskedastyczności 1. Testy
1 Metoda Największej Wiarogodności
1 Metoda Największej Wiarogodności 1.0.1 Wprowadzenie Dotychczas omawiane modele szacowane były za pomocą metody najmniejszych kwadratów. Jednak takie modele nie wyczerpują wszystkich możliwości. Istnieje
Binarne zmienne zależne
Binarne zmienne zależne Zmienna zależna nie jest ciagła ale przyjmuje zero lub jeden Przykład: szukanie determinant bezrobocia (próba przekrojowa) zmienna objaśniana: zerojedynkowa (pracujacy, bezrobotny)
Wojciech Skwirz
1 Regularyzacja jako metoda doboru zmiennych objaśniających do modelu statystycznego. 2 Plan prezentacji 1. Wstęp 2. Część teoretyczna - Algorytm podziału i ograniczeń - Regularyzacja 3. Opis wyników badania
Zastosowanie modeli hazardu do szacowania długości czasu pozostawania bez pracy w Niemczech i w Polsce. 2. Wybór i opis właściwej metody analizy
DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6-8 września 2005 w Toruniu Katedra Ekonometrii i Statystyki, Uniwersytet Mikołaja Kopernika w Toruniu Szkoła Główna Gospodarstwa Wiejskiego
Analiza danych panelowych
Analiza danych panelowych Joanna Tyrowicz 18 kwietnia 2005r. Dotychczas analizowaliśmy dwa rodzaje danych. Pierwszym z nich było obserwowanie wielu obiektów w tym samym czasie (np. gospodarstwa domowe,
Próba weryfikacji hipotezy Easterlina*
Próba weryfikacji hipotezy Easterlina* Marta Szlaga, Piotr ukowski, studenci Wydzia³u Nauk Ekonomicznych UW Wstêp Celem niniejszej pracy jest bli sze przyjrzenie siê wspó³czesnym zastosowaniom hipotezy
WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno
WSTĘP DO REGRESJI LOGISTYCZNEJ Dr Wioleta Drobik-Czwarno REGRESJA LOGISTYCZNA Zmienna zależna jest zmienną dychotomiczną (dwustanową) przyjmuje dwie wartości, najczęściej 0 i 1 Zmienną zależną może być:
Natalia Nehrebecka. Wykład 1
Natalia Nehrebecka Wykład 1 1 1. Sprawy organizacyjne Zasady zaliczenia Dwiczenia Literatura 2. Czym zajmuje się ekonometria? 3. Formy danych statystycznych 4. Model ekonometryczny 2 1. Sprawy organizacyjne
Ekonometria egzamin wersja Informatyka i Ekonometria 26/06/08
imię, nazwisko, nr indeksu: Ekonometria egzamin wersja Informatyka i Ekonometria 26/06/08 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz
Ekonometria Przestrzenna
Ekonometria Przestrzenna Wykªad 6: Zªo»one modele regresji przestrzennej (6) Ekonometria Przestrzenna 1 / 21 Plan wykªadu 1 Modele zªo»one 2 Model SARAR 3 Model SDM (Durbina) 4 Model SDEM 5 Zadania (6)
Ekonometria. wiczenia 4 Prognozowanie. Andrzej Torój. Instytut Ekonometrii Zakªad Ekonometrii Stosowanej
Ekonometria wiczenia 4 Prognozowanie (4) Ekonometria 1 / 18 Plan wicze«1 Prognoza punktowa i przedziaªowa 2 Ocena prognozy ex post 3 Stabilno± i sezonowo± Sezonowo± zadanie (4) Ekonometria 2 / 18 Plan
Własności statystyczne regresji liniowej. Wykład 4
Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności
4 Logit wielomianowy, warunkowy i zagnieżdżony
4 Logit wielomianowy, warunkowy i zagnieżdżony Celem tej części notetek jest pokazanie różnic miedzy wartościami parametrów modeli szacowanych przy utrzymanym założeniu o niezależności niezwiązanych alternatyw
Natalia Nehrebecka Stanisław Cichocki. Wykład 10
Natalia Nehrebecka Stanisław Cichocki Wykład 10 1 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
Diagnostyka w Pakiecie Stata
Karol Kuhl Zgodnie z twierdzeniem Gaussa-Markowa, estymator MNK w KMRL jest liniowym estymatorem efektywnym i nieobciążonym, co po angielsku opisuje się za pomocą wyrażenia BLUE Best Linear Unbiased Estimator.
KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y. 2. Współczynnik korelacji Pearsona
KORELACJA 1. Wykres rozrzutu ocena związku między zmiennymi X i Y 2. Współczynnik korelacji Pearsona 3. Siła i kierunek związku między zmiennymi 4. Korelacja ma sens, tylko wtedy, gdy związek między zmiennymi
Wprowadzenie Modele o opóźnieniach rozłożonych Modele autoregresyjne o opóźnieniach rozłożonych. Modele dynamiczne.
opisują kształtowanie się zjawiska w czasie opisują kształtowanie się zjawiska w czasie Najważniejszymi zastosowaniami modeli dynamicznych są opisują kształtowanie się zjawiska w czasie Najważniejszymi
1.3 Własności statystyczne estymatorów MNK
1.3 Własności statystyczne estymatorów MNK 1. Estymator nazywamy estymatorem nieobciążonym, jeżeli jego wartość oczekiwana jest równa wartości szacowanego parametru. Udowodnimy, że estymator MNK wektora
Egzamin z Ekonometrii
Pytania teoretyczne Egzamin z Ekonometrii 18.06.2015 1. Opisać procedurę od ogólnego do szczegółowego na przykładzie doboru liczby opóźnień w modelu. 2. Na czym polega najważniejsza różnica między testowaniem
Przyczynowość Kointegracja. Kointegracja. Kointegracja
korelacja a związek o charakterze przyczynowo-skutkowym korelacja a związek o charakterze przyczynowo-skutkowym Przyczynowość w sensie Grangera Zmienna x jest przyczyną w sensie Grangera zmiennej y jeżeli
Jednowskaźnikowy model Sharpe`a
Uniwersytet Warszawski Wydział Nauk Ekonomicznych Milena Jamroziak i Paweł Androszczuk Model ekonometryczny Jednowskaźnikowy model Sharpe`a dla akcji Amici Praca zaliczeniowa napisana pod kierunkiem mgr
1.9 Czasowy wymiar danych
1.9 Czasowy wymiar danych Do tej pory rozpatrywaliśmy jedynie modele tworzone na podstawie danych empirycznych pochodzących z prób przekrojowych. Teraz zajmiemy się zagadnieniem budowy modeli regresji,
ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15
ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku
Natalia Nehrebecka Stanisław Cichocki. Wykład 10
Natalia Nehrebecka Stanisław Cichocki Wykład 10 1 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
Statystyka Małych Obszarów w badaniach próbkowych
Statystyka Małych Obszarów w badaniach próbkowych Łukasz Wawrowski l.wawrowski@stat.gov.pl Urząd Statystyczny w Poznaniu SKN Estymator, UEP 5.03.2012 1 Wprowadzenie Podstawowe pojęcia Badanie 2 Estymator
Modele ARIMA prognoza, specykacja
Modele ARIMA prognoza, specykacja Wst p do ekonometrii szeregów czasowych wiczenia 3 5 marca 2010 Plan prezentacji 1 Specykacja modelu ARIMA 2 3 Plan prezentacji 1 Specykacja modelu ARIMA 2 3 Funkcja autokorelacji
Paweł Strawiński Ćwiczenia
Zadanie 1 Na podstawie wników badań PGSS starano się zidentfikować zmienne, które wpłwają na poziom szczęścia. Na podstawie odpowiedzi stworzono zmienną hapunhap, która przjmuje wartość 1 dla osób, które
Mikroekonometria 12. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 12 Mikołaj Czajkowski Wiktor Budziński Dane panelowe Co jeśli mamy do dyspozycji dane panelowe? Kilka obserwacji od tych samych respondentów, w różnych punktach czasu (np. ankieta realizowana