6 Modele wyborów dyskretnych dla danych panelowych
|
|
- Maksymilian Nawrocki
- 6 lat temu
- Przeglądów:
Transkrypt
1 6 Modele wyborów dyskretnych dla danych panelowych Dane do notatek są danymi do podręcznika Cameron & Trivedi (2008), pochodzą z artykułu Deb i Triverdi (2002). Przedmiotem badania jest eksperyment związany z losowym przydzieleniem rodzinom różnych instrumentów w zakresie polityki zdrowotnej. Celem badania była weryfikacja w jaki sposób działa polityka współpłacenia przy różnej stopie współpłatności za usługi zdrowotne. Dane mają charakter panelowy. Każda obserwacja opisuje jedną osobę w jednym roku. Każda osoba może być rejestrowana przez okres do pięciu lat. W rezultacie panel jest niezbilansowany. Identyfikatorem dla panelu jest zmienna id. use mus18data.dta, clear describe dmdu med mdu lcoins ndisease female age lfam child id year storage display value variable name type format label variable label dmdu float %9.0g any MD visit = 1 if mdu > 0 med float %9.0g medical exp excl outpatient men mdu float %9.0g number face-to-fact md visits lcoins float %9.0g log(coinsurance+1) ndisease float %9.0g count of chronic diseases -- ba female float %9.0g female age float %9.0g age that year lfam float %9.0g log of family size child float %9.0g child id float %9.0g person id, leading digit is sit year float %9.0g study year Podstawowe statystyki opisowe zmiennych summarize dmdu med mdu lcoins ndisease female age lfam child id year Variable Obs Mean Std. Dev. Min Max dmdu med mdu lcoins ndisease female
2 age lfam child id year Zmienna dmdu jest binarnym wskaźnikiem, którego wartość określa czy osoba w danym roku odwiedziła lekarza (wartość 1), czy nie (wartośc 0). Zmienna med pokazuje roczne wydatki związane z leczeniem. Zmienna mdu pokazuję liczbę wizyt u lekarza w danym roku. Zmiennymi objaśniającymi są lcoins oznaczająca logarytm stopy wpółpłacenia plus 1. Dodano jedynkę, by w zbiorze danych nie pojawiły się brakujące wartości, z uwagi na fakt iż logarytm zera nie istnieje. Zmienna ndisease jest liczbą długotrwałych chorób jakie zdiagnozowano u pacjenta. Dodatkowo, zbiór zawiera cztery zmienne demograficzne: female zmienna zero-jedynkowa wskazująca, że osoba jest kobietą, age oznaczającą wiek pacjenta w danym roku, lfam logarytm liczby osób, które liczy rodzina, child zmienna zero-jedynkowa wskazująca, że osoba jest dzieckiem. Zadeklarowane, że zbiór danych jest panelem i opis struktury panelowej zbioru. xtset id year xtdescribe id: , ,..., n = 5908 year: 1, 2,..., 5 T = 5 Delta(year) = 1 unit Span(year) = 5 periods (id*year uniquely identifies each observation) Distribution of T_i: min 5% 25% 50% 75% 95% max Freq. Percent Cum. Pattern
3 (other patterns) XXXXX Eksperyment objął 5908 osób, jednak tylko 26,8 % osób jest obserwowanych przez 5 lat. Przed przystąpieniem do dalszej analizy warto jest sprawdzić zróżnicowanie zmiennych niezależnych, które nie są stałe w czasie. xtsum age lfam child Variable Mean Std. Dev. Min Max Observations age overall N = between n = 5908 within T-bar = lfam overall N = between n = 5908 within T-bar = child overall N = between n = 5908 within T-bar = Dla wszystkich analizowanych zmiennych większe jest zróżnicowanie międzygrupowe. Zatem oczekujemy, że estymator efektów stałych nie będzie efektywny, ponieważ jego wartość jest uzależniona od wariancji wewnątrzgrupowej. Ujmując problem bardziej ogólnie nie ma podstaw by oczekiwać, że konieczne będzie wykorzystanie estymatora efektów stałych. Dane są danymi eksperymentalnymi, zatem nie powinno być problemu związanego potencjalną endogenicznością zmiennych. W rezultacie prawidłowe wyniki powinny dać estymatory efektów losowych albo uśrednionych efektów panelowych. Analizę rozpoczynamy od opisu struktury panelowej zmiennej zależnej xtsum dmdu Variable Mean Std. Dev. Min Max Observations dmdu overall N = between n = 5908 within T-bar = Widać, że zróżnicowanie międzygrupowe i wewnątrzgrupowe są na zbliżonym poziomie. 3
4 xttrans dmdu any MD any MD visit = 1 if visit = 1 mdu > 0 if mdu > Total Total W wierszach tablicy przejść są wartości początkowe, z okresu t 1, a w kolumnach końcowe, z okresu t. Wartości w tablicy przejść pomiędzy latami wskazuje na trwałość zjawiska wizyt u lekarza. corr dmdu l.dmdu l2.dmdu (obs=8626) L. L2. dmdu dmdu dmdu dmdu L L Warto zauważyć, że wartość współczynnika korelacji wizyt w kolejnych latach jest niemal stała w czasie. 6.1 Modelowanie Pierwszym modelem będzie standardowy model logitowy. Panelowa struktura danych jest ignorowana. Zakładana jest niezależność obserwacji względem czasu i osób. W celu uwzględnienia powtarzających się obserwacji wykorzystywane jest odporne oszacowanie dla macierzy wariancji-kowariancji. Obserwacje są grupowana przez zmienną id. logit dmdu lcoins ndisease female age lfam child, vce(cluster id) nolog Logistic regression Number of obs = Wald chi2(6) = Prob > chi2 = Log pseudolikelihood = Pseudo R2 = (Std. Err. adjusted for 5908 clusters in id) 4
5 Robust dmdu Coef. Std. Err. z P> z [95% Conf. Interval] lcoins ndisease female age lfam child _cons Warto zwrócić uwagę, że wymuszenie odpornych błędów standardowych spowodowało wykorzystanie metody pseudo-największej wiarogodności. Zatem uzyskane rozwiązanie jest jedynie przybliżone. Uzyskane znaki dla ocen parametrów są zgodne z oczekiwaniami. W modelu uśrednionych efektów panelowych można założyć różną postać struktury korelacyjnej wewnątrz panelu. W tym celu należy posłużyć się opcją corr Struktura niezależna wartość opcji independent jest zdefiniowana jako { 1 jeżeli t = s V t,s = 0 jeżeli t s Struktura wymienna wartość opcji exchangeable jest zdefiniowana jako { 1 jeżeli t = s V t,s = ρ jeżeli t s odpowiada ona modelowi o stałej wartości korelacji między obserwacjami. Struktura autoregresyjna rzędu p wartość opcji ar p jest zdefiniowana jako { 1 jeżeli t = s V t,s = ρ t s jeżeli t s Struktura stacjonarna rzędu g wartość opcji stationary g jest zdefiniowana jako 1 jeżeli t = s V t,s = ρ jeżeli t s = 1 0 w pp. Struktura niestacjonarna rzędu g wartość opcji nonstationary g jest zdefiniowana jako 1 jeżeli t = s V t,s = ρ ts jeżeli 0 < t s < g, ρ ts = ρ st 0 w pp. 5
6 Struktura nieustrukturyzowana wartość opcji unstructured wymaga by elementy na diagonali macierzy korelacji były równe 1. { 1 jeżeli t = s V t,s = ρ ts w pp., ρ ts = ρ st Struktura nazwana exachangeable zakłada, że wartość korelacji jest identyczna niezależnie od tego jak daleko względem czasu są obserwacje od siebie. Ze względu na wartości w tablicy przejść model ten wydaje się być odpowiedni. xtlogit dmdu lcoins ndisease female age lfam child, pa corr(exch) vce(robust) nolog GEE population-averaged model Number of obs = Group variable: id Number of groups = 5908 Link: logit Obs per group: min = 1 Family: binomial avg = 3.4 Correlation: exchangeable max = 5 Wald chi2(6) = Scale parameter: 1 Prob > chi2 = (Std. Err. adjusted for clustering on id) Robust dmdu Coef. Std. Err. z P> z [95% Conf. Interval] lcoins ndisease female age lfam child _cons Jak widać wartości oszacowań parametrów są zbliżone do oszacowań uzyskanych w standardowym, nieprawidłowym, modelu regresji logistycznej. W panelowym modelu logitowym o efektach losowych zakładane jest, że efekt indywidualny ma rozkład normalny N (0, σ 2 α). Z uwagi na brak analitycznych rozwiązań dla modelu uzyskiwane jest rozwiązanie przybliżone * Logit random-effects estimator xtlogit dmdu lcoins ndisease female age lfam child, re nolog Random-effects logistic regression Number of obs = Group variable: id Number of groups =
7 Random effects u_i ~ Gaussian Obs per group: min = 1 avg = 3.4 max = 5 Integration method: mvaghermite Integration points = 12 Wald chi2(6) = Log likelihood = Prob > chi2 = dmdu Coef. Std. Err. z P> z [95% Conf. Interval] lcoins ndisease female age lfam child _cons /lnsig2u sigma_u rho Likelihood-ratio test of rho=0: chibar2(01) = Prob >= chibar2 = Oszacowana wartość parametru rho wskazuje, że około 50% wariancji jest generowane przez zróżnicowanie wewnątrzgrupowe. W modelu efektów stałych efekty indywidualne mogą być skorelowane ze zmiennymi objaśniającymi. Model efektów stałych jest trudny do oszacowania ze względu na problemy numeryczne. W estymacji wykorzystywana jest metoda warunkowej największej wiarogodności. * Logit fixed-effects estimator xtlogit dmdu lcoins ndisease female age lfam child, fe nolog Conditional fixed-effects logistic regression Number of obs = 9025 Group variable: id Number of groups = 2449 Obs per group: min = 2 avg = 3.7 max = 5 LR chi2(3) = Log likelihood = Prob > chi2 =
8 dmdu Coef. Std. Err. z P> z [95% Conf. Interval] lcoins 0 (omitted) ndisease 0 (omitted) female 0 (omitted) age lfam child Zgodnie z oczekiwaniami uzyskanie oszacowań dla parametrów stałych w czasie nie jest możliwe. Dodatkowo, warto zwrócić uwagę, że oszacowania uzyskano na podstawie mniejszej liczby obserwacji. Dzieje się tak, gdyż odrzucono obserwacje dla osób, dla których zmienna zależna nie zmieniała wartości. Możemy podsumować modele w jednej tabeli. * Panel logit estimator comparison global xlist lcoins ndisease female age lfam child quietly logit dmdu \$xlist, vce(cluster id) estimates store POOLED quietly xtlogit dmdu \$xlist, pa corr(exch) vce(robust) estimates store PA quietly xtlogit dmdu \$xlist, re quietly xtlogit dmdu \$xlist, fe // SEs are not cluster-robust estimates store RE // SEs are not cluster-robust estimates store FE estimates table POOLED PA RE FE, equations(1) se b(\%8.4f) stats(n ll) stfmt(\%8.0f) Model efektów losowych pozwala na wprowadzenie do modelu stałej o rozkładzie normalnym. Polecenie xmmelogit pozwala na uzyskanie oszacowania dla modelu w którym parametry nachylenia również są zmienną losową o rozkładzie normalnym. * Logit mixed-effects estimator (same as xtlogit, re) * xtmelogit dmdu lcoins ndisease female age lfam child id: Ten model jest jednak częściej wykorzystywany w statystyce niż w ekonometrii, do analizy skupionych danych (ang. clustered data). Literatura [1] Colin Cameron and Pravin K. Trivedi (2008) Microeconometrics using Stata 8
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wprowadzenie do danych panelowych a) Charakterystyka danych panelowych b) Zalety i ograniczenia 2. Modele ekonometryczne danych panelowych a) Model efektów nieobserwowalnych
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
1. Pokaż, że estymator MNW parametru β ma postać β = nieobciążony. Znajdź estymator parametru σ 2.
Zadanie 1 Niech y t ma rozkład logarytmiczno normalny o funkcji gęstości postaci [ ] 1 f (y t ) = y exp (ln y t β ln x t ) 2 t 2πσ 2 2σ 2 Zakładamy, że x t jest nielosowe a y t są nieskorelowane w czasie.
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 Diagnostyka a) Test RESET b) Test Jarque-Bera c) Testowanie heteroskedastyczności a) groupwise heteroscedasticity b) cross-sectional correlation d) Testowanie autokorelacji
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 2 3 1. Wprowadzenie do danych panelowych a) Charakterystyka danych panelowych b) Zalety i ograniczenia 2. Modele ekonometryczne danych panelowych a) Model efektów
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Egzamin z ekonometrii
Pytania teoretyczne Egzamin z ekonometrii 22.06.2012 1. Podaj ogólną postać modeli DL i ADL 2. Wyjaśnij jak należy rozumieć przyczynowość w sensie Grangera i jak jest testowana. 3. Jakie są wady liniowego
Egzamin z ekonometrii IiE
Pytania teoretyczne Egzamin z ekonometrii IiE 22.06.2012 1. Kiedy selekcja próby jest problemem i jaki model można stosować w przypadku samoselekcji próby? 2. Jakie są konieczne założenia, by estymator
Ekonometria dla IiE i MSEMat Z12
Ekonometria dla IiE i MSEMat Z12 Rafał Woźniak Faculty of Economic Sciences, University of Warsaw Warszawa, 09-01-2017 Test RESET Ramsey a W pierwszym etapie estymujemy współczynniki regresji w modelu:
Definicja danych panelowych Typy danych panelowych Modele dla danych panelowych. Dane panelowe. Część 1. Dane panelowe
Część 1 to dane, które jednocześnie posiadają cechy danych przekrojowych i szeregów czasowych to dane, które jednocześnie posiadają cechy danych przekrojowych i szeregów czasowych Czyli obserwujemy te
Heteroskedastyczość w szeregach czasowyh
Heteroskedastyczość w szeregach czasowyh Czesto zakłada się, że szeregi czasowe wykazuja autokorelację ae sa homoskedastyczne W rzeczywistości jednak często wariancja zmienia się w czasie Dobrym przykładem
Stanisław Cichocki. Natalia Nehrebecka. Wykład 14
Stanisław Cichocki Natalia Nehrebecka Wykład 14 1 1.Problemy z danymi Współliniowość 2. Heteroskedastyczność i autokorelacja Konsekwencje heteroskedastyczności i autokorelacji Metody radzenia sobie z heteroskedastycznością
Stanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 12 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne 2. Autokorelacja o Testowanie autokorelacji 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne
Szacowanie modeli wielowartościowych w pakiecie STATA
Szacowanie modeli wielowartościowych w pakiecie STATA Uniwersytet Warszawski Wydział Nauk Ekonomicznych 25 kwietnia 2007 W badaniach ekonomicznych i społecznych często odpowiedzi na pytania są kodowane
Ekonometria Ćwiczenia 19/01/05
Oszacowano regresję stopy bezrobocia (unemp) na wzroście realnego PKB (pkb) i stopie inflacji (cpi) oraz na zmiennych zero-jedynkowych związanymi z kwartałami (season). Regresję przeprowadzono na danych
Modele warunkowej heteroscedastyczności
Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Teoria Przykład - zwroty z WIG Niskie koszty transakcyjne Racjonalne oczekiwania inwestorów P t = E(P t+1 I t ) 1 + R (1) Teoria Przykład - zwroty
Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA
Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi Ważną klasę modeli dynamicznych stanowią
Diagnostyka w Pakiecie Stata
Karol Kuhl Zgodnie z twierdzeniem Gaussa-Markowa, estymator MNK w KMRL jest liniowym estymatorem efektywnym i nieobciążonym, co po angielsku opisuje się za pomocą wyrażenia BLUE Best Linear Unbiased Estimator.
Zawansowane modele wyborów dyskretnych
Zawansowane modele wyborów dyskretnych Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Zawansowane modele wyborów dyskretnych grudzien 2013 1 / 16 Model efektów
Ekonometria dla IiE i MSEMat Z7
Ekonometria dla IiE i MSEMat Z7 Rafał Woźniak Faculty of Economic Sciences, University of Warsaw Warszawa, 21-11-2016 Na podstawie zbioru danych cps_small.dat z książki Principles of Econometrics oszacowany
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Wstęp a) Binarne zmienne zależne b) Interpretacja ekonomiczna c) Interpretacja współczynników 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników
Diagnostyka w Pakiecie Stata
Karol Kuhl Zgodnie z twierdzeniem Gaussa-Markowa, estymator MNK w KMRL jest liniowym estymatorem efektywnym i nieobciążonym, co po angielsku opisuje się za pomocą wyrażenia BLUE Best Linear Unbiased Estimator.
Mikroekonometria 12. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 12 Mikołaj Czajkowski Wiktor Budziński Dane panelowe Co jeśli mamy do dyspozycji dane panelowe? Kilka obserwacji od tych samych respondentów, w różnych punktach czasu (np. ankieta realizowana
Stanisław Cichocki. Natalia Nehrebecka. Wykład 12
Stanisław Cichocki Natalia Nehrebecka Wykład 1 1 1. Testy diagnostyczne Testowanie stabilności parametrów modelu: test Chowa. Heteroskedastyczność Konsekwencje Testowanie heteroskedastyczności 1. Testy
Czasowy wymiar danych
Problem autokorelacji Model regresji dla szeregów czasowych Model regresji dla szeregów czasowych y t = X t β + ε t Zasadnicze różnice 1 Budowa prognoz 2 Problem stabilności parametrów 3 Problem autokorelacji
Dr Łukasz Goczek. Uniwersytet Warszawski
Dr Łukasz Goczek Uniwersytet Warszawski Penn World Table PWT 6.3 Alan Heston, Robert Summers and Bettina Aten, Penn World Table Version 6.3, Center for International Comparisons of Production, Income and
Problem równoczesności w MNK
Problem równoczesności w MNK O problemie równoczesności mówimy, gdy występuje korelacja między wartościa oczekiwana ε i i równoczesnym x i Model liniowy y = Xβ + ε, E (u) = 0 Powiedzmy, że występuje w
Egzamin z ekonometrii wersja ogólna Pytania teoretyczne
Egzamin z ekonometrii wersja ogólna 08-02-2017 Pytania teoretyczne 1. Za pomocą którego testu testujemy stabilność parametrów? Jakiemu założeniu KMRL odpowiada H0 w tym teście? Jaka jest hipoteza alternatywna
Przyczynowość Kointegracja. Kointegracja. Kointegracja
korelacja a związek o charakterze przyczynowo-skutkowym korelacja a związek o charakterze przyczynowo-skutkowym Przyczynowość w sensie Grangera Zmienna x jest przyczyną w sensie Grangera zmiennej y jeżeli
Natalia Nehrebecka Stanisław Cichocki. Wykład 6
Natalia Nehrebecka Stanisław Cichocki Wykład 6 1 1. Zmienne dyskretne Zmienne zero-jedynkowe 2. Modele z interakcjami 2 Zmienne dyskretne Zmienne nominalne Zmienne uporządkowane 3 4 1 podstawowe i 0 podstawowe
Testy własności składnika losowego Testy formy funkcyjnej. Diagnostyka modelu. Część 2. Diagnostyka modelu
Część 2 Test Durbina-Watsona Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε t, ε t 1 ) 0 Test Durbina-Watsona Weryfikowana hipoteza H 0 : cov(ε t, ε t 1 ) = 0 H 1 : cov(ε
Analiza Szeregów Czasowych. Egzamin
Analiza Szeregów Czasowych Egzamin 12-06-2018 Zadanie 1: Zadanie 2: Zadanie 3: Zadanie 4: / 12 pkt. / 12 pkt. / 12 pkt. / 14 pkt. Projekt zaliczeniowy: Razem: / 100 pkt. / 50 pkt. Regulamin egzaminu 1.
Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów
Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,
Natalia Nehrebecka Stanisław Cichocki. Wykład 10
Natalia Nehrebecka Stanisław Cichocki Wykład 10 1 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów
Zbiór pyta«zaawansowanej ekonometrii. c Rafaª Wo¹niak 1
Zbiór pyta«zaawansowanej ekonometrii. c Rafaª Wo¹niak 1 Zadanie 2 Wykorzystuj c zbiór danych crime.dta z ksi»ki Principles of Econometrics, R. Carter Hill, William E. Griths, Guay C. Lim, Wydanie 3, Wiley,
Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 02/02/2011 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
4 Logit wielomianowy, warunkowy i zagnieżdżony
4 Logit wielomianowy, warunkowy i zagnieżdżony Celem tej części notetek jest pokazanie różnic miedzy wartościami parametrów modeli szacowanych przy utrzymanym założeniu o niezależności niezwiązanych alternatyw
Testowanie hipotez statystycznych
Część 2 Hipoteza złożona Testowanie hipotez łącznych Zapis matematyczny Rozkład statystyki testowej Hipoteza łączna H 0 : Rβ = q Hipoteza złożona Testowanie hipotez łącznych Zapis matematyczny Rozkład
Ekonometria egzamin 02/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 0/0/0. Egzamin trwa 90 minut.. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu. Złamanie
1 Modele ADL - interpretacja współczynników
1 Modele ADL - interpretacja współczynników ZADANIE 1.1 Dany jest proces DL następującej postaci: y t = µ + β 0 x t + β 1 x t 1 + ε t. 1. Wyjaśnić, jaka jest intepretacja współczynników β 0 i β 1. 2. Pokazać
Egzamin z ekonometrii wersja IiE, MSEMAT
Pytania teoretyczne Egzamin z ekonometrii wersja IiE, MSEMAT 08-02-2017 1. W jaki sposób przeprowadzamy test Chowa? 2. Pokazać, że jest nieobciążonym estymatorem. 3. Udowodnić, że w modelu ze stałą TSSESS+RSS.
Stanisław Cichocki. Natalia Nehrebecka. Wykład 14
Stanisław Cichocki Natalia Nehrebecka Wykład 14 1 1.Problemy z danymi Zmienne pominięte Zmienne nieistotne Obserwacje nietypowe i błędne Współliniowość - Mamy 2 modele: y X u 1 1 (1) y X X 1 1 2 2 (2)
Egzamin z ekonometrii wersja IiE, MSEMat Pytania teoretyczne
Egzamin z ekonometrii wersja IiE, MSEMat 31-01-2014 Pytania teoretyczne 1. Podać postać przekształcenia Boxa-Coxa i wyjaśnić, do czego jest stosowane w ekonometrii. 2. Wyjaśnić, jakie korzyści i niebezpieczeństwa
Wprowadzenie Modele o opóźnieniach rozłożonych Modele autoregresyjne o opóźnieniach rozłożonych. Modele dynamiczne.
opisują kształtowanie się zjawiska w czasie opisują kształtowanie się zjawiska w czasie Najważniejszymi zastosowaniami modeli dynamicznych są opisują kształtowanie się zjawiska w czasie Najważniejszymi
Ekonometria egzamin semestr drugi 14/06/09
imię, nazwisko, nr indeksu: Ekonometria egzamin semestr drugi 14/06/09 1. Przed przystąpieniem do pisania egzaminu należy podpisać wszystkie kartki arkusza egzaminacyjnego (na dole w przewidzianym miejscu).
Uogolnione modele liniowe
Uogolnione modele liniowe Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Uogolnione modele liniowe grudzien 2013 1 / 17 (generalized linear model - glm) Zakładamy,
Heteroscedastyczność. Zjawisko heteroscedastyczności Uogólniona Metoda Najmniejszych Kwadratów Stosowalna Metoda Najmniejszych Kwadratów
Formy heteroscedastyczności Własności estymatorów MNK wydatki konsumpcyjne 0 10000 20000 30000 40000 14.4 31786.08 dochód rozporz¹dzalny Zródlo: Obliczenia wlasne, dane BBGD 2004 Formy heteroscedastyczności
Stanisław Cichocki. Natalia Nehrebecka. Wykład 13
Stanisław Cichocki Natalia Nehrebecka Wykład 13 1 1. Testowanie autokorelacji 2. Heteroskedastyczność i autokorelacja Konsekwencje heteroskedastyczności i autokorelacji 3.Problemy z danymi Zmienne pominięte
PAKIETY STATYSTYCZNE
. Wykład wstępny PAKIETY STATYSTYCZNE 2. SAS, wprowadzenie - środowisko Windows, Linux 3. SAS, elementy analizy danych edycja danych 4. SAS, elementy analizy danych regresja liniowa, regresja nieliniowa
Regresja logistyczna (LOGISTIC)
Zmienna zależna: Wybór opcji zachodniej w polityce zagranicznej (kodowana jako tak, 0 nie) Zmienne niezależne: wiedza o Unii Europejskiej (WIEDZA), zamieszkiwanie w regionie zachodnim (ZACH) lub wschodnim
Ekonometria egzamin 07/03/2018
imię, nazwisko, nr indeksu: Ekonometria egzamin 07/03/2018 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 5 Mikołaj Czajkowski Wiktor Budziński Zadanie 1. Wykorzystując dane me.hedonic.dta przygotuj model oszacowujący wartość kosztów zewnętrznych rolnictwa 1. Przeprowadź regresję objaśniającą
Egzamin z ekonometrii wersja IiE, MSEMAT
Egzamin z ekonometrii wersja IiE, MSEMAT 04-02-2016 Pytania teoretyczne 1. Za pomocą jakiego testu weryfikowana jest normalność składnika losowego? Jakiemu założeniu KMRL odpowiada w tym teście? Jakie
Egzamin z ekonometrii wersja ogólna Pytania teoretyczne
Egzamin z ekonometrii wersja ogólna 31-01-2014 Pytania teoretyczne 1. Podać postać przekształcenia Boxa-Coxa i wyjaśnić, do czego jest stosowane w ekonometrii. 2. Porównaj zastosowania znanych ci kontrastów
Metody Ilościowe w Socjologii
Metody Ilościowe w Socjologii wykład 2 i 3 EKONOMETRIA dr inż. Maciej Wolny AGENDA I. Ekonometria podstawowe definicje II. Etapy budowy modelu ekonometrycznego III. Wybrane metody doboru zmiennych do modelu
Ekonometria egzamin 01/02/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 01/02/2019 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Mikroekonometria 4. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 4 Mikołaj Czajkowski Wiktor Budziński Endogeniczność regresja liniowa W regresji liniowej estymujemy następujące równanie: i i i KMRL zakłada, że wszystkie zmienne objaśniające są egzogeniczne
Stanisław Cichocki. Natalia Nehrebecka. Wykład 9
Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności
Analiza czynników wpływających na poziom stopy Ŝyciowej
Analiza czynników wpływających na poziom stopy Ŝyciowej Praca zaliczeniowa z ekonometrii Michał Galera Łukasz Siara gr 302 Warszawa 2007 Spis Treści I. Wstęp...2 II. Baza danych...4 III. Budowa modelu...5
Mikroekonometria 5. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 5 Mikołaj Czajkowski Wiktor Budziński Zadanie 1. Wykorzystując dane me.medexp3.dta przygotuj model regresji kwantylowej 1. Przygotuj model regresji kwantylowej w którym logarytm wydatków
Ekonometria egzamin 06/03/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 06/03/2019 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Stanisław Cichocki. Natalia Nehrebecka. Wykład 10
Stanisław Cichocki Natalia Nehrebecka Wykład 10 1 1. Testy diagnostyczne Testowanie prawidłowości formy funkcyjnej: test RESET Testowanie normalności składników losowych: test Jarque-Berra Testowanie stabilności
Analizowane modele. Dwa modele: y = X 1 β 1 + u (1) y = X 1 β 1 + X 2 β 2 + ε (2) Będziemy analizować dwie sytuacje:
Analizowane modele Dwa modele: y = X 1 β 1 + u (1) Będziemy analizować dwie sytuacje: y = X 1 β 1 + X 2 β 2 + ε (2) zmienne pominięte: estymujemy model (1) a w rzeczywistości β 2 0 zmienne nieistotne:
Mikroekonometria 3. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 3 Mikołaj Czajkowski Wiktor Budziński Zadanie 1. Wykorzystując dane me.hedonic.dta przygotuj model oszacowujący wartość kosztów zewnętrznych rolnictwa 1. Przeprowadź regresję objaśniającą
Stanisław Cichocki. Natalia Nehrebecka. Wykład 13
Stanisław Cichocki Natalia Nehrebecka Wykład 13 1 1. Autokorelacja Konsekwencje Testowanie autokorelacji 2. Metody radzenia sobie z heteroskedastycznością i autokorelacją Uogólniona Metoda Najmniejszych
Własności statystyczne regresji liniowej. Wykład 4
Własności statystyczne regresji liniowej Wykład 4 Plan Własności zmiennych losowych Normalna regresja liniowa Własności regresji liniowej Literatura B. Hansen (2017+) Econometrics, Rozdział 5 Własności
Modele wielorównaniowe (forma strukturalna)
Modele wielorównaniowe (forma strukturalna) Formę strukturalna modelu o G równaniach AY t = BX t + u t, gdzie Y t = [y 1t,..., y Gt ] X t = [x 1t,..., x Kt ] u t = [u 1t,..., u Gt ] E (u t ) = 0 Var (u
Analiza czynników wpływających na poziom wykształcenia.
Analiza czynników wpływających na poziom wykształcenia. Celem tej pracy jest potwierdzenie lub odrzucenie opinii, którą większość społeczeństwa uznaje za oczywistą, o tym ė w Polsce lepiej wykształceni
2 Logit i logit wielomianowy
2 Logit i logit wielomianowy 2.1 Logit i miary dopasowania Miary dopasowania modelu do danych empirycznych opisane w niniejszym rozdziale mają szersze zastosowanie, do szerszej klasy modeli z dyskretnymi
(LMP-Liniowy model prawdopodobieństwa)
OGÓLNY MODEL REGRESJI BINARNEJ (LMP-Liniowy model prawdopodobieństwa) Dla k3 y α α α α + x + x + x 2 2 3 3 + α x x α x x + α x x + α x x + ε + x 4 2 5 3 6 2 3 7 2 3 Zał.: Wszystkie zmienne interakcyjne
Egzamin z ekonometrii - wersja ogólna
Egzamin z ekonometrii - wersja ogólna 06-02-2019 Regulamin egzaminu 1. Egzamin trwa 90 min. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE. Joanna Sawicka
Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE Joanna Sawicka Plan prezentacji Model Poissona-Gamma ze składnikiem regresyjnym Konstrukcja optymalnego systemu Bonus- Malus Estymacja
Stopę zbieżności ciagu zmiennych losowych a n, takiego, że E (a n ) < oznaczamy jako a n = o p (1) prawdopodobieństwa szybciej niż n α.
Stopy zbieżności Stopę zbieżności ciagu zmiennych losowych a n, takiego, że a n oznaczamy jako a n = o p (1 p 0 a Jeśli n p n α 0, to a n = o p (n α i mówimy a n zbiega według prawdopodobieństwa szybciej
SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization
Wrocław University of Technology SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization Jakub M. Tomczak Studenckie Koło Naukowe Estymator jakub.tomczak@pwr.wroc.pl 4.1.213 Klasteryzacja Zmienne
WSTĘP DO REGRESJI LOGISTYCZNEJ. Dr Wioleta Drobik-Czwarno
WSTĘP DO REGRESJI LOGISTYCZNEJ Dr Wioleta Drobik-Czwarno REGRESJA LOGISTYCZNA Zmienna zależna jest zmienną dychotomiczną (dwustanową) przyjmuje dwie wartości, najczęściej 0 i 1 Zmienną zależną może być:
3 Modele wyborów dyskretnych
3 Modele wyborów dyskretnych Przykłady, rozszerzenia i interpretacja Dane do przykładu pochodzą z piątej fali badania Health and Retirement Study przeprowadzonego w Stanach Zjednoczonych Ameryki Północnej
Ekonometria ćwiczenia Kolokwium 2 semestr 22/05/05. / 4 pkt. / 4 pkt. / 3 pkt. / 4 pkt. /22 pkt. Regulamin i informacje dodatkowe
imię, nazwisko, nr indeksu: Ekonometria ćwiczenia Kolokwium 2 semestr 22/05/05 Zadanie 1 Zadanie 2 Zadanie 3 / 4 pkt / 4 pkt / 3 pkt Zadanie 4 / 7 pkt [1/1/1/2/2] Zadanie 5 Razem / 4 pkt /22 pkt Skala
Modele dla zmiennej binarnej w pakiecie STATA materiały na ćwiczenia z ekonometrii 18.03.2005 r. Piotr Wójcik, KTRG WNE UW
Modele dla zmiennej binarnej w pakiecie STATA materiały na ćwiczenia z ekonometrii 18.03.2005 r. Piotr Wójcik, KTRG WNE UW Dane Dane wykorzystane w przykładzie pochodzą z pracy McCall, B.P., 1995, The
Ekonometria egzamin wersja Informatyka i Ekonometria 26/06/08
imię, nazwisko, nr indeksu: Ekonometria egzamin wersja Informatyka i Ekonometria 26/06/08 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz
Dr Łukasz Goczek. Uniwersytet Warszawski
Dr Łukasz Goczek Uniwersytet Warszawski 10000 2000 4000 6000 8000 M3 use C:\Users\as\Desktop\Money.dta, clear format t %tm (oznaczamy tsset t tsline M3 0 1960m1 1970m1 1980m1 1990m1 2000m1 2010m1 t tsline
parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,
诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów
Ekonometria egzamin wersja ogólna 17/06/08
imię, nazwisko, nr indeksu: Ekonometria egzamin wersja ogólna 17/06/08 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca
Modelowanie wielopoziomowe model z losowym nachyleniem
Modelowanie wielopoziomowe model z losowym nachyleniem Maciej Jakubowski Artur Pokropek październik 2008 Plan dzisiejszych zajęć 1) modelowanie edukacyjnej wartości dodanej 2) model EWD z losową stałą
1.9 Czasowy wymiar danych
1.9 Czasowy wymiar danych Do tej pory rozpatrywaliśmy jedynie modele tworzone na podstawie danych empirycznych pochodzących z prób przekrojowych. Teraz zajmiemy się zagadnieniem budowy modeli regresji,
Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe
Wprowadzenie do teorii ekonometrii Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Zajęcia Wykład Laboratorium komputerowe 2 Zaliczenie EGZAMIN (50%) Na egzaminie obowiązują wszystkie informacje
Spis treści Wstęp Estymacja Testowanie. Efekty losowe. Bogumiła Koprowska, Elżbieta Kukla
Bogumiła Koprowska Elżbieta Kukla 1 Wstęp Czym są efekty losowe? Przykłady Model mieszany 2 Estymacja Jednokierunkowa klasyfikacja (ANOVA) Metoda największej wiarogodności (ML) Metoda największej wiarogodności
Ekonometria egzamin 31/01/ W trakcie egzaminu wolno używać jedynie długopisu o innym kolorze atramentu niż czerwony oraz kalkulatora.
imię, nazwisko, nr indeksu: Ekonometria egzamin 31/01/2018 1. Egzamin trwa 90 minut. 2. Rozwiązywanie zadań należy rozpocząć po ogłoszeniu początku egzaminu a skończyć wraz z ogłoszeniem końca egzaminu.
Spis treści 3 SPIS TREŚCI
Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe
Stanisław Cichocki. Natalia Nehrebecka
Stanisław Cichocki Natalia Nehrebecka 1 1. Binarne zmienne zależne 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników 3. Probit a) Interpretacja współczynników b) Miary dopasowania 4.
ANALIZA DANYCH W STATA 8.0
ANALIZA DANYCH W STATA 8.0 1. Opis wyglądu programu Stata ZAJĘCIA 1 Menu i ikonki Okna: wpisywania poleceń (command) wynikowe (results) dotychczasowych poleceń (review) zmiennych (variables) viewer danych
Zmienne sztuczne i jakościowe
Zmienne o ograniczonym zbiorze wartości Przykład 1. zarobki = β 0 + β 1 liczba godzin pracy + β 2 wykształcenie + ε Przykład 2. zarobki = β 0 + β 1 liczba godzin pracy + β 2 klm + ε zarobki = β 0 + β 1
Mikroekonometria 13. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 13 Mikołaj Czajkowski Wiktor Budziński Endogeniczność regresja liniowa W regresji liniowej estymujemy następujące równanie: i i i Metoda Najmniejszych Kwadratów zakłada, że wszystkie zmienne
Stanisław Cichocki. Natalia Neherebecka. Zajęcia 15-17
Stanisław Cichocki Natalia Neherebecka Zajęcia 15-17 1 1. Binarne zmienne zależne 2. Liniowy model prawdopodobieństwa a) Interpretacja współczynników 3. Probit a) Interpretacja współczynników b) Miary
2.3 Modele nieliniowe
2.3 Modele nieliniowe Do tej pory zajmowaliśmy się modelami liniowymi lub o liniowej formie funkcyjnej i musieliśmy akceptować ich ograniczenia. Metoda Największej Wiarogodności pozwala również na efektywną
1.5 Problemy ze zbiorem danych
1.5 Problemy ze zbiorem danych W praktyce ekonometrycznej bardzo rzadko spełnione są wszystkie założenia klasycznego modelu regresji liniowej. Częstym przypadkiem jest, że zbiór danych którymi dysponujemy
Egzamin z ekonometrii wersja ogolna
Egzamin z ekonometrii wersja ogolna 04-02-2016 Pytania teoretyczne 1. Wymienić założenia Klasycznego Modelu Regresji Liniowej (KMRL). 2. Wyprowadzić estymator MNK dla modelu z wieloma zmiennymi objaśniającymi.
Binarne zmienne zależne
Binarne zmienne zależne Zmienna zależna nie jest ciagła ale przyjmuje zero lub jeden Przykład: szukanie determinant bezrobocia (próba przekrojowa) zmienna objaśniana: zerojedynkowa (pracujacy, bezrobotny)
Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 15-16
Stanisław Cichocki Natalia Nehrebecka Zajęcia 15-16 1 1. Sezonowość 2. Zmienne stacjonarne 3. Zmienne zintegrowane 4. Test Dickey-Fullera 5. Rozszerzony test Dickey-Fullera 6. Test KPSS 7. Regresja pozorna
Egzamin z ekonometrii wersja IiE, MSEMAT
Egzamin z ekonometrii wersja IiE, MSEMAT 02022015 Pytania teoretyczne 1. Podać treść twierdzenia GaussaMarkowa i wyjaśnić jego znaczenie. 2. Za pomocą jakich testów testuje się autokorelację? Jakiemu założeniu