Egzamin z ekonometrii
|
|
- Feliks Witek
- 6 lat temu
- Przeglądów:
Transkrypt
1 Pytania teoretyczne Egzamin z ekonometrii Podaj ogólną postać modeli DL i ADL 2. Wyjaśnij jak należy rozumieć przyczynowość w sensie Grangera i jak jest testowana. 3. Jakie są wady liniowego modelu prawdopodobieństwa? Odpowiedź uzasadnij. 4. Kiedy mówimy, że w modelu występuje równoczesność? Za pomocą jakiej statystyki można przetestować występowanie równoczesności? Jakiej metody estymacji powinno się użyć w przypadku jej występowania? ZADANIE 1 Przy użyciu danych dotyczących 131 krajów świata z lat badacz zbudował panel niezbilansowany. Przy użyciu tego panelu badacz oszacował model, którego celem jest wyjaśnienie zróżnicowania poziomu PKB per capita w poszczególnych krajach. Zmienną zależną jest zmienna gdp_pc oznaczająca logarytm PKB per capita (wyrażone w tysiącach dolarów) a zmiennymi objaśniającymi poziom alfabetyzacji (lit - wyrażony w procentach udział ludności umiejącej czytać), roads_pc (liczba kilometrów dróg na głowę), roads_p (procent dróg o nawierzchni utwardzonej), trend czasowy (year - rok z którego pochodzą dane). Dodatkowo do regresji włączono zmienną zerojedynkową continent związany z geograficznym położeniem danego kraju (1 Afryka, 2 Ameryka, 3 Azja, 4 Europa, 5 rejon Pacyfiku). Model został przez badacza oszacowany za pomocą MNK, estymatora efektów losowych i estymatora efektów stałych. Wyniki estymacji znajdują się na następnej stronie. Założony poziom istotności przy testowaniu hipotez statystycznych α = Uzyskane wyniki testów należy uzasadnić wielkościami odpowiednich statystyk bądź wartościami p. 1. Wyjaśnij, dlaczego badacz użył w regresji MNK odpornego warstwowego estymatora macierzy wariancji i kowariancji. 2. Weźmy pod uwagę jedynie wyniki dla MNK i estymatora efektów stałych. Który z nich jest estymatorem efektywnym w przypadku rozpatrywanego problemu? Odpowiedź uzasadnij odpowiednią statystyką testową. 3. Na podstawie znajdujących się na wydruku statystyk testowych wybierz spośród estymatorów POLS, RE i FE estymator, który powinno się użyć w kontekście analizowanego problemu. Wyjaśnij jakie hipotezy zerowe testujemy za pomocą użytych testów. 4. Dlaczego w przypadku estymatora efektów stałych nie udało się oszacować współczynnika dla zmiennej continent? 5. Zintepretuj wielkości wszystkich trzech statystyk R 2 uzyskanych dla estymatora efektów stałych. 6. Zintepretuj wielkość współczynników przy zmiennych lit, roads_pc i year w modelu efektów stałych. 7. Czy w modelu efektów stałych poprawne byłoby pominięcie efektów indywidualnych dla krajów? Odpowiedź uzasadnij wielkością odpowiedniej statystyki. 8. Dlaczego zarówno w modelu efektów stałych jak i w modelu efektów losowych uzyskujemy dwa oszacowania błędów standardowych czynników losowych (sigma_u, sigme_e)? Linear regression Number of obs = 1341 F( 8, 130) = Prob > F = R-squared = Root MSE = (Std. Err. adjusted for 131 clusters in iso_num) Robust gdp_pc Coef. Std. Err. t P>t [95% Conf. Interval] lit roads_p
2 roads_pc continent year _cons Random-effects GLS regression Number of obs = 1341 Group variable: iso_num Number of groups = 131 R-sq: within = Obs per group: min = 1 between = avg = 10.2 overall = max = 17 Wald chi2(8) = corr(u_i, X) = 0 (assumed) Prob > chi2 = gdp_pc Coef. Std. Err. z P>z [95% Conf. Interval] lit roads_p roads_pc continent year _cons sigma_u sigma_e rho (fraction of variance due to u_i) Fixed-effects (within) regression Number of obs = 1341 Group variable: iso_num Number of groups = 131 R-sq: within = Obs per group: min = 1 between = avg = 10.2 overall = max = 17 F(4,1206) = corr(u_i, Xb) = Prob > F = gdp_pc Coef. Std. Err. t P>t [95% Conf. Interval] 2
3 lit roads_p roads_pc continent 2 (omitted) 3 (omitted) 4 (omitted) 5 (omitted) year _cons sigma_u sigma_e rho (fraction of variance due to u_i) F test that all u_i=0: F(130, 1206) = Prob > F = Test Hausmana ---- Coefficients ---- (b) (B) (b-b) sqrt(diag(v_b-v_b)) fe re Difference S.E. lit roads_p roads_pc year b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg Test: Ho: difference in coefficients not systematic chi2(4) = (b-b) [(V_b-V_B)^(-1)](b-B) = Prob>chi2 = (V_b-V_B is not positive definite) Rozwiazanie: 1. Badacz użył w regresji MNK warstowego estymatora odpornego, ponieważ w przypadku regresji na panelu można spodziewać się niediagonalenj macierzy wariancji i kowariancji ze względu na występowanie efektów indywidualnych 2. Estymatorem nieobciążonym i efektywnym jest w tym przypadku estymator efektów stałych, z wartości statystyki F = [0.0000] dla hipotezy H 0 : u i = 0 dla i = 1,..., N wynika, że efekty indywidualne są istotne w modelu, zatem estymator ofektów stałych jest nieobciążony i efektywny w przeciwieństwie do estymatora MNK. 3. Podstawą wyboru odpowiedniego estymatora w rozpatrywanym przypadku powinien być wynik testu Hausmana. Hipotezą zerową w tym teście jest warunek konieczny dla zgodności estymatora efektów losowych to jest brak korelacji między efektem indywidualnym a zmiennymi objaśniającymi Cov (u i, X i ) = 0. W naszym przypadku hipoteza ta jest odrzucana [0.0000] a tym samym jedynym zgodnym estymatorem jest estymator efektów stałych. 3
4 4. Za pomocą estymatora efektów stałych nie jest możliwe oszacowanie wpływu zmiennych, które nie zmieniają się w czasie. Zmienna zerojedynkowa oznaczająca, że dany kraj był bądź jest krajem komunistycznym nie zmienia się w czasie. 5. Wielkość Rwithin 2 oznacza, że 30% zróżnicowania wewnątrz obiektowego (to jest zmian wartości PKB per capita) udało się wyjaśnić za pomocą zróżnicowania zmiennych objaśniających dla tego kraju. Wielkość Rbetween 2 oznacza, że 31% zróżnicowania PKB per capita między krajami udało się wyjaśnić za pomocą różnic w wielkościach zmiennych objaśniających pomiędzy krajami, Roverall 2 oznacza, że 28% całkowitej zmienności zmiennej zależnej udało się wyjaśnić zmiennością zmiennych niezależnych. 6. Wzrost poziomu alfabetyzacji o 1 punkt procentowy zmniejsza PKB per capita o 3.13% (ten wniosek z estymowanego modelu przeczy intuicji),zwiększenie udziału dróg utwardzonych o 1 punkt procentowy powoduje wzrost PKB per capita o 0.001%., wzrost długości dróg per capita o 1 km na głowę powoduje wzrost PKB na głowę o 0.08%. 7. W modelu efektów stałych nie można pominąć charakterystyk indywidualnych krajów ponieważ są one istotne co wnioskujemy z wyniku testu, że wszystkie u i = 0 (statystyka [0.0000]) a zarazem wiemy z wyniku testu Hausmana, że efekty indywidualne są skorelowane ze zmiennymi objaśniającymi. Pominięcie efektów indywidualnych wywołałoby w tym przypadku pojawienie się problemu endogeniczności. 8. Ponieważ w przypadku liniowego modelu efektów nieobserwowalnych mamy dwa składniki losowe: efekt indywidualny u i oraz błąd czystolosowy ε i. Oszacowane odchylenia standardowe odpowiadają odchyleniom standardowym u i oraz ε i. ZADANIE 2 Na podstawie danych z badania dochodów i wydatków konsumpcyjnych starano się wyjaśnić wielkość miesięcznych wydatków poniesionych w restauracjach i kawiarniach przez osoby samotne za pomocą wysokość dochodu, wieku i płci. Poniżej znajdują się oszacowania parametrów i efektów cząstkowych dla modelu tobitowego oszacowanego dla tego problemu. Tobit regression Number of obs = 5089 LR chi2(3) = Prob > chi2 = Log likelihood = Pseudo R2 = wyd Coef. Std. Err. t P>t [95% Conf. Interval] dochg wiek kobieta _cons /sigma Obs. summary: 4530 left-censored observations at wyd<=0 559 uncensored observations 0 right-censored observations Efekt czastkowy dla Pr(wyd>0) dy/dx Std. Err. z P>z [95% Conf. Interval] dochg e wiek kobieta
5 Efekt czastkowy dla E(wyd*) dy/dx Std. Err. z P>z [95% Conf. Interval] dochg wiek kobieta Testy przeprowadzamy na poziomie istotności α = Wyniki testów należy uzasadnić liczbami z wydruku. 1. Podaj założenia modelu tobitowego. 2. Jaką nietypową cechą będzie się najprawdopodobniej charakteryzować rozkład zmiennej zależnej? 3. Dlaczego policzenie regresji liniowej dla tej całej obserwowanej próby da najprawdopodobniej wartości dopasowane, które dla części obserwacji będą nieinterpretowalne? 4. Zbadaj istotność poszczególnych zmiennych w modelu oraz ich łączną istotność. 5. Zintepretuj efekty cząstkowe dla dochodu i wieku policzone dla zmiennej obserwowalnej. 6. Zintepretuj efekty cząstkowe policzone dla prawdopodobieństwa niezerowych wydatków. 7. Poniżej znajduje się oszacowanie elastyczności dochodowej wydatków / w restauracjach i kawiarniach policzone dla średniej wartości dochodu w próbie (a więc y E( yx) x x policzone dla x = x). Zintepretowuj tę wartość i oceń, czy jest ona zgodna z intuicją ekonomiczną. Elastycznosc dla E(wyd*) ey/ex Std. Err. z P>z [95% Conf. Interval] dochg Do zmiennych w modelu dodano zmienną wiek 2 i uzyskano wielkość logarytmu funkcji wiarygodności na poziomie Zweryfikuj hipotezę, że ta dodatkowa zmienna jest nieistotna w modelu. Podpowiedź: χ (1) = 3.84, χ (2) = 5.99, χ (3) = Rozwiazanie: 1. Założenia modelu tobitowego są następujące: i poszczególne ε i są niezależne. yi = x i β + ε i ε i N ( 0, σ 2) { yi = y y i = i dla y i > 0 y i = 0 dla y i 0 2. Nie wszystkich stać na jedzenie poza domem, więc dla niektórych gospodarstw wydatki poniesione w restauracjach i kawiarniach wyniosą 0. Na podstawie wydruku widzimy, że na 5089 przebadanych gospodarstw, jedynie 559 poniosło w danym miesiącu wydatki tego typu. 3. W przypadku oszacowania dla tego modelu zwykłej regresji liniowej najprawdopodobniej część wartości dopasowanych będzie ujemna - co jednak jest bez sensu ponieważ wydatki mogą być wyłącznie zerowe bądź dodatnie. 5
6 4. Wszystkie zmienne w modelu są istotne (wartość p są dla wszystkich zmiennych mniejsze od 0.05), stała jest nieistotna (0.896 > 0.05). Łącznie wszystkie zmienne są istotne o czym świadczy wartość p dla statystki LR (0.000 < 0.05). 5. Oczekiwanyrost wydatków odczytujemy z tablicy efektów cząskowych dla y. Wzrost dochodu o 1000 zł. powoduje oczekiwany wzrost wydatków na restauracje i kawiarnie o 5 zł na miesiąc, wzrost wieku o 1 rok powoduje spadek tego typu wydatków o 34 gr. 6. Na podstawie wydruku efektów cząstkowych dla prawdopodobieństwa dochodzimy do wniosku, że prawdopodobieństwo poniesienia większych od zera wydatków w restauracjach i kawiarniach wzrośnie o 5.97 punkta procentowego jeśli dochód wzrośnie o 1000 zł, wrost wieku o rok powoduje spadek tego p-stwa o 0.36 punktu procentowego oraz, że kobiety mają 6.61 punktu procentowego niższe p-stwo poniesienia tego typu wydatków. 7. Oszacowana wielkość oznacza, że przy 1% wzroście dochodu oczekiwane wydatki na restauracje i kawiarnie wzrosną o 0.80%. Oszacowanie to wydaje się niskie ponieważ wydatki tego typu wydają się raczej wydatkami na dobra luksusowe (powinny rosnąc wraz z dochodem) - a więc oszacowanie elastyczności powinno wyjść większe od Statystyka testu LR ma postać:. LR = 2 ( ) = > χ (1) = 3.84 Testujemy zerowość 1 współczynnika ( a więc właściwą wartością krytyczną jest χ (1). Odrzucamy H 0 o nieistotności dochodu 2. ZADANIE 3 Mamy następujące procesy y t = ϕy t 1 + ε 1t + θ 1 ε 1t 1 x t = x t 1 + ε 2t p t = α 1 x t + α 2 y t + u 1t q t = γy t + u 2t gdzie ε 1i IID ( 0, σ 2), ε 2i IID ( 0, σ 2), u 1i IID ( 0, σ 2), u 2i IID ( 0, σ 2) i ε 1, ε 2, u 1, u 2 nieskorelowane. 1. Jakie warunek musi spełniać ϕ, żeby miało sens badanie kointegracji między p t i q t? 2. Jaki warunek musi koniecznie spełniać α 1, by mogła zaistnieć kointegracja między p t i q t? 3. Jeśli warunki sformułowane powyżej są spełnione, jaką wartość przyjmie wektor kointegrujący β? Rozwiazanie: 1. Badanie kointegracji będzie miało sens jeśli procesy będą I (1). Aby q t mogło być I (1), zmienna y t musi być I (1). Z kolei y t może być I (1) tylko wtedy, gdy ϕ = Szukamy takiej kombinacji liniowej p t i q t, która jest stacjonarna. p t βq t = α 1 x t + α 2 y t + u 1t βγy t βu 2t = α 1 x t + (α 2 βγ) y t + u 1t βu 2t Zuważmy, że x t i y t są niekorelowane. Kombinacja liniowa niekorelowanych zmiennych I (1) musi być I (1). Jedyną możliwością uzyskania kointegracji jest α 1 = 0 i α 2 βγ = 0. [ ] 3. Wartość β = α 2 p1 γ. Wektor kointegrujący to taki wektor β, że βx t I (0). W tym przypadku x t = a wektor kointegrujący ma postać [ 1 β ] [ = 1 β = α2 γ wektorem kointegrującym będzie też każdy wektor postaci aβ dla dowolnego a. ] q t 6
Egzamin z ekonometrii IiE
Pytania teoretyczne Egzamin z ekonometrii IiE 22.06.2012 1. Kiedy selekcja próby jest problemem i jaki model można stosować w przypadku samoselekcji próby? 2. Jakie są konieczne założenia, by estymator
1. Pokaż, że estymator MNW parametru β ma postać β = nieobciążony. Znajdź estymator parametru σ 2.
Zadanie 1 Niech y t ma rozkład logarytmiczno normalny o funkcji gęstości postaci [ ] 1 f (y t ) = y exp (ln y t β ln x t ) 2 t 2πσ 2 2σ 2 Zakładamy, że x t jest nielosowe a y t są nieskorelowane w czasie.
Problem równoczesności w MNK
Problem równoczesności w MNK O problemie równoczesności mówimy, gdy występuje korelacja między wartościa oczekiwana ε i i równoczesnym x i Model liniowy y = Xβ + ε, E (u) = 0 Powiedzmy, że występuje w
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wprowadzenie do danych panelowych a) Charakterystyka danych panelowych b) Zalety i ograniczenia 2. Modele ekonometryczne danych panelowych a) Model efektów nieobserwowalnych
Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 02/02/2011 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Ekonometria egzamin semestr drugi 14/06/09
imię, nazwisko, nr indeksu: Ekonometria egzamin semestr drugi 14/06/09 1. Przed przystąpieniem do pisania egzaminu należy podpisać wszystkie kartki arkusza egzaminacyjnego (na dole w przewidzianym miejscu).
Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 0/0/0. Egzamin trwa 90 minut.. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu. Złamanie
Egzamin z ekonometrii wersja IiE, MSEMAT
Egzamin z ekonometrii wersja IiE, MSEMAT 04-02-2016 Pytania teoretyczne 1. Za pomocą jakiego testu weryfikowana jest normalność składnika losowego? Jakiemu założeniu KMRL odpowiada w tym teście? Jakie
Stanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 12 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne 2. Autokorelacja o Testowanie autokorelacji 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne
1 Modele ADL - interpretacja współczynników
1 Modele ADL - interpretacja współczynników ZADANIE 1.1 Dany jest proces DL następującej postaci: y t = µ + β 0 x t + β 1 x t 1 + ε t. 1. Wyjaśnić, jaka jest intepretacja współczynników β 0 i β 1. 2. Pokazać
Egzamin z ekonometrii wersja IiE, MSEMAT
Pytania teoretyczne Egzamin z ekonometrii wersja IiE, MSEMAT 08-02-2017 1. W jaki sposób przeprowadzamy test Chowa? 2. Pokazać, że jest nieobciążonym estymatorem. 3. Udowodnić, że w modelu ze stałą TSSESS+RSS.
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Ekonometria Ćwiczenia 19/01/05
Oszacowano regresję stopy bezrobocia (unemp) na wzroście realnego PKB (pkb) i stopie inflacji (cpi) oraz na zmiennych zero-jedynkowych związanymi z kwartałami (season). Regresję przeprowadzono na danych
Egzamin z ekonometrii - wersja ogólna
Egzamin z ekonometrii - wersja ogólna 06-02-2019 Regulamin egzaminu 1. Egzamin trwa 90 min. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 Diagnostyka a) Test RESET b) Test Jarque-Bera c) Testowanie heteroskedastyczności a) groupwise heteroscedasticity b) cross-sectional correlation d) Testowanie autokorelacji
Stanisław Cichocki. Natalia Nehrebecka. Wykład 9
Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności
Stanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Testy diagnostyczne Testowanie stabilności parametrów modelu: test Chowa. Heteroskedastyczność Konsekwencje Testowanie heteroskedastyczności 1. Testy
Przyczynowość Kointegracja. Kointegracja. Kointegracja
korelacja a związek o charakterze przyczynowo-skutkowym korelacja a związek o charakterze przyczynowo-skutkowym Przyczynowość w sensie Grangera Zmienna x jest przyczyną w sensie Grangera zmiennej y jeżeli
Ekonometria egzamin 01/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 01/02/2019 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Stanisław Cichocki. Natalia Nehrebecka. Wykład 14
Stanisław Cichocki Natalia Nehrebecka Wykład 14 1 1.Problemy z danymi Współliniowość 2. Heteroskedastyczność i autokorelacja Konsekwencje heteroskedastyczności i autokorelacji Metody radzenia sobie z heteroskedastycznością
Testowanie hipotez statystycznych
Część 2 Hipoteza złożona Testowanie hipotez łącznych Zapis matematyczny Rozkład statystyki testowej Hipoteza łączna H 0 : Rβ = q Hipoteza złożona Testowanie hipotez łącznych Zapis matematyczny Rozkład
Stanisław Cichocki. Natalia Nehrebecka. Wykład 13
Stanisław Cichocki Natalia Nehrebecka Wykład 13 1 1. Autokorelacja Konsekwencje Testowanie autokorelacji 2. Metody radzenia sobie z heteroskedastycznością i autokorelacją Uogólniona Metoda Najmniejszych
Stanisław Cichocki. Natalia Neherbecka. Zajęcia 13
Stanisław Cichocki Natalia Neherbecka Zajęcia 13 1 1. Kryteria informacyjne 2. Testowanie autokorelacji 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Egzamin z ekonometrii wersja ogólna Pytania teoretyczne
Egzamin z ekonometrii wersja ogólna 08-02-2017 Pytania teoretyczne 1. Za pomocą którego testu testujemy stabilność parametrów? Jakiemu założeniu KMRL odpowiada H0 w tym teście? Jaka jest hipoteza alternatywna
Egzamin z ekonometrii wersja ogolna
Egzamin z ekonometrii wersja ogolna 04-02-2016 Pytania teoretyczne 1. Wymienić założenia Klasycznego Modelu Regresji Liniowej (KMRL). 2. Wyprowadzić estymator MNK dla modelu z wieloma zmiennymi objaśniającymi.
Stanisław Cichocki. Natalia Nehrebecka. Wykład 10
Stanisław Cichocki Natalia Nehrebecka Wykład 10 1 1. Testy diagnostyczne Testowanie prawidłowości formy funkcyjnej: test RESET Testowanie normalności składników losowych: test Jarque-Berra Testowanie stabilności
Ekonometria dla IiE i MSEMat Z12
Ekonometria dla IiE i MSEMat Z12 Rafał Woźniak Faculty of Economic Sciences, University of Warsaw Warszawa, 09-01-2017 Test RESET Ramsey a W pierwszym etapie estymujemy współczynniki regresji w modelu:
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Ekonometria egzamin 07/03/2018
imię, nazwisko, nr indeksu: Ekonometria egzamin 07/03/2018 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Egzamin z ekonometrii wersja IiE, MSEMat Pytania teoretyczne
Egzamin z ekonometrii wersja IiE, MSEMat 31-01-2014 Pytania teoretyczne 1. Podać postać przekształcenia Boxa-Coxa i wyjaśnić, do czego jest stosowane w ekonometrii. 2. Wyjaśnić, jakie korzyści i niebezpieczeństwa
Dr Łukasz Goczek. Uniwersytet Warszawski
Dr Łukasz Goczek Uniwersytet Warszawski Penn World Table PWT 6.3 Alan Heston, Robert Summers and Bettina Aten, Penn World Table Version 6.3, Center for International Comparisons of Production, Income and
Stanisław Cichocki. Natalia Nehrebecka. Wykład 13
Stanisław Cichocki Natalia Nehrebecka Wykład 13 1 1. Testowanie autokorelacji 2. Heteroskedastyczność i autokorelacja Konsekwencje heteroskedastyczności i autokorelacji 3.Problemy z danymi Zmienne pominięte
Analiza czynników wpływających na poziom stopy Ŝyciowej
Analiza czynników wpływających na poziom stopy Ŝyciowej Praca zaliczeniowa z ekonometrii Michał Galera Łukasz Siara gr 302 Warszawa 2007 Spis Treści I. Wstęp...2 II. Baza danych...4 III. Budowa modelu...5
Ekonometria egzamin wersja Informatyka i Ekonometria 26/06/08
imię, nazwisko, nr indeksu: Ekonometria egzamin wersja Informatyka i Ekonometria 26/06/08 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz
Egzamin z Ekonometrii
Pytania teoretyczne Egzamin z Ekonometrii 18.06.2015 1. Opisać procedurę od ogólnego do szczegółowego na przykładzie doboru liczby opóźnień w modelu. 2. Na czym polega najważniejsza różnica między testowaniem
Heteroskedastyczość w szeregach czasowyh
Heteroskedastyczość w szeregach czasowyh Czesto zakłada się, że szeregi czasowe wykazuja autokorelację ae sa homoskedastyczne W rzeczywistości jednak często wariancja zmienia się w czasie Dobrym przykładem
Stanisław Cichocki. Natalia Nehrebecka. Wykład 14
Stanisław Cichocki Natalia Nehrebecka Wykład 14 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne Obserwacje nietypowe i błędne Współliniowość - Mamy 2 modele: y X u 1 1 (1) y X X 1 1 2 2 (2)
Ekonometria egzamin 06/03/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 06/03/2019 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Modele wielorównaniowe (forma strukturalna)
Modele wielorównaniowe (forma strukturalna) Formę strukturalna modelu o G równaniach AY t = BX t + u t, gdzie Y t = [y 1t,..., y Gt ] X t = [x 1t,..., x Kt ] u t = [u 1t,..., u Gt ] E (u t ) = 0 Var (u
6 Modele wyborów dyskretnych dla danych panelowych
6 Modele wyborów dyskretnych dla danych panelowych Dane do notatek są danymi do podręcznika Cameron & Trivedi (2008), pochodzą z artykułu Deb i Triverdi (2002). Przedmiotem badania jest eksperyment związany
1 Metoda Najmniejszych Kwadratów (MNK) 2 Interpretacja parametrów modelu. 3 Klasyczny Model Regresji Liniowej (KMRL)
1 Metoda Najmniejszych Kwadratów (MNK) 1. Co to jest zmienna endogeniczna, a co to zmienne egzogeniczna? 2. Podaj postać macierzy obserwacji dla modelu y t = a + bt + ε t 3. Co to jest wartość dopasowana,
Diagnostyka w Pakiecie Stata
Karol Kuhl Zgodnie z twierdzeniem Gaussa-Markowa, estymator MNK w KMRL jest liniowym estymatorem efektywnym i nieobciążonym, co po angielsku opisuje się za pomocą wyrażenia BLUE Best Linear Unbiased Estimator.
, a reszta dla pominiętej obserwacji wynosi 0, RSS jest stałe, T SS rośnie, więc zarówno R 2 jak i R2 rosną. R 2 = 1 n 1 n. rosnie. n 2 (1 R2 ) = 1 59
Zadanie 1. Ekonometryk szacując funkcję konsumpcji przeprowadził estymację osobno dla tzw. Polski A oraz Polski B. Dla Polski A posiadał n 1 = 40 obserwacji i uzyskał współczynnik dopasowania RA 2 = 0.4,
Definicja danych panelowych Typy danych panelowych Modele dla danych panelowych. Dane panelowe. Część 1. Dane panelowe
Część 1 to dane, które jednocześnie posiadają cechy danych przekrojowych i szeregów czasowych to dane, które jednocześnie posiadają cechy danych przekrojowych i szeregów czasowych Czyli obserwujemy te
Ekonometria egzamin 31/01/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 31/01/2018 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Metoda najmniejszych kwadratów
Własności algebraiczne Model liniowy Zapis modelu zarobki = β 0 + β 1 plec + β 2 wiek + ε Oszacowania wartości współczynników zarobki = b 0 + b 1 plec + b 2 wiek + e Model liniowy Tabela: Oszacowania współczynników
Budowa modelu i testowanie hipotez
Problemy metodologiczne Gdzie jest problem? Obciążenie Lovella Dysponujemy oszacowaniami parametrów następującego modelu y t = β 0 + β 1 x 1 +... + β k x k + ε t Gdzie jest problem? Obciążenie Lovella
Egzamin z ekonometrii wersja IiE, MSEMAT
Egzamin z ekonometrii wersja IiE, MSEMAT 02022015 Pytania teoretyczne 1. Podać treść twierdzenia GaussaMarkowa i wyjaśnić jego znaczenie. 2. Za pomocą jakich testów testuje się autokorelację? Jakiemu założeniu
Stanisław Cihcocki. Natalia Nehrebecka
Stanisław Cihcocki Natalia Nehrebecka 1 1. Kryteria informacyjne 2. Testowanie autokorelacji w modelu 3. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach
Autokorelacja i heteroskedastyczność
Autokorelacja i heteroskedastyczność Założenie o braku autokorelacji Cov (ε i, ε j ) = E (ε i ε j ) = 0 dla i j Oczekiwana wielkość elementu losowego nie zależy od wielkości elementu losowego dla innych
Testy własności składnika losowego Testy formy funkcyjnej. Diagnostyka modelu. Część 2. Diagnostyka modelu
Część 2 Test Durbina-Watsona Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε t, ε t 1 ) 0 Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε
Czasowy wymiar danych
Problem autokorelacji Model regresji dla szeregów czasowych Model regresji dla szeregów czasowych y t = X t β + ε t Zasadnicze różnice 1 Budowa prognoz 2 Problem stabilności parametrów 3 Problem autokorelacji
Zbiór pyta«zaawansowanej ekonometrii. c Rafaª Wo¹niak 1
Zbiór pyta«zaawansowanej ekonometrii. c Rafaª Wo¹niak 1 Zadanie 2 Wykorzystuj c zbiór danych crime.dta z ksi»ki Principles of Econometrics, R. Carter Hill, William E. Griths, Guay C. Lim, Wydanie 3, Wiley,
Stanisław Cichocki Natalia Neherbecka
Stanisław Cichocki Natalia Neherbecka 13 marca 2010 1 1. Kryteria informacyjne 2. Modele dynamiczne: modele o rozłożonych opóźnieniach (DL) modele autoregresyjne o rozłożonych opóźnieniach (ADL) 3. Analiza
Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA
Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi Ważną klasę modeli dynamicznych stanowią
Ekonometria. Metodologia budowy modelu. Jerzy Mycielski. Luty, 2011 WNE, UW. Jerzy Mycielski (WNE, UW) Ekonometria Luty, / 18
Ekonometria Metodologia budowy modelu Jerzy Mycielski WNE, UW Luty, 2011 Jerzy Mycielski (WNE, UW) Ekonometria Luty, 2011 1 / 18 Sprawy organizacyjne Dyżur: środa godz. 14-15 w sali 302. Strona internetowa
Analizowane modele. Dwa modele: y = X 1 β 1 + u (1) y = X 1 β 1 + X 2 β 2 + ε (2) Będziemy analizować dwie sytuacje:
Analizowane modele Dwa modele: y = X 1 β 1 + u (1) Będziemy analizować dwie sytuacje: y = X 1 β 1 + X 2 β 2 + ε (2) zmienne pominięte: estymujemy model (1) a w rzeczywistości β 2 0 zmienne nieistotne:
Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16
Stanisław Cichocki Natalia Nehrebecka Zajęcia 15-16 1 1. Sezonowość 2. Zmienne stacjonarne 3. Zmienne zintegrowane 4. Test Dickey-Fullera 5. Rozszerzony test Dickey-Fullera 6. Test KPSS 7. Regresja pozorna
Egzamin z ekonometrii wersja ogólna Pytania teoretyczne
Egzamin z ekonometrii wersja ogólna 31-01-2014 Pytania teoretyczne 1. Podać postać przekształcenia Boxa-Coxa i wyjaśnić, do czego jest stosowane w ekonometrii. 2. Porównaj zastosowania znanych ci kontrastów
Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 5 Mikołaj Czajkowski Wiktor Budziński Zadanie 1. Wykorzystując dane me.hedonic.dta przygotuj model oszacowujący wartość kosztów zewnętrznych rolnictwa 1. Przeprowadź regresję objaśniającą
Stanisław Cichocki. Natalia Nehrebecka. Wykład 13
Stanisław Cichocki Natalia Nehrebecka Wykład 13 1 1. Problemy z danymi Obserwacje nietypowe i błędne Współliniowość. Heteroskedastycznośd i autokorelacja Konsekwencje heteroskedastyczności i autokorelacji
Ekonometria dla IiE i MSEMat Z7
Ekonometria dla IiE i MSEMat Z7 Rafał Woźniak Faculty of Economic Sciences, University of Warsaw Warszawa, 21-11-2016 Na podstawie zbioru danych cps_small.dat z książki Principles of Econometrics oszacowany
1.9 Czasowy wymiar danych
1.9 Czasowy wymiar danych Do tej pory rozpatrywaliśmy jedynie modele tworzone na podstawie danych empirycznych pochodzących z prób przekrojowych. Teraz zajmiemy się zagadnieniem budowy modeli regresji,
Diagnostyka w Pakiecie Stata
Karol Kuhl Zgodnie z twierdzeniem Gaussa-Markowa, estymator MNK w KMRL jest liniowym estymatorem efektywnym i nieobciążonym, co po angielsku opisuje się za pomocą wyrażenia BLUE Best Linear Unbiased Estimator.
Paweł Strawiński Ćwiczenia
Zadanie 1 Na podstawie wników badań PGSS starano się zidentfikować zmienne, które wpłwają na poziom szczęścia. Na podstawie odpowiedzi stworzono zmienną hapunhap, która przjmuje wartość 1 dla osób, które
Ekonometria ćwiczenia Kolokwium 2 semestr 22/05/05. / 4 pkt. / 4 pkt. / 3 pkt. / 4 pkt. /22 pkt. Regulamin i informacje dodatkowe
imię, nazwisko, nr indeksu: Ekonometria ćwiczenia Kolokwium 2 semestr 22/05/05 Zadanie 1 Zadanie 2 Zadanie 3 / 4 pkt / 4 pkt / 3 pkt Zadanie 4 / 7 pkt [1/1/1/2/2] Zadanie 5 Razem / 4 pkt /22 pkt Skala
Natalia Nehrebecka Stanisław Cichocki. Wykład 10
Natalia Nehrebecka Stanisław Cichocki Wykład 10 1 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
Ekonometria egzamin wersja ogólna 17/06/08
imię, nazwisko, nr indeksu: Ekonometria egzamin wersja ogólna 17/06/08 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca
Heteroscedastyczność. Zjawisko heteroscedastyczności Uogólniona Metoda Najmniejszych Kwadratów Stosowalna Metoda Najmniejszych Kwadratów
Formy heteroscedastyczności Własności estymatorów MNK wydatki konsumpcyjne 0 10000 20000 30000 40000 14.4 31786.08 dochód rozporz¹dzalny Zródlo: Obliczenia wlasne, dane BBGD 2004 Formy heteroscedastyczności
Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.
tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1
Modele warunkowej heteroscedastyczności
Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Racjonalne oczekiwania inwestorów P t = E(P t+1 I t ) 1 + R (1) Teoria Przykład - zwroty
Ćwiczenia IV
Ćwiczenia IV - 17.10.2007 1. Spośród podanych macierzy X wskaż te, których nie można wykorzystać do estymacji MNK parametrów modelu ekonometrycznego postaci y = β 0 + β 1 x 1 + β 2 x 2 + ε 2. Na podstawie
Stopę zbieżności ciagu zmiennych losowych a n, takiego, że E (a n ) < oznaczamy jako a n = o p (1) prawdopodobieństwa szybciej niż n α.
Stopy zbieżności Stopę zbieżności ciagu zmiennych losowych a n, takiego, że a n oznaczamy jako a n = o p (1 p 0 a Jeśli n p n α 0, to a n = o p (n α i mówimy a n zbiega według prawdopodobieństwa szybciej
1.3 Własności statystyczne estymatorów MNK
1.3 Własności statystyczne estymatorów MNK 1. Estymator nazywamy estymatorem nieobciążonym, jeżeli jego wartość oczekiwana jest równa wartości szacowanego parametru. Udowodnimy, że estymator MNK wektora
Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 4 Prognozowanie, stabilność 1 / 17 Agenda
Wprowadzenie Modele o opóźnieniach rozłożonych Modele autoregresyjne o opóźnieniach rozłożonych. Modele dynamiczne.
opisują kształtowanie się zjawiska w czasie opisują kształtowanie się zjawiska w czasie Najważniejszymi zastosowaniami modeli dynamicznych są opisują kształtowanie się zjawiska w czasie Najważniejszymi
Wprowadzenie Testy własności składnika losowego. Diagnostyka modelu. Część 1. Diagnostyka modelu
Część 1 Testy i ich rodzaje Statystyka NR 2 Cel testowania Testy i ich rodzaje Statystyka NR 2 Cel testowania Testy małej próby Testy i ich rodzaje Statystyka NR 2 Cel testowania Testy małej próby Testy
Własności statystyczne regresji liniowej. Wykład 4
Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI REGRESJA LINIOWA Powtórka Powtórki Kowiariancja cov xy lub c xy - kierunek zależności Współczynnik korelacji liniowej Pearsona r siła liniowej zależności Istotność
Stanisław Cichocki Natalia Nehrebecka. Wykład 7
Stanisław Cichocki Natalia Nehrebecka Wykład 7 1 1. Metoda Największej Wiarygodności MNW 2. Założenia MNW 3. Własności estymatorów MNW 4. Testowanie hipotez w MNW 2 1. Metoda Największej Wiarygodności
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 2 3 1. Wprowadzenie do danych panelowych a) Charakterystyka danych panelowych b) Zalety i ograniczenia 2. Modele ekonometryczne danych panelowych a) Model efektów
Natalia Nehrebecka Stanisław Cichocki. Wykład 10
Natalia Nehrebecka Stanisław Cichocki Wykład 10 1 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
Natalia Neherbecka. 11 czerwca 2010
Natalia Neherbecka 11 czerwca 2010 1 1. Konsekwencje heteroskedastyczności i autokorelacji 2. Uogólniona MNK 3. Stosowalna Uogólniona MNK 4. Odporne macierze wariancji i kowariancji b 2 1. Konsekwencje
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8
Stanisław Cichocki Natalia Nehrebecka Zajęcia 8 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki
Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...
Zawansowane modele wyborów dyskretnych
Zawansowane modele wyborów dyskretnych Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Zawansowane modele wyborów dyskretnych grudzien 2013 1 / 16 Model efektów
Testowanie hipotez statystycznych
Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 28 listopada 2018 Plan zaj eć 1 Rozk lad estymatora b 2 3 dla parametrów 4 Hipotezy l aczne - test F 5 Dodatkowe za lożenie
Analiza Szeregów Czasowych. Egzamin
Analiza Szeregów Czasowych Egzamin 12-06-2018 Zadanie 1: Zadanie 2: Zadanie 3: Zadanie 4: / 12 pkt. / 12 pkt. / 12 pkt. / 14 pkt. Projekt zaliczeniowy: Razem: / 100 pkt. / 50 pkt. Regulamin egzaminu 1.
Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych
Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania
Stanisław Cichocki Natalia Nehrebecka. Zajęcia 11-12
Stanisław Cichocki Natalia Nehrebecka Zajęcia 11-12 1. Zmienne pominięte 2. Zmienne nieistotne 3. Obserwacje nietypowe i błędne 4. Współliniowość - Mamy 2 modele: y X u 1 1 (1) y X X 1 1 2 2 (2) - Potencjalnie
Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa
Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM
1.7 Ograniczenia nakładane na równanie regresji
1.7 Ograniczenia nakładane na równanie regresji Często teoria ekonomiczna wskazuje dobór zmiennych do modelu. Jednak nie w każdym przypadku oceny wartości parametrów są statystycznie istotne. Zastanowimy
Testowanie hipotez statystycznych
round Testowanie hipotez statystycznych Wyk lad 9 Natalia Nehrebecka Stanis law Cichocki 13 grudnia 2014 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie
Testowanie hipotez statystycznych
Testowanie hipotez statystycznych Wyk lad 8 Natalia Nehrebecka Stanis law Cichocki 29 listopada 2015 Plan zajeć 1 Rozk lad estymatora b Rozk lad sumy kwadratów reszt 2 Hipotezy proste - test t Badanie
Stanisław Cichocki. Natalia Nehrebecka. Wykład 10
Stanisław Cichoci Natalia Nehrebeca Wyład 10 1 1. Testowanie hipotez prostych Rozład estymatora b Testowanie hipotez prostych przy użyciu statystyi t Przedziały ufności Badamy czy hipotezy teoretyczne
Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ
Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,
Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.
Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ