Analiza danych panelowych
|
|
- Feliks Wróblewski
- 9 lat temu
- Przeglądów:
Transkrypt
1 Analiza danych panelowych Joanna Tyrowicz 18 kwietnia 2005r. Dotychczas analizowaliśmy dwa rodzaje danych. Pierwszym z nich było obserwowanie wielu obiektów w tym samym czasie (np. gospodarstwa domowe, kraje, respondenci). Na tej podstawie wyciągaliśmy wnioski na temat charakteru jakiegoś zjawiska i jego uwarunkowań. Drugim rodzajem analizy było obserwowanie zmiennej (jednej lub kilku) w zmieniającym sie czasie (np. stopy procentowe, inflacja, stopy bezrobocia). Rodzaj relacji, jaki obserwowaliśmy pomiedzy tymi poszczegolnymi szeregami czasowymi określaliśmy mianem kointegracji. Analiza panelowa pozwala połączyć te dwa rodzaje badań - w jednym badaniu określa sie zarówno wymiar podmiotów, jak i wymiar czasu. W tym materiale zrobimy to na podstawie autentycznych danych przygotowanych przez Jeffrey Frankel i Andrew K. Rose i opublikowanych pod tytułem Estimating The Effect of Currency Union On Trade And Output (NBER Working Paper No. 7875, 2002) 1. Rodzaj analizy, który zostanie tu przeprowadzony nosi miano modelu grawitacyjnego i jest to technika bardzo popularna w badaniu handlu miedzynarodowego. Jej pionierem jest James Anderson, który w 1978 przedstawił teoretyczne podstawy tego podejścia. Ogólnie rzecz biorąc analizujemy model w którym z założenia: Obroty Handlowe i,j,t = P KB i,t P KB j,t Odleglosc i,j (1) Jak widać z powyższego równania, mamy zarówno wymiar czasu (określony przez t) oraz obiektu (i, j). Zlograrytmowanie obu stron równania daje postać testowalną empirycznie: obroty handlowe i,j,t = α + β 1 (pkb i,t + pkb j,t ) + β 2 odleglosc i,j + ɛ i,j,t (2) Ta postać testowalna została rozszerzona przez Frankel a i Rose (2002) i nią bedziemy sie zajmować w dalszej cześci. 1 Ścieżka dostepu do artykułu znajduje sie na stronie Materiały 1
2 1 Dane Zbiór zawiera dane dotyczące obrotów handlowych miedzy niemal wszystkimi krajami świata. Dane pochodzą z różnorodnych źródeł. Uporządkowane są w nastepujący sposób: Zmienną określającą rok dokonania obserwacji jest year. Obserwacje pochodzą z piecioletnich przedziałów (od 1970 do 1995) W tych latach dokonano pomiarów dla niemal 8000 par krajów określonych w zbiorze jako pairid. Stanowi to próbke relacji handlowych około 180 krajów świata. Zmienną objaśnianą jest całkowity obrót handlowy w danym roku w obrebie danej pary (ltrade). Wielkości zostały zlogarytmowane, ponieważ tak podpowiada teoria. Zmienne objaśniające to po kolei: Logartym sumy realnych PKB w obu krajach w danej parze w danym roku (lrgdp). Logartym sumy populacji w obu krajach a danej parze w danym roku (lpop). Logartym odległości miedzy dwoma krajmi w danej parze (ldist) Zmienną zerojedynkową cu określającą przynależność dwóch danych krajów do jednego wspólnego obszaru walutowego (np. 12 krajów EMU). Zmienną zerojedynkową comlang określającą, czy dane dwa kraje posługują sie tym samym jezykiem, jako jezykiem oficjalnym (np. Belgia ma jezyk wspolny z krajami francuskojezycznymi, flamandzkojezycznymi oraz niemieckojezycznymi). Zmienną zerojedynkową border określającą, czy dane dwa kraje mają wspólną granice lądową (np. Polska z Niemcami, Czechami, Słowacją, Ukrainą, Białorusią, Litwą i Rosją). Zmienną bedącą sumą dwóch zmiennych zerojedynkowych colonial określającą, czy dane dwa kraje miały w ogóle przeszłość kolonialną (np. Polska i Austria razem nie) Zmienną zerojedynkową comcol określającą, czy dane dwa kraje miały w przeszłości wspólnego kolonizatora (np. Australia i Kanada tak, a Australia i Japonia nie). Zmienną zerojedynkową comctry o ile dane dwa kraje tworzyły kiedyś jeden kraj (np. Ghana i Rwanda). 2
3 Zmienną zerojedynkową regional o ile dane dwa kraje należą do jednego wspólnego ugrupowania wspierającego handel miedzy jego członkami (np. NAFTA, ASEAN, EFTA) Zmienną island bedącą sumą zmiennych zerojedynkowych, jeśli dwa kraje są wyspami. Zmienną ll bedącą sumą zmiennych zerojedynkowych, jeśli dwa kraje nie mają w ogóle dostepu do morza. 2 Praca w STATA Zanim otworzycie państwo plik panel_data.dta, należy uruchomić program STATA i wpisać w nim nastepujące komendy: set memory 99m set matsize 800 W ten sposób ustawiliśmy w programie maksymalne moce przerobowe - plik na którym bedziemy operować jest bardzo duży i bez tych ustawień nie jest możliwe nawet jego otwarcie. Jeśli zrobićby to w odwrotnej kolejności (najpierw otworzyć zbiór danych a potem ustawić parametry) STATA na to nie pozwoli. Przy użyciu komendy describe można obejrzeć opisy zmiennych przygotowane przez autorów artykułu. Są to opisy tekstowe lepiej wyjaśniające nature każdej zmiennej. 2.1 Regresja standardowa a badania panelowe Przy użyciu komendy reg lub regress możemy uzyskać na tym zbiorze wyniki standardowej regresji, która nie uwzglednia faktu, że pracujemy z danymi panelowymi.. regress ltrade lrgdp lpop ldist Sprawdźmy teraz na ile wiarygodne są te wyniki. Aby przeprowadzić regresje panelową, trzeba określić zmienne służące do zdefiniowania wymiarów. Wymiar czasu określa sie komendą tis a wymiar obiektu komenda iis.. tis year. iis pairid Należy przy tym zaznaczyć, że to od nas zalezy jak okreslimy te wymiary. Z punktu widzenia analizy, komenda iis określa zasade grupowania zmiennych. Przy takim zdefiniowaniu jak powyżej, STATA potworzy dla każdej pary krajów grupe z taką liczbą ob- 3
4 serwacji, dla ilu lat mamy dla tej pary dane. Gdyby zrobić odwrotnie, STATA stworzyłaby grupe w danym roku dla wszystkich dostepnych par krajów. Nie ma zasady, która mówi, że należy postepować tak, a nie inaczej. Trzeba mieć jednak świadomość, że to zdefiniowanie bedzie miało wpływ na nasze wyniki - zdefiniowanie tych kryteriów grupowania określa rodzaj odpowiedzi, który dostaniemy w wyniku regresji panelowej. Określiwszy wymiary, możemy wykonać regresje panelową. Robimy to komendą:. xtreg ltrade lrgdp lpop ldist Najpierw porównajmy wyniki obu estymacji. Jak widać, przedziały ufności nawet sie na siebie nie na chodza (poza zmienna ldist). Oznacza to, ze estymacja danych panelowych przy uzyciu standardowej regresji jest po prostu niepoprawna. 2.2 Interpretacja analizy panelowej Aby zinterpretować wyniki regresji panelowej, wykonajmy całą regresje zaproponowaną przez Frankela i Rose a 2.. xtreg ltrade lrgdp lpop ldist cu comlang border comcol comctry colonial ll regional Interpretując po kolei wyniki estymacji należy zwrócić uwage na tytuł nadany przez STATA tej analizie, czyli stwierdzenie Random-effects GLS regression. Określenie Random-effects wynika z tego, iż STATA regresje z efektami zmiennymi wykonuje domyślnie. Gdybyśmy chcieli wykonać regresje z efektami stałymi (fixed effect) należy powyższą komedne zmodyfikować dodając na jej końcu opcje, fe 3. Prawy panel podsumowania wyników podaje nam liczbe grup (7 961) oraz obserwacji (31 226). Podaje również liczbe obserwacji w grupie: minimalną (1, inaczej nie byloby grupy), maksymalną (6, mamy tylko 25 lat piecioletnich obserwacji) oraz średnią (3.9). Na końcu podaje wyniki testu na łączną nieistotność parametrów (statystyka Walda). Lewy panel raportuje która ze zmiennych została określona za grupującą. Po drugie raportuje wielkości R 2. Dostaliśmy R 2 within, R 2 between oraz R 2 overall. Każda z tych statystyk ma inną interpretacje. Jeśli chodzi o R 2 within związane ono jest z wariancją wewnątrz grupy. W naszym przypadku grupy są bardzo małe i nic dziwnego, że dopasowanie w tym zakresie jest niewielkie. Statystyka R 2 grupami. W przypadku tych badań, to właśnie R 2 between opisuje relacje wariancji w przestrzeni pomiedzy between jest tą statystyką, która nas interesuje najbardziej. Odpowiada nam ona na pytanie, jak dobrze przy użyciu modelu grawita- 2 Zmienna island jest nieistotna, wiec nie bedziemy jej dalej rozpatrywac. 3 Do kwestii wyboru efektów stałych czy zmiennych jeszcze wrócimy 4
5 cyjnego umiemy wyjaśnić schematy w handlu miedzynarodowym i okazuje sie, że w około 63%. Statystyka R 2 overall jest ważonym uśrednieniem tych dwóch statystyk i nie bardzo poddaje sie interpretacji innej niż intuicyjna. Poniżej statystk R 2 znajduje sie informacja o tym, ze załozono rozkład normalny dla efektów zmiennych oraz, że założono zerową korelacje miedzy tymi efektami a macierzą zmiennych objaśniających. Wyjaśnieniu tej kwestii poświecony jest nastepny podrozdział. 2.3 Efekty stałe, czy zmienne? Wybór efektów stałych lub zmiennych może być podyktowany przez teorie, co nie wyklucza przetestowania słuszności tego wyboru na danym zbiorze danych. Wracając do równania (2) ze wstepu do tych materiałów, kwestie efektów w modelu można przedstawić jako wybór miedzy nastepującymi alternatywami: oraz obroty handlowe i,j,t = α + β 1 (pkb i,t + pkb j,t ) + β 2 odleglosc i,j + ɛ i,j,t (3) obroty handlowe i,j,t = α i,j + β 1 (pkb i,t + pkb j,t ) + β 2 odleglosc i,j + ɛ i,j,t (4) Dodanie indeksów do parametru α równoznaczne jest z zezwoleniem na efekty zmienne. Intuicyjnie, oznacza to, iż pozwalamy by handel autonomiczny (czyli niewyjaśniany żadną ze zmiennych w modelu) był inny dla każdej pary krajów. Wybór efektów stałych oznacza iż uważamy, że jest on taki sam dla pary Ghana-Polska jak dla pary Holandia-Belgia. Choć już na pierwszy rzut oka wydaje sie, że w tym modelu powinniśmy zezwolić na efekty zmienne, aby mieć pewność słuszności wyboru, powinniśmy przeprowadzić testy weryfikujące. Do określenia tego możemy skorzystać z dwóch rodzajów testów wbudowanych w STATA. Oba mają podobną interpretacje choć nieco inne konstrukcje. Test Breuscha-Pagana skonstruowany na bazie mnożników Lagrange bada, czy wariancja wynikająca z par (a nie z wymiaru czasu) jest statystycznie istotna. Hipoteza zerowa mówi o tym, iż wariancja ta nie odgrywa żadnej roli (prawdziwy jest model efektów stałych). Wywołuje go komenta xttest0. W tym przypadku test bardzo silnie odrzuca hipoteze zerową na rzecz alternatywnej. Test Hausmana estymuje model z efektami stałymi, drugi z efektami zmiennymi i porównuje ze sobą wyestymowane współczynniki. Jeśli są od siebie różne w sposób statystycznie istotny, 5
6 to znaczy, że założenie o efektach stałych nie było słuszne. Test Hausmana wywołuje komenda xthausman. Obie komendy można wywołać jedynie po regresji typu RE (efekty zmienne). Jeśli bedziemy chcieli skorzystac z tych testow po regresji typu FE (efekty stałe), STATA nie poda wyników. Należy zaznaczyć, że jeżeli w danych naprawde wystepują efekty stałe, estymator efektów zmiennych (domyślny w STATA) jest efektywny i zgodny. Natomiast odwrotne stwierdzenie nie jest prawdziwe: narzucenie założenia o efektach stałych na modelu, gdzie w rzeczywistości wystepują efekty zmienne, powoduje otrzymanie niewłaściwych estymatorów. Wracając do informacji o Gausowskim rozkładzie czynnika stałego, w przypadku estymacji typu RE (efekty zmienne) STATA tak naprawde estymuje dwie stale w modelu. Po pierwsze stałą wspólną dla wszystkich zaraportowaną jako constant wśród zmiennych objaśniających. Drugą jest ten specyficzny dla danego obiektu (u nas pary krajów) efekt stały. Stwierdzenie o założonym rozkładzie Gausowskim jest równoważne temu, że STATA przyjeła iż efekty stałe mają jakiś rozkład i jest to rozkład normalny. Jest to potrzebne tylko i wyłącznie do drugiej cześci tego stwierdzenia, a mianowicie: corr(u_i, X) = 0 (assumed). Oznacza to, iż mimo iż efekty stałe mają rozkład normalny, a w dużych próbach (takich jak nasza) macierz X również powinna mieć rozkład zbliżony do normalnego, STATA nie dopuszcza równoczesnej korelacji miedzy efektami stałymi a macierz X 4 Efekty tego obserwujemy również w statystykach znajdujących sie poniżej estymatorów parametrów. Mamy tam podane wartości σ u, czyli wariancji wynikającej z różnorodności miedzy parami oraz σ e, czyli wariancji wynikającej z wymiaru czasu. Współczynnik ρ mówi nam o tym, jaka cześć wariancji (błedów standardowych) w modelu wyjaśniona jest przez efekty właściwe dla pary. Jeśli ρ jest relatywnie duże w naszym przypadku, to znaczy, że model opisuje zjawisko dość stabilne w czasie. A to oznacza, że nie musimy sie szczególnie martwić niską wartością R 2 within ponieważ proces który analizujemy jest dość dobrze wyjaśniony. 2.4 Efekty stałe a efekt roku? Do tej pory analizowaliśmy cały czas jakiś specyficzny efekt stały związany z obserwowaniem konkretnej pary krajów. Nie sprawdzaliśmy natomiast, czy przypadkiem nie wystepuje również stały i specyficzny efekt związany z momentem obserwacji. STATA jest bardzo dobrze wyposażona 4 Jest to założenie równoważne założeniu ortogonalności reszt w modelach MNK. Nie testuje sie go - jeśli teoria podpowiada endogeniczność którejś ze zmiennych macierzy X, estymatory mogą nie być zgodne, a jedynym rozwiązaniem jest użycie instrumentów. 6
7 do analizowania tego typu efektów - korzystając z komendy xi możemy zarządać zweryfikowania hipotezy o istotności tego typu efektów. xi:xtreg ltrade lrgdp lpop ldist cu... i.year Jak widać, estymatory przy wszystkich latach są istotne, wiec pominiecie tego efektu mogło prowadzić do obciążoności estymatorów w poprzednich badaniach. Warto również zwrócić uwage iż regresja xi:xtreg ltrade lrgdp lpop ldist cu... i.pairid jest równoznaczna z wyestymowaniem explicite wszystkich efektów stałych w modelu. Prosze jednak spróbować to zrobić - w wiekszości przypadków po dłuższej chwili namysłu STATA poda komunikat iż nie jest w stanie przeprowadzić tej operacji ze wzgledu na ograniczenia pamieci. Jak zauważycie w literaturze, w przypadku analiz danych panelowych bardzo czesto uwzglednia sie ten element w regresji, natomiast nieczesto raportuje w wynikach badań (widać to na przykład w uwagach pod tabelami w artykule Frankela i Rose a). 7
analiza danych panelowych
analiza danych panelowych Joanna Tyrowicz 14 kwietnia 2007r. Dotychczas analizowaliśmy dwa rodzaje danych. Pierwszym z nich było obserwowanie wielu obiektów w tym samym czasie (np. gospodarstwa domowe,
Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.
tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1
Stanisław Cichocki. Natalia Nehrebecka. Wykład 9
Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności
( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:
ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość
parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,
诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
Regresja liniowa wprowadzenie
Regresja liniowa wprowadzenie a) Model regresji liniowej ma postać: gdzie jest zmienną objaśnianą (zależną); są zmiennymi objaśniającymi (niezależnymi); natomiast są parametrami modelu. jest składnikiem
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8
Stanisław Cichocki Natalia Nehrebecka Zajęcia 8 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
Własności statystyczne regresji liniowej. Wykład 4
Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności
Ekonometria Ćwiczenia 19/01/05
Oszacowano regresję stopy bezrobocia (unemp) na wzroście realnego PKB (pkb) i stopie inflacji (cpi) oraz na zmiennych zero-jedynkowych związanymi z kwartałami (season). Regresję przeprowadzono na danych
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13
Stanisław Cichocki Natalia Neherbecka Zajęcia 13 1 1. Kryteria informacyjne 2. Testowanie autokorelacji 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych
Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona;
LABORATORIUM 4 Testowanie hipotez dla dwóch zmiennych zależnych. Moc testu. Minimalna liczność próby; Regresja prosta; Korelacja Pearsona; dwie zmienne zależne mierzalne małe próby duże próby rozkład normalny
Ekonometria. Zajęcia
Ekonometria Zajęcia 16.05.2018 Wstęp hipoteza itp. Model gęstości zaludnienia ( model gradientu gęstości ) zakłada, że gęstość zaludnienia zależy od odległości od okręgu centralnego: y t = Ae βx t (1)
Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )
Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału
Wykład 3: Prezentacja danych statystycznych
Wykład 3: Prezentacja danych statystycznych Dobór metody prezentacji danych Dobór metody prezentacji danych zależy od: charakteru danych statystycznych (inne metody wybierzemy dla danych przekrojowych,
Stanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 12 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne 2. Autokorelacja o Testowanie autokorelacji 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne
166 Wstęp do statystyki matematycznej
166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej
Wprowadzenie do analizy korelacji i regresji
Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących
ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH
1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza
Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1
Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów
STATYSTYKA INDUKCYJNA. O sondażach i nie tylko
STATYSTYKA INDUKCYJNA O sondażach i nie tylko DWA DZIAŁY ESTYMACJA Co na podstawie wyników z próby mogę powiedzieć o wynikach w populacji? WERYFIKACJA HIPOTEZ Czy moje przypuszczenia uczynione przed badaniami
Na podstawie danych dotyczacych rocznych wydatków na pizze oszacowano parametry poniższego modelu:
Zadanie 1. Oszacowano model ekonometryczny liczby narodzin dzieci (w tys.) w Polsce w latach 2000 2010 w zależnosci od średniego rocznego wynagrodzenia (w ujęciu realnym, PLN), stopy bezrobocia (w punktach
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 11-12
Stanisław Cichocki Natalia Nehrebecka Zajęcia 11-12 1. Zmienne pominięte 2. Zmienne nieistotne 3. Obserwacje nietypowe i błędne 4. Współliniowość - Mamy 2 modele: y X u 1 1 (1) y X X 1 1 2 2 (2) - Potencjalnie
TESTY NIEPARAMETRYCZNE. 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa.
TESTY NIEPARAMETRYCZNE 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa. Standardowe testy równości średnich wymagają aby badane zmienne losowe
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wprowadzenie do danych panelowych a) Charakterystyka danych panelowych b) Zalety i ograniczenia 2. Modele ekonometryczne danych panelowych a) Model efektów nieobserwowalnych
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność
1. Pokaż, że estymator MNW parametru β ma postać β = nieobciążony. Znajdź estymator parametru σ 2.
Zadanie 1 Niech y t ma rozkład logarytmiczno normalny o funkcji gęstości postaci [ ] 1 f (y t ) = y exp (ln y t β ln x t ) 2 t 2πσ 2 2σ 2 Zakładamy, że x t jest nielosowe a y t są nieskorelowane w czasie.
Rozdział 8. Regresja. Definiowanie modelu
Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność
Egzamin z ekonometrii
Pytania teoretyczne Egzamin z ekonometrii 22.06.2012 1. Podaj ogólną postać modeli DL i ADL 2. Wyjaśnij jak należy rozumieć przyczynowość w sensie Grangera i jak jest testowana. 3. Jakie są wady liniowego
Mikroekonometria 3. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 3 Mikołaj Czajkowski Wiktor Budziński Zadanie 1. Wykorzystując dane me.hedonic.dta przygotuj model oszacowujący wartość kosztów zewnętrznych rolnictwa 1. Przeprowadź regresję objaśniającą
Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski
Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem
Stanisław Cihcocki. Natalia Nehrebecka
Stanisław Cihcocki Natalia Nehrebecka 1 1. Kryteria informacyjne 2. Testowanie autokorelacji w modelu 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach
Egzamin z ekonometrii wersja IiE, MSEMAT
Egzamin z ekonometrii wersja IiE, MSEMAT 04-02-2016 Pytania teoretyczne 1. Za pomocą jakiego testu weryfikowana jest normalność składnika losowego? Jakiemu założeniu KMRL odpowiada w tym teście? Jakie
Proces modelowania zjawiska handlu zagranicznego towarami
Załącznik nr 1 do raportu końcowego z wykonania pracy badawczej pt. Handel zagraniczny w województwach (NTS2) realizowanej przez Centrum Badań i Edukacji Statystycznej z siedzibą w Jachrance na podstawie
Natalia Neherbecka. 11 czerwca 2010
Natalia Neherbecka 11 czerwca 2010 1 1. Konsekwencje heteroskedastyczności i autokorelacji 2. Uogólniona MNK 3. Stosowalna Uogólniona MNK 4. Odporne macierze wariancji i kowariancji b 2 1. Konsekwencje
Sposoby prezentacji problemów w statystyce
S t r o n a 1 Dr Anna Rybak Instytut Informatyki Uniwersytet w Białymstoku Sposoby prezentacji problemów w statystyce Wprowadzenie W artykule zostaną zaprezentowane podstawowe zagadnienia z zakresu statystyki
Testowanie hipotez statystycznych
Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 28 listopada 2018 Plan zaj eć 1 Rozk lad estymatora b 2 3 dla parametrów 4 Hipotezy l aczne - test F 5 Dodatkowe za lożenie
Przykład 1 ceny mieszkań
Przykład ceny mieszkań Przykład ceny mieszkań Model ekonometryczny zaleŝności ceny mieszkań od metraŝu - naleŝy do klasy modeli nieliniowych. - weryfikację empiryczną modelu przeprowadzono na przykładzie
Egzamin z ekonometrii wersja IiE, MSEMAT
Pytania teoretyczne Egzamin z ekonometrii wersja IiE, MSEMAT 08-02-2017 1. W jaki sposób przeprowadzamy test Chowa? 2. Pokazać, że jest nieobciążonym estymatorem. 3. Udowodnić, że w modelu ze stałą TSSESS+RSS.
1 Modele ADL - interpretacja współczynników
1 Modele ADL - interpretacja współczynników ZADANIE 1.1 Dany jest proces DL następującej postaci: y t = µ + β 0 x t + β 1 x t 1 + ε t. 1. Wyjaśnić, jaka jest intepretacja współczynników β 0 i β 1. 2. Pokazać
Zadanie 1. Analiza Analiza rozkładu
Zadanie 1 data lab.zad 1; input czas; datalines; 85 3060 631 819 805 835 955 595 690 73 815 914 ; run; Analiza Analiza rozkładu Ponieważ jesteśmy zainteresowani wyznaczeniem przedziału ufności oraz weryfikacja
WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno
WSTĘP DO REGRESJI LOGISTYCZNEJ Dr Wioleta Drobik-Czwarno REGRESJA LOGISTYCZNA Zmienna zależna jest zmienną dychotomiczną (dwustanową) przyjmuje dwie wartości, najczęściej 0 i 1 Zmienną zależną może być:
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 2 3 1. Wprowadzenie do danych panelowych a) Charakterystyka danych panelowych b) Zalety i ograniczenia 2. Modele ekonometryczne danych panelowych a) Model efektów
Statystyka matematyczna dla leśników
Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje
Stanisław Cichocki. Natalia Nehrebecka Katarzyna Rosiak-Lada
Stanisław Cichocki Natalia Nehrebecka Katarzyna Rosiak-Lada 1. Sprawy organizacyjne Zasady zaliczenia 2. Czym zajmuje się ekonometria? 3. Formy danych statystycznych 4. Model ekonometryczny 2 1. Sprawy
STATYSTYKA MATEMATYCZNA WYKŁAD 4. Testowanie hipotez Estymacja parametrów
STATYSTYKA MATEMATYCZNA WYKŁAD 4 Testowanie hipotez Estymacja parametrów WSTĘP 1. Testowanie hipotez Błędy związane z testowaniem hipotez Etapy testowana hipotez Testowanie wielokrotne 2. Estymacja parametrów
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 6 Wrocław, 7 listopada 2011 Temat. Weryfikacja hipotez statystycznych dotyczących proporcji. Test dla proporcji. Niech X 1,..., X n będzie próbą statystyczną z 0-1. Oznaczmy odpowiednio
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 5 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y
, a reszta dla pominiętej obserwacji wynosi 0, RSS jest stałe, T SS rośnie, więc zarówno R 2 jak i R2 rosną. R 2 = 1 n 1 n. rosnie. n 2 (1 R2 ) = 1 59
Zadanie 1. Ekonometryk szacując funkcję konsumpcji przeprowadził estymację osobno dla tzw. Polski A oraz Polski B. Dla Polski A posiadał n 1 = 40 obserwacji i uzyskał współczynnik dopasowania RA 2 = 0.4,
Testowanie hipotez statystycznych
round Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 13 grudnia 2014 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie
TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.
TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.
Stanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Testy diagnostyczne Testowanie stabilności parametrów modelu: test Chowa. Heteroskedastyczność Konsekwencje Testowanie heteroskedastyczności 1. Testy
Mikroekonometria 14. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 14 Mikołaj Czajkowski Wiktor Budziński Symulacje Analogicznie jak w przypadku ciągłej zmiennej zależnej można wykorzystać metody Monte Carlo do analizy różnego rodzaju problemów w modelach
... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić).
Egzamin ze Statystyki Matematycznej, WNE UW, wrzesień 016, zestaw B Odpowiedzi i szkice rozwiązań 1. Zbadano koszt 7 noclegów dla 4-osobowej rodziny (kwatery) nad morzem w sezonie letnim 014 i 015. Wylosowano
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie
Analiza regresji - weryfikacja założeń
Medycyna Praktyczna - portal dla lekarzy Analiza regresji - weryfikacja założeń mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie (Kierownik Zakładu: prof.
Testowanie hipotez statystycznych.
Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
KORELACJE I REGRESJA LINIOWA
KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem
LABORATORIUM 3. Jeśli p α, to hipotezę zerową odrzucamy Jeśli p > α, to nie mamy podstaw do odrzucenia hipotezy zerowej
LABORATORIUM 3 Przygotowanie pliku (nazwy zmiennych, export plików.xlsx, selekcja przypadków); Graficzna prezentacja danych: Histogramy (skategoryzowane) i 3-wymiarowe; Wykresy ramka wąsy; Wykresy powierzchniowe;
Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów
Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,
Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 5 Mikołaj Czajkowski Wiktor Budziński Zadanie 1. Wykorzystując dane me.hedonic.dta przygotuj model oszacowujący wartość kosztów zewnętrznych rolnictwa 1. Przeprowadź regresję objaśniającą
Egzamin z ekonometrii IiE
Pytania teoretyczne Egzamin z ekonometrii IiE 22.06.2012 1. Kiedy selekcja próby jest problemem i jaki model można stosować w przypadku samoselekcji próby? 2. Jakie są konieczne założenia, by estymator
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 Regresja wielokrotna Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X 1, X 2, X 3,...) na zmienną zależną (Y).
Zmienne zależne i niezależne
Analiza kanoniczna Motywacja (1) 2 Często w badaniach spotykamy problemy badawcze, w których szukamy zakresu i kierunku zależności pomiędzy zbiorami zmiennych: { X i Jak oceniać takie 1, X 2,..., X p }
HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =
HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ
WNIOSKOWANIE W MODELU REGRESJI LINIOWEJ Dana jest populacja generalna, w której dwuwymiarowa cecha (zmienna losowa) (X, Y ) ma pewien dwuwymiarowy rozk lad. Miara korelacji liniowej dla zmiennych (X, Y
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji
Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki
5. WNIOSKOWANIE PSYCHOMETRYCZNE
5. WNIOSKOWANIE PSYCHOMETRYCZNE Model klasyczny Gulliksena Wynik otrzymany i prawdziwy Błąd pomiaru Rzetelność pomiaru testem Standardowy błąd pomiaru Błąd estymacji wyniku prawdziwego Teoria Odpowiadania
Wykład 9 Wnioskowanie o średnich
Wykład 9 Wnioskowanie o średnich Rozkład t (Studenta) Wnioskowanie dla jednej populacji: Test i przedziały ufności dla jednej próby Test i przedziały ufności dla par Porównanie dwóch populacji: Test i
Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X1, X2, X3,...) na zmienną zależną (Y).
Statystyka i opracowanie danych Ćwiczenia 12 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA WIELORAKA Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych
Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r
Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów
Mikroekonometria 12. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 12 Mikołaj Czajkowski Wiktor Budziński Dane panelowe Co jeśli mamy do dyspozycji dane panelowe? Kilka obserwacji od tych samych respondentów, w różnych punktach czasu (np. ankieta realizowana
MODELE LINIOWE. Dr Wioleta Drobik
MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą
Analiza zdarzeń Event studies
Analiza zdarzeń Event studies Dobromił Serwa akson.sgh.waw.pl/~dserwa/ef.htm Leratura Campbell J., Lo A., MacKinlay A.C.(997) he Econometrics of Financial Markets. Princeton Universy Press, Rozdział 4.
Ekonometria. Wprowadzenie do modelowania ekonometrycznego Estymator KMNK. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Wprowadzenie do modelowania ekonometrycznego Estymator Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 1 Estymator 1 / 16 Agenda 1 Literatura Zaliczenie przedmiotu 2 Model
Ćwiczenia 10. Analiza regresji. Część I.
Ćwiczenia 10. Analiza regresji. Część I. Zadania obowiązkowe UWAGA! Elementy zadań oznaczone kolorem czerwonym należy przygotować lub wypełnić. Zadanie 10.1. (R/STATISTICA) Twoim zadaniem jest możliwie
Kolokwium ze statystyki matematycznej
Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę
Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU
Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów
Diagnostyka w Pakiecie Stata
Karol Kuhl Zgodnie z twierdzeniem Gaussa-Markowa, estymator MNK w KMRL jest liniowym estymatorem efektywnym i nieobciążonym, co po angielsku opisuje się za pomocą wyrażenia BLUE Best Linear Unbiased Estimator.
Egzamin z ekonometrii wersja ogólna Pytania teoretyczne
Egzamin z ekonometrii wersja ogólna 08-02-2017 Pytania teoretyczne 1. Za pomocą którego testu testujemy stabilność parametrów? Jakiemu założeniu KMRL odpowiada H0 w tym teście? Jaka jest hipoteza alternatywna
Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna
Regresja wieloraka Regresja wieloraka Ogólny problem obliczeniowy: dopasowanie linii prostej do zbioru punktów. Najprostszy przypadek - jedna zmienna zależna i jedna zmienna niezależna (można zobrazować
Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota
Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych
Stanisław Cichocki Natalia Neherbecka
Stanisław Cichocki Natalia Neherbecka 13 marca 2010 1 1. Kryteria informacyjne 2. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach (ADL) 3. Analiza
Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego
Korelacja oznacza współwystępowanie, nie oznacza związku przyczynowo-skutkowego Współczynnik korelacji opisuje siłę i kierunek związku. Jest miarą symetryczną. Im wyższa korelacja tym lepiej potrafimy
STATYSTYKA INDUKCYJNA. O sondaŝach ach i nie tylko
STATYSTYKA INDUKCYJNA O sondaŝach ach i nie tylko DWA DZIAŁY ESTYMACJA Co na podstawie wyników w z próby mogę powiedzieć o wynikach w populacji? WERYFIKACJA HIPOTEZ Czy moje przypuszczenia uczynione przed
Modele selekcji próby
Plan zajęć 1 Problem selekcji próby- heurystyka 2 Problem selekcji próby- teoria 3 Przykład empiryczny Selekcja próby 1 regresja tobitowa- cenzurowanie(transformacja) zmiennej objaśnianej 2 regresja ucięta-
Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe
Wprowadzenie do teorii ekonometrii Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Zajęcia Wykład Laboratorium komputerowe 2 Zaliczenie EGZAMIN (50%) Na egzaminie obowiązują wszystkie informacje
Egzamin z ekonometrii wersja ogolna
Egzamin z ekonometrii wersja ogolna 04-02-2016 Pytania teoretyczne 1. Wymienić założenia Klasycznego Modelu Regresji Liniowej (KMRL). 2. Wyprowadzić estymator MNK dla modelu z wieloma zmiennymi objaśniającymi.
Wprowadzenie do analizy dyskryminacyjnej
Wprowadzenie do analizy dyskryminacyjnej Analiza dyskryminacyjna to zespół metod statystycznych używanych w celu znalezienia funkcji dyskryminacyjnej, która możliwie najlepiej charakteryzuje bądź rozdziela
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów 5. Testowanie
Stanisław Cichocki Natalia Nehrebecka. Wykład 7
Stanisław Cichocki Natalia Nehrebecka Wykład 7 1 1. Metoda Największej Wiarygodności MNW 2. Założenia MNW 3. Własności estymatorów MNW 4. Testowanie hipotez w MNW 2 1. Metoda Największej Wiarygodności
REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ. Analiza regresji i korelacji
Statystyka i opracowanie danych Ćwiczenia 5 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ MODEL REGRESJI LINIOWEJ Analiza regresji
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4
STATYSTYKA I DOŚWIADCZALNICTWO Wykład 4 Inne układy doświadczalne 1) Układ losowanych bloków Stosujemy, gdy podejrzewamy, że może występować systematyczna zmienność między powtórzeniami np. - zmienność
OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp
tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE
Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 5 Mikołaj Czajkowski Wiktor Budziński Zadanie 1. Wykorzystując dane me.medexp3.dta przygotuj model regresji kwantylowej 1. Przygotuj model regresji kwantylowej w którym logarytm wydatków
Mikroekonometria 9. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 9 Mikołaj Czajkowski Wiktor Budziński Wielomianowy model logitowy Użyteczność konsumenta i z wyboru alternatywy j spośród J i alternatyw X wektor cech (atrybutów) danej alternatywy Z wektor
Ekonometria. Metodologia budowy modelu. Jerzy Mycielski. Luty, 2011 WNE, UW. Jerzy Mycielski (WNE, UW) Ekonometria Luty, / 18
Ekonometria Metodologia budowy modelu Jerzy Mycielski WNE, UW Luty, 2011 Jerzy Mycielski (WNE, UW) Ekonometria Luty, 2011 1 / 18 Sprawy organizacyjne Dyżur: środa godz. 14-15 w sali 302. Strona internetowa
Testowanie hipotez statystycznych
Testowanie hipotez statystycznych Wyk lad 8 Natalia Nehrebecka Stanis law Cichocki 29 listopada 2015 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie