Hierarchical Cont-Bouchaud model
|
|
- Rafał Piotrowski
- 7 lat temu
- Przeglądów:
Transkrypt
1 Hierarchical Cont-Bouchaud model inż. Robert Paluch dr inż. Krzysztof Suchecki prof. dr hab. inż. Janusz Hołyst Pracownia Fizyki w Ekonomii i Naukach Społecznych Wydział Fizyki Politechniki Warszawskiej
2 Plan prezentacji 1. Naśladownictwo na giełdzie model Conta-Bouchaud, 2. Model hierarchiczny z dynamiką Pottsa, 3. Model CB z hierarchicznie tworzonymi klastrami.
3 Naśladownictwo na giełdzie - model Conta-Bouchaud
4 Herd behavior and aggregate fluctuations in financial markets Rama Cont, Centre de Mathématiques Appliquées, Ècole Polytechnique Jean-Philipe Bouchaud, SPEC, Centre d'ètudes de Saclay kształt rozkładów względnych zmian cen akcji 4/26
5 Herd behavior and aggregate fluctuations in financial markets Rama Cont, Centre de Mathématiques Appliquées, Ècole Polytechnique Jean-Philipe Bouchaud, SPEC, Centre d'ètudes de Saclay zachowania stadne na rynkach finansowych 4/26 kształt rozkładów względnych zmian cen akcji
6 Herd behavior and aggregate fluctuations in financial markets Rama Cont, Centre de Mathématiques Appliquées, Ècole Polytechnique Jean-Philipe Bouchaud, SPEC, Centre d'ètudes de Saclay zachowania stadne na rynkach finansowych 4/26 kształt rozkładów względnych zmian cen akcji
7 Prezentacja modelu 5/26
8 Prezentacja modelu - N agentów, 5/26
9 Prezentacja modelu - N agentów, - połączonych losowo krawędziami, c pij = p=, N 5/26
10 Prezentacja modelu - N agentów, - połączonych losowo krawędziami, c pij = p=, N - decyzje: kup, sprzedaj, nie handluj, φ { 1, 0, 1}, P (φ = +1) = P(φ = 1) = a, P (φ = 0) = 1 2a. 5/
11 Prezentacja modelu - łączna nadwyżka popytu, nc D (t)= W α φ α (t ), α= W α - rozmiar klastra α, φ α (t ) - wspólna decyzja agentów należących do klastra α, 6/26
12 Prezentacja modelu 1 - łączna nadwyżka popytu, -1 nc D (t)= W α φ α (t ), α=1 1 0 W α - rozmiar klastra α, φ α (t ) - wspólna decyzja agentów należących do klastra α, - logarytm ceny x(t) pojedynczej akcji w czasie t, nc Δ x = x (t +1) x (t) = λ - głębokość rynku. 6/26 1 W α φ α (t), λ α=1
13 Analityczne rozwiązanie modelu - rozkład rozmiarów klastrów (c jest mniejsze, ale bliskie 1) P(W ) W (1 c)w A exp( ), 5/ 2 W0 W - rozkład względnych zmian cen akcji odznacza się grubym ogonem p(u) u u 5/2 exp( u ), u0 - kurtoza rozkładu względnych zmian cen akcji κ(δ x) = 7/26 2 c+1. c 3 2 a N (1 ) A(c)(1 c) 2
14 Analityczne rozwiązanie modelu - rozkład rozmiarów klastrów (c jest mniejsze, ale bliskie 1) P(W ) W (1 c)w A exp( ), 5/ 2 W0 W - rozkład względnych zmian cen akcji odznacza się grubym ogonem p(u) u u 5/2 exp( u ), u0 - kurtoza rozkładu względnych zmian cen akcji κ(δ x) = 7/26 2 c+1. c 3 2 a N (1 ) A(c)(1 c) 2
15 Grube ogony w modelu CB 8/26
16 Grube ogony w modelu CB mały order flow 8/26 niewielu agentów handluje w jednym kroku czasowym
17 Grube ogony w modelu CB mały order flow bardzo mały order flow 8/26 niewielu agentów handluje w jednym kroku czasowym średnio jeden klaster handluje w jednym kroku czasowym
18 Grube ogony w modelu CB mały order flow bardzo mały order flow rozkład zwrotów 8/26 niewielu agentów handluje w jednym kroku czasowym średnio jeden klaster handluje w jednym kroku czasowym rozkład wielkości klastrów
19 Grube ogony w modelu CB niewielu agentów handluje w jednym kroku czasowym mały order flow bardzo mały order flow rozkład zwrotów p(u) u u 5/ 2 exp( 8/26 średnio jeden klaster handluje w jednym kroku czasowym rozkład wielkości klastrów u ) u0 P(W ) W (1 c)w A exp( ) 5/ 2 W W 0
20 Zakres stosowalności 9/26
21 Zakres stosowalności - niskie order flow 2aN 1 9/26
22 Zakres stosowalności - niskie order flow 2aN 1 - blisko progu perkolacyjnego c = pn 1 9/26
23 Zakres stosowalności - niskie order flow 2aN 1 - blisko progu perkolacyjnego c = pn 1 Czy można obejść się bez perkolacji? 9/26
24 Topologia hierarchiczna 10/26
25 Topologia hierarchiczna - układy biologiczne, 10/26
26 Topologia hierarchiczna - układy biologiczne, - sieci komputerowe, 10/26
27 Topologia hierarchiczna - układy biologiczne, - sieci komputerowe, - sieci społeczne. 10/26
28 Model hierarchiczny z dynamiką Pottsa
29 Hierarchiczna struktura społeczności agentów N agentów, 12/26
30 Hierarchiczna struktura społeczności agentów N agentów, p1= 12/26 c, W 1 klastrów stopnia jeden, N
31 Hierarchiczna struktura społeczności agentów N agentów, c, W 1 klastrów stopnia jeden, N c p 2=, W 2 klastrów stopnia dwa, W1 p 1= 12/26
32 Hierarchiczna struktura społeczności agentów N agentów, c, W 1 klastrów stopnia jeden, N c p 2=, W 2 klastrów stopnia dwa, W1 c p3 =, W 3 klastrów stopnia trzy, W2 p 1= 12/26
33 Hierarchiczna struktura społeczności agentów N agentów, c, W 1 klastrów stopnia jeden, N c p 2=, W 2 klastrów stopnia dwa, W1 c p3 =, W 3 klastrów stopnia trzy, W2 p 1= itd... 12/26
34 Hierarchiczna struktura społeczności agentów N agentów, c, W 1 klastrów stopnia jeden, N c p 2=, W 2 klastrów stopnia dwa, W1 c p3 =, W 3 klastrów stopnia trzy, W2 p 1= itd... Cała społeczność stanowi jeden klaster stopnia H. 12/26
35 Dynamika agentów wg modelu Pottsa 13/26
36 Dynamika agentów wg modelu Pottsa φ i { 1, 0,1} 13/26 możliwe trzy decyzje
37 Dynamika agentów wg modelu Pottsa φ i { 1, 0,1} P (φ i )= 13/26 e możliwe trzy decyzje β H (φ i ) Z prawdopodobieństwo podjęcia decyzji φ i
38 Dynamika agentów wg modelu Pottsa φ i { 1, 0,1} P (φ i )= e możliwe trzy decyzje β H (φ i ) Z prawdopodobieństwo podjęcia decyzji φ i i=1 Z = e β H (i) i= 1 13/26 suma statystyczna
39 Dynamika agentów wg modelu Pottsa φ i { 1, 0,1} P (φ i )= e możliwe trzy decyzje β H (φ i ) Z prawdopodobieństwo podjęcia decyzji φ i i=1 Z = e β H (i) suma statystyczna i= 1 β= 13/26 1 kbt odwrotność temperatury
40 Dynamika agentów wg modelu Pottsa φ i { 1, 0,1} P (φ i )= e możliwe trzy decyzje β H (φ i ) Z prawdopodobieństwo podjęcia decyzji φ i i=1 Z = e β H (i) suma statystyczna i= 1 β= 1 kbt odwrotność temperatury H H (φi )= [ J h δ(φ i, φ j )] B δ (φi,0) h=0 13/26 j Hamiltonian
41 Dynamika agentów wg modelu Pottsa H H (φi )= [ J h δ(φ i, φ j )] B δ (φi,0) h=0 suma po wszystkich hierarchiach H J h=α B j suma po sąsiadach stopnia h najwyższy poziom hierarchii (cała struktura) h stała sprzężenia pomiędzy sąsiadami stopnia h zewnętrzne pole ograniczające handel δ (φ i, φ j ) delta Kroneckera 14/26
42 Testy - rosnące pole B, - rosnąca stała alfa, - malejące prawdopodobieństwo łączenia klastrów, - model z pamięcią. 15/26
43 Porównanie rozkładów zwrotów 16/26
44 Podsumowanie - model hierarchiczny z dynamiką Pottsa może zachowywać sie w trojaki sposób: może dawać grube ogony przy niewielkim wpływie wyższych hierarchii (kiedy się zachowuje jak zwyczajny CB), być całkowicie uporządkowany (przy wysokim alfa lub B), być całkowicie nieuporządkowany (przy wysokiej temp.) - potrzebny jest inny mechanizm powstawania grubych ogonów, - propagowanie się fluktuacji? 17/26
45 Model z pamięcią 18/26
46 Model z pamięcią 1. Niech agenci rozpoczynają nowy krok czasowy ze stanami z poprzedniego kroku. 18/26
47 Model z pamięcią 1. Niech agenci rozpoczynają nowy krok czasowy ze stanami z poprzedniego kroku. 2. Niech oddziaływania z najbliższymi sąsiadami będą w przybliżeniu równe oddziaływaniom z pozostałymi oraz z polem zewnętrznym. 18/26
48 Wyniki symulacji dla modelu z pamięcią 19/26
49 Podsumowanie - kształt rozkładu zwrotów w modelu z pamięcią silnie zależy od warunków początkowych, - układ dochodzi do równowagi ze średnią zależną od warunków początkowych i oscyluje wokół niej, - nie obserwujemy porządanych propagacji fluktuacji, - przy słabszych oddziaływaniach otrzymuje się rozkłady normalne. Model Pottsa wydaje się być zbyt silnie porządkujący. 20/26
50 Model CB z hierarchicznie tworzonymi klastrami
51 Hierarchiczny wzrost klastrów 22/26
52 Hierarchiczny wzrost klastrów 22/26
53 Hierarchiczny wzrost klastrów 22/26
54 Hierarchiczny wzrost klastrów 22/26
55 Hierarchiczny wzrost klastrów 22/26
56 Hierarchiczny wzrost klastrów 22/26
57 Hierarchiczny wzrost klastrów 22/26
58 Porównanie rozkładów wielkości klastrów 23/26
59 Porównanie rozkładów zwrotów 24/26
60 25/26
61 Podsumowanie - hierarchiczny wzrost klastrów daje rozkłady potęgowe dla szerokiego spektrum prawdopodobieństwa łączenia klastrów, - zastosowanie dynamiki Conta-Bouchaud do topologii otrzymanej metodą hierarchicznego wzrostu skutkuje szerokimi rozkładami zwrotów, - mechanizm pojawiania się grubych ogonów jest taki sam jak w modelu CB, nie wymaga już jednak perkolacji. 26/26
62 Dodatkowe slajdy
63 Wyniki testów (rosnące pole B)
64 Wyniki testów (rosnący czynnik alfa)
65 Liczba hierarchii
66
Voter model on Sierpiński fractals Model głosujący na fraktalach Sierpińskiego
Voter model on Sierpiński fractals Model głosujący na fraktalach Sierpińskiego Krzysztof Suchecki Janusz A. Hołyst Wydział Fizyki Politechniki Warszawskiej Plan Model głosujący : definicja i własności
Skoki o zerowej długości w formalizmie błądzenia losowego w czasie ciągłym
TEMATY PRAC MAGISTERSKICH Z EKONOFIZYKI Rok akademicki 2013/14 Skoki o zerowej długości w formalizmie błądzenia losowego w czasie ciągłym Opiekun: dr Tomasz Gubiec Email: Tomasz.Gubiec@fuw.edu.pl Błądzenie
Formowanie opinii w układach społecznych na przykładzie wyborów parlamentarnych
Formowanie opinii w układach społecznych na przykładzie wyborów parlamentarnych Tomasz Gradowski Seminarium Dynamiki Układów Złożonych 5. 11. 2007 Motywacja Wybory są fundamentalnym procesem społecznym
Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań do analizy rzeczywistych sieci złożonych
Gdańsk, Warsztaty pt. Układy Złożone (8 10 maja 2014) Agata Fronczak Zakład Fizyki Układów Złożonych Wydział Fizyki Politechniki Warszawskiej Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań
Prawa potęgowe w grafach przepływu informacji dla geometrycznych sieci neuronowych
w grafach przepływu informacji dla geometrycznych sieci neuronowych www.mat.uni.torun.pl/~piersaj 2009-06-10 1 2 3 symulacji Graf przepływu ładunku Wspóczynnik klasteryzacji X (p) p α Rozkłady prawdopodobieństwa
Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego
IBS PAN, Warszawa 9 kwietnia 2008 Obrona rozprawy doktorskiej Neuro-genetyczny system komputerowy do prognozowania zmiany indeksu giełdowego mgr inż. Marcin Jaruszewicz promotor: dr hab. inż. Jacek Mańdziuk,
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 4.04.0 r. Zadanie. Przy danej wartości λ parametru ryzyka Λ liczby szkód generowane przez ubezpieczającego się w kolejnych latach to niezależne zmienne losowe o rozkładzie
Statystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład IX, 25.04.2016 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Plan na dzisiaj 1. Hipoteza statystyczna 2. Test statystyczny 3. Błędy I-go i II-go rodzaju 4. Poziom istotności,
Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania
Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym
Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ
Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,
Zawansowane modele wyborów dyskretnych
Zawansowane modele wyborów dyskretnych Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Zawansowane modele wyborów dyskretnych grudzien 2013 1 / 16 Model efektów
Rachunek Prawdopodobieństwa Anna Janicka
Rachunek Prawdopodobieństwa Anna Janicka wykład XIV, 24.01.2017 ŁAŃCUCHYMARKOWA CD. KRÓTKIE INFO O RÓŻNYCH WAŻNYCH ROZKŁADACH Plan na dzisiaj Łańcuchy Markowa cd. Różne ważne rozkłady prawdopodobieństwa,
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 5.0.00 r. Zadanie. Dla dowolnej zmiennej losowej X o wartości oczekiwanej µ wariancji oraz momencie centralnym µ k rzędu k zachodzą nierówności (typu Czebyszewa): ( X
Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów
Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,
Zadanie 1. Ilość szkód N ma rozkład o prawdopodobieństwach spełniających zależność rekurencyjną:
Zadanie. Ilość szkód N ma rozkład o prawdopodobieństwach spełniających zależność rekurencyjną: Pr Pr ( = k) ( N = k ) N = + k, k =,,,... Jeśli wiemy, że szkód wynosi: k= Pr( N = k) =, to prawdopodobieństwo,
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 03 (uzupełnienie Wykładu 02) Jarosław Miszczak IITiS PAN Gliwice 31/03/2016 1 / 17 1 2 / 17 Dynamika populacji Równania Lotki-Voltery opisują model drapieżnik-ofiara.
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 0.0.005 r. Zadanie. Likwidacja szkody zaistniałej w roku t następuje: w tym samym roku z prawdopodobieństwem 0 3, w następnym roku z prawdopodobieństwem 0 3, 8 w roku
Wstęp do astrofizyki I
Wstęp do astrofizyki I Wykład 13 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład
Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =
Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Przykład (wstępny). Producent twierdzi, że wadliwość produkcji wynosi 5%. My podejrzewamy, że rzeczywista wadliwość produkcji wynosi 15%. Pobieramy próbę stuelementową
Wykład 12. Rozkład wielki kanoniczny i statystyki kwantowe
Wykład 12 Rozkład wielki kanoniczny i statystyki kwantowe dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy
Model pajęczyny: Równania modelu: Q d (t)=α-βp(t) Q s (t)=-γ+δp(t-1) Q d (t)= Q s (t) t=0,1,2. α,β,γ,δ>0
Model pajęczyny: Dorota Pawlicka Model jest modelem dynamicznym z czasem dyskretnym t=0,1,2 Rozważmy rynek pewnego pojedynczego dobra. Celem modelu jest ustalenie takiej ścieżki cenowej {} na dobro aby
Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova)
Wykład 2 Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) 1. Procesy Markova: definicja 2. Równanie Chapmana-Kołmogorowa-Smoluchowskiego 3. Przykład dyfuzji w kapilarze
Z Wikipedii, wolnej encyklopedii.
Rozkład normalny Rozkład normalny jest niezwykle ważnym rozkładem prawdopodobieństwa w wielu dziedzinach. Nazywa się go także rozkładem Gaussa, w szczególności w fizyce i inżynierii. W zasadzie jest to
PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com
Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Rezonansowe oddziaływanie układu atomowego z promieniowaniem "! "!! # $%&'()*+,-./-(01+'2'34'*5%.25%&+)*-(6
Twierdzenia graniczne fluktuacji procesów przebywania dla układów gałazkowych
Publiczna obrona rozprawy doktorskiej Twierdzenia graniczne fluktuacji procesów przebywania dla układów gałazkowych Piotr Miłoś Instytut Matematyczny Polskiej Akademii Nauk 23.10.2008 Warszawa Plan 1 Układy
2.1 Przykład wstępny Określenie i konstrukcja Model dwupunktowy Model gaussowski... 7
Spis treści Spis treści 1 Przedziały ufności 1 1.1 Przykład wstępny.......................... 1 1.2 Określenie i konstrukcja...................... 3 1.3 Model dwupunktowy........................ 5 1.4
Dynamiki rynków oligopolistycznych oczami fizyka
KNF Migacz, Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski 7-10 listopada 2008 1 1 2 1 2 3 1 2 3 4 Wprowadzenie reklamy 1 2 3 4 Wprowadzenie reklamy 5 1 2 3 4 Wprowadzenie reklamy 5 6 1 2 3 4 Wprowadzenie
Grafy Alberta-Barabasiego
Spis treści 2010-01-18 Spis treści 1 Spis treści 2 Wielkości charakterystyczne 3 Cechy 4 5 6 7 Wielkości charakterystyczne Wielkości charakterystyczne Rozkład stopnie wierzchołków P(deg(x) = k) Graf jest
Modelowanie sieci złożonych
Modelowanie sieci złożonych B. Wacław Instytut Fizyki UJ Czym są sieci złożone? wiele układów ma strukturę sieci: Internet, WWW, sieć cytowań, sieci komunikacyjne, społeczne itd. sieć = graf: węzły połączone
Ekonometria. Model nieliniowe i funkcja produkcji. Jakub Mućk. Katedra Ekonomii Ilościowej
Ekonometria Model nieliniowe i funkcja produkcji Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 7 i funkcja produkcji 1 / 23 Agenda 1 2 3 Jakub Mućk Ekonometria Wykład 7 i funkcja
Statystyka Matematyczna Anna Janicka
Statystyka Matematyczna Anna Janicka wykład X, 9.05.206 TESTOWANIE HIPOTEZ STATYSTYCZNYCH II: PORÓWNYWANIE TESTÓW Plan na dzisiaj 0. Przypomnienie potrzebnych definicji. Porównywanie testów 2. Test jednostajnie
dla t ściślejsze ograniczenie na prawdopodobieństwo otrzymujemy przyjmując k = 1, zaś dla t > t ściślejsze ograniczenie otrzymujemy przyjmując k = 2.
Zadanie. Dla dowolnej zmiennej losowej X o wartości oczekiwanej μ, wariancji momencie centralnym μ k rzędu k zachodzą nierówności (typu Czebyszewa): ( X μ k Pr > μ + t σ ) 0. k k t σ *
MUMIO Lab 6 (składki, kontrakt stop-loss)
MUMIO Lab 6 (składki, kontrakt stop-loss) 1. (6p.) Niech X oznacza ryzyko (zmienn a losow a o własności P (X 0) = 1), a H( ) niech oznacza formułȩ kalkulacji składki (przyporz adkowuj ac a każdemu ryzyku
Detekcja rozkładów o ciężkich ogonach
Detekcja rozkładów o ciężkich ogonach J. Śmiarowska, P. Jamer Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska 24 kwietnia 2012 J. Śmiarowska, P. Jamer (Politechnika Warszawska) Detekcja
STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH
Część. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH.. STATYKA Z UWZGLĘDNIENIEM DUŻYCH SIŁ OSIOWYCH Rozwiązując układy niewyznaczalne dowolnie obciążone, bardzo często pomijaliśmy wpływ sił normalnych i
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu
N ma rozkład Poissona z wartością oczekiwaną równą 100 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach:
Zadanie. O niezależnych zmiennych losowych N, M M, M 2, 3 wiemy, że: N ma rozkład Poissona z wartością oczekiwaną równą 00 M, M M mają ten sam rozkład dwupunktowy o prawdopodobieństwach: 2, 3 Pr( M = )
Zaświadczenie. Nr 41/CB/2012. Niniejszym zaświadczam, iŝ Pan/Pani
Nr 41/CB/2012 Nr 42/CB/2012 Nr 43/CB/2012 Nr 44/CB/2012 Nr 45/CB/2012 Nr 46/CB/2012 Nr 47/CB/2012 Nr 48/CB/2012 Nr 49/CB/2012 Nr 50/CB/2012 Nr 51/CB/2012 Nr 52/CB/2012 Nr 53/CB/2012 Nr 54/CB/2012 Nr 55/CB/2012
Matematyka ubezpieczeń majątkowych r.
Zadanie 1. W pewnej populacji podmiotów każdy podmiot narażony jest na ryzyko straty X o rozkładzie normalnym z wartością oczekiwaną równą μ i wariancją równą. Wszystkie podmioty z tej populacji kierują
Krytyczność i przejścia fazowe. Katarzyna Sznajd-Weron
Krytyczność i przejścia fazowe Katarzyna Sznajd-Weron Temperatura Curie Temperatura Curie ciągłe przejście fazowe magnes ferromagnetyk Przejście fazowe Katarzyna Sznajd-Weron Ferromagnetyk T T c Paramagnetyk
Wykład 10 Testy jednorodności rozkładów
Wykład 10 Testy jednorodności rozkładów Wrocław, 16 maja 2018 Test Znaków test jednorodności rozkładów nieparametryczny odpowiednik testu t-studenta dla prób zależnych brak normalności rozkładów Test Znaków
Mikroekonomia. Wykład 3
Mikroekonomia Wykład 3 Model czystej wymiany Jednostki dysponują stałymi zasobami dóbr i dobra te mogą wymieniać między sobą (proces produkcji zostaje pominięty) Dwóch konsumentów (lub dwa rodzaje konsumentów):
Parametr Λ w populacji ubezpieczonych ma rozkład dany na półosi dodatniej gęstością: 3 f
Zadanie. W kolejnych latach t =,,,... ubezpieczony charakteryzujący się parametrem ryzyka Λ generuje N t szkód. Dla danego Λ = λ zmienne N, N, N,... są warunkowo niezależne i mają (brzegowe) rozkłady Poissona:
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 3..007 r. Zadanie. Każde z ryzyk pochodzących z pewnej populacji charakteryzuje się tym że przy danej wartości λ parametru ryzyka Λ rozkład wartości szkód z tego ryzyka
Mikroekonomia. Wykład 4
Mikroekonomia Wykład 4 Ekonomia dobrobytu Na rynku doskonale konkurencyjnym, na którym występuje dwóch konsumentów scharakteryzowanych wypukłymi krzywymi obojętności, równowaga ustali się w prostokącie
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ
MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści
Matematyka ubezpieczeń majątkowych r.
Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną
Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne
Wykład 4 Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym 2. Rozkłady próbkowe 3. Centralne twierdzenie graniczne Przybliżenie rozkładu dwumianowego rozkładem normalnym Niech Y ma rozkład
Wykład 3. Rozkład normalny
Funkcje gęstości Rozkład normalny Reguła 68-95-99.7 % Wykład 3 Rozkład normalny Standardowy rozkład normalny Prawdopodobieństwa i kwantyle dla rozkładu normalnego Funkcja gęstości Frakcja studentów z vocabulary
Co to jest model Isinga?
Co to jest model Isinga? Fakty eksperymentalne W pewnych metalach (np. Fe, Ni) następuje spontaniczne ustawianie się spinów wzdłuż pewnego kierunku, powodując powstanie makroskopowego pola magnetycznego.
Porównanie metod szacowania Value at Risk
Porównanie metod szacowania Value at Risk Metoda wariancji i kowariancji i metoda symulacji historycznej Dominika Zarychta Nr indeksu: 161385 Spis treści 1. Wstęp....3 2. Co to jest Value at Risk?...3
Własności porządkowe w modelu proporcjonalnych szans
Własności porządkowe w modelu proporcjonalnych szans Wisła, 8 grudnia 2009 Oznaczenia Wprowadzenie Oznaczenia Porządki stochastyczne Klasy rozkładów czasu życia X F, Y G zmienne losowe o gęstościach f
Pierwszy indeks polskiego rynku sztuki
Pierwszy indeks polskiego rynku sztuki Kaja Retkiewicz-Wijtiwiak XI Warszawskie Targi Sztuki 12 października 2013 Współczesny rynek sztuki w Polsce Młody rynek: Pierwsze aukcje miały miejsce w 1988 r.
Wpływ zdarzeń ekstremalnych i superekstermalnych na stochastyczną dynamikę szeregów czasowych
Proc. niegaussowskie Smoki Metodologia Symulacje Podsumowanie Wpływ zdarzeń ekstremalnych i superekstermalnych na stochastyczną dynamikę szeregów czasowych T.R. Werner 1 T. Gubiec 2 P. Kosewski 2 R. Kutner
Fizyka statystyczna Teoria Ginzburga-Landaua w średnim polu. P. F. Góra
Fizyka statystyczna Teoria Ginzburga-Landaua w średnim polu P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Parametr porzadku W niskich temperaturach układy występuja w fazach, które łamia symetrię
Podstawy termodynamiki
Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach
Sprawy organizacyjne
Sprawy organizacyjne forma zajęć warunki uczestnictwa warunki zaliczenia Modelowanie Rynków Finansowych 1 Hipoteza Random Walk na wschodzących rynkach Europejskich Graham Smith, Hyun-Jung Ryoo (2003) Variance
Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.
Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ
Metody systemowe i decyzyjne w informatyce
Metody systemowe i decyzyjne w informatyce Laboratorium JAVA Zadanie nr 2 Rozpoznawanie liter autorzy: A. Gonczarek, J.M. Tomczak Cel zadania Celem zadania jest zapoznanie się z problemem klasyfikacji
Rzadkie gazy bozonów
Rzadkie gazy bozonów Tomasz Sowiński Proseminarium Fizyki Teoretycznej 15 listopada 2004 Rzadkie gazy bozonów p.1/25 Bardzo medialne zdjęcie Rok 1995. Pierwsza kondensacja. Zaobserwowana w przestrzeni
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Biostatystyka, # 3 /Weterynaria I/
Biostatystyka, # 3 /Weterynaria I/ dr n. mat. Zdzisław Otachel Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, p. 221 bud. CIW, e-mail: zdzislaw.otachel@up.lublin.pl
2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych
2. Równania o rozdzielonych zmiennych 2 1 2 Równania różniczkowe zwyczajne o rozdzielonych zmiennych Równaniem różniczkowym zwyczajnym pierwszego rzędu o rozdzielonych zmiennych nazywamy równanie różniczkowe
Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)
WYKŁAD 6. Witold Bednorz, Paweł Wolff. Rachunek Prawdopodobieństwa, WNE, Uniwersytet Warszawski. 1 Instytut Matematyki
WYKŁAD 6 Witold Bednorz, Paweł Wolff 1 Instytut Matematyki Uniwersytet Warszawski Rachunek Prawdopodobieństwa, WNE, 2010-2011 Własności Wariancji Przypomnijmy, że VarX = E(X EX) 2 = EX 2 (EX) 2. Własności
Algorytm Grovera. Kwantowe przeszukiwanie zbiorów. Robert Nowotniak
Wydział Fizyki Technicznej, Informatyki i Matematyki Stosowanej Politechnika Łódzka 13 listopada 2007 Plan wystapienia 1 Informatyka Kwantowa podstawy 2 Opis problemu (przeszukiwanie zbioru) 3 Intuicyjna
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2017/2018
Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2017/2018 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu
Fizyka współczesna. Jądro atomowe podstawy Odkrycie jądra atomowego: 1911, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu
Odkrycie jądra atomowego: 9, Rutherford Rozpraszanie cząstek alfa na cienkich warstwach metalu Tor ruchu rozproszonych cząstek (fakt, że część cząstek rozprasza się pod bardzo dużym kątem) wskazuje na
Hipotezy statystyczne
Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o którego prawdziwości lub fałszywości wnioskuje się na podstawie pobranej próbki losowej. Hipotezy
Problemy i rozwiązania
Problemy i rozwiązania Znakomita większość układów, które badamy liczy sobie co najmniej mol cząsteczek >> 10 23 Typowy krok czasowy symulacji to 10-15 s natomiast zjawiska, które zachodzą wokół nas trwają
LABORATORIUM 3. Jeśli p α, to hipotezę zerową odrzucamy Jeśli p > α, to nie mamy podstaw do odrzucenia hipotezy zerowej
LABORATORIUM 3 Przygotowanie pliku (nazwy zmiennych, export plików.xlsx, selekcja przypadków); Graficzna prezentacja danych: Histogramy (skategoryzowane) i 3-wymiarowe; Wykresy ramka wąsy; Wykresy powierzchniowe;
PODSTAWY MODELOWANIA UKŁADÓW DYNAMICZNYCH W JĘZYKACH SYMULACYJNYCH
PODSTAWY MODELOWANIA UKŁADÓW DYNAMICZNYCH W JĘZYKACH SYMULACYJNYCH ( Na przykładzie POWERSIM) M. Berndt-Schreiber 1 Plan Zasady modelowania Obiekty symbole graficzne Dyskretyzacja modelowania Predefiniowane
Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014
Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu
CMAES. Zapis algorytmu. Generacja populacji oraz selekcja Populacja q i (t) w kroku t generowana jest w następujący sposób:
CMAES Covariance Matrix Adaptation Evolution Strategy Opracowanie: Lidia Wojciechowska W algorytmie CMAES, podobnie jak w algorytmie EDA, adaptowany jest rozkład prawdopodobieństwa generacji punktów, opisany
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa 2010-12-21 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3 Łańcuch Markova Definicja Własności Losowanie z rozkładu
Temat: SZACOWANIE NIEPEWNOŚCI POMIAROWYCH
Temat: SZCOWNIE NIEPEWNOŚCI POMIROWYCH - Jak oszacować niepewność pomiarów bezpośrednich? - Jak oszacować niepewność pomiarów pośrednich? - Jak oszacować niepewność przeciętną i standardową? - Jak zapisywać
Generowanie liczb o zadanym rozkładzie. ln(1 F (y) λ
Wprowadzenie Generowanie liczb o zadanym rozkładzie Generowanie liczb o zadanym rozkładzie wejście X U(0, 1) wyjście Y z zadanego rozkładu F (y) = 1 e λy y = ln(1 F (y) λ = ln(1 0,1563 0, 5 0,34 Wprowadzenie
Rozkład naprężeń w konstrukcji nawierzchni podatnej a trwałość podbudowy recyklowanej z dodatkami
Rozkład naprężeń w konstrukcji nawierzchni podatnej a trwałość podbudowy recyklowanej z dodatkami dr inż. Grzegorz Mazurek dr inż. Przemysław Buczyński prof. dr hab. inż. Marek Iwański PLAN PREZENTACJI:
Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α
Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest
WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH
WSKAZÓWKI DO WYKONANIA SPRAWOZDANIA Z WYRÓWNAWCZYCH ZAJĘĆ LABORATORYJNYCH Dobrze przygotowane sprawozdanie powinno zawierać następujące elementy: 1. Krótki wstęp - maksymalnie pół strony. W krótki i zwięzły
ANALIZA STATYSTYCZNA STRAT ENERGII ELEKTRYCZNEJ W KRAJOWYM SYSTEMIE ELEKTROENERGETYCZNYM W XXI WIEKU
VIII Konferencja Naukowo-Techniczna Straty energii elektrycznej w sieciach elektroenergetycznych Wrocław, 21 22 marzec 2018 rok Elżbieta Niewiedział, Ryszard Niewiedział Wyższa Szkoła Kadr Menedżerskich
Kolokwium ze statystyki matematycznej
Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn
Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem
Rozdział 23 KWANTOWA DYNAMIKA MOLEKULARNA Wstęp. Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 3 KWANTOWA DYNAMIKA MOLEKULARNA 3.1 Wstęp Metoda ta umożliwia opis układu złożonego z wielu jonów i elektronów w stanie podstawowym. Hamiltonian układu
Ekonometria. Model nieliniowe i funkcja produkcji. Jakub Mućk. Katedra Ekonomii Ilościowej. Modele nieliniowe Funkcja produkcji
Ekonometria Model nieliniowe i funkcja produkcji Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 7 Modele nieliniowe i funkcja produkcji 1 / 19 Agenda Modele nieliniowe 1 Modele
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w
O ŚREDNIEJ STATYSTYCZNEJ
Od średniej w modelu gaussowskim do kwantyli w podstawowym modelu nieparametrycznym IMPAN 1.X.2009 Rozszerzona wersja wykładu: O ŚREDNIEJ STATYSTYCZNEJ Ryszard Zieliński XII Międzynarodowe Warsztaty dla
Rozkład Gaussa i test χ2
Rozkład Gaussa jest scharakteryzowany dwoma parametramiwartością oczekiwaną rozkładu μ oraz dyspersją σ: METODA 2 (dokładna) polega na zmianie zmiennych i na obliczeniu pk jako różnicy całek ze standaryzowanego
Modelowanie rynków finansowych
Modelowanie rynków finansowych Przegląd zagadnień 8 października 2012 Główna przesłanka doboru tematów Koncepcje i techniki modelowe jako priorytet: Modele empiryczne bazujące na wiedzy teoretycznej Zakres
Wykład 7 Testowanie zgodności z rozkładem normalnym
Wykład 7 Testowanie zgodności z rozkładem normalnym Wrocław, 05 kwietnia 2017 Rozkład normalny Niech X = (X 1, X 2,..., X n ) będzie próbą z populacji o rozkładzie normalnym określonym przez dystrybuantę
Makroekonomia 1 Wykład 12: Naturalna stopa bezrobocia i krzywa AS
Makroekonomia 1 Wykład 12: Naturalna stopa bezrobocia i krzywa AS Gabriela Grotkowska Katedra Makroekonomii i Teorii Handlu Zagranicznego NATURALNA STOPA BEZROBOCIA Naturalna stopa bezrobocia Ponieważ
Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa
Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego
INSTRUKCJA DO ĆWICZENIA NR 7
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety
Model Isinga. Katarzyna Sznajd-Weron
Model Isinga Katarzyna Sznajd-Weron Temperatura Curie ciągłe przejście fazowe magnes ferromagnetyk Przejście fazowe Katarzyna Sznajd-Weron Ferromagnetyk T T c Paramagnetyk T > T c Jak to zrozumieć? Model
Ekonomia oczami fizyka
Ekonomia oczami fizyka Fluktuacje na giełdzie Gauss, Levy, grube ogony, skalowanie, log-periodyczność, Rozkład bogactwa w społeczeństwie (Pareto,Gibrat) - układy krytyczne Optymalizacja portfela symulowane
Wariacyjna teoria grupy renormalizacji w opisie uczenia głębokiego czyli Deep
Wariacyjna teoria grupy renormalizacji w opisie uczenia głębokiego czyli Deep Learning oczami fizyka statystycznego Zakład Algebry i Kombinatoryki Wydział Matematyki i Nauk Informacyjnych 18 kwietnia 2018
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych
Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych dla studentów Chemii 2007 Paweł Korecki 2013 Andrzej Kapanowski Po co jest Pracownia Fizyczna? 1. Obserwacja zjawisk i