Krytyczność i przejścia fazowe. Katarzyna Sznajd-Weron

Wielkość: px
Rozpocząć pokaz od strony:

Download "Krytyczność i przejścia fazowe. Katarzyna Sznajd-Weron"

Transkrypt

1 Krytyczność i przejścia fazowe Katarzyna Sznajd-Weron

2 Temperatura Curie

3 Temperatura Curie ciągłe przejście fazowe magnes ferromagnetyk Przejście fazowe Katarzyna Sznajd-Weron Ferromagnetyk T T c Paramagnetyk T > T c Jak to zrozumieć?

4 Model Isinga (Lenza-Isinga?) 1925 rozprawa doktorska Ernsta Isinga Brak przejścia fazowego w 1D Jedyna praca Isinga Przejście fazowe w 2D (lata czterdzieste) Skala mikro tłumaczy zachowania makro L H = J L S i S j 1D H = J i=1 S i S i+1 <i,j>

5 Skąd taki Hamiltonian? L H = J S i S i+1 i=1 L H = J S i S i+1 = J ( 1) i=1 Każdy układ dąży do minimalizacji energii L H = J i=1 L S i S i+1 = J i=1 1 = JL

6 Argument Landaua o braku przejścia fazowego w 1D L min E E 0 min E E 0 ε E 0 + ε Stan równowagi energia swobodna minimalna: F = E TS Zmiana energii: ΔF = ΔE TΔ S = ε TΔ S Entropia z jedną ścianą domenową: S = k B ln Ω = k B ln(l 1) ΔF = ε TΔ S = ε Tk B ln L 1, dla L ΔF < 0

7 Oddziaływania pomiędzy cząstkami Ferromagnetyk (konformizm) Antyferromagnetyk (antykonformizm) Wpływ (siła oddziaływania) wzrasta wraz Ze zgodnością grupy Z rozmiarem grupy Wysoka temperatura nerwowo Piotr Nyczka

8 Czego się spodziewacie? Czego się spodziewacie? Zajrzyjcie na Models Library NetLogo (środowisko do ABM) Prof. Uri Wilensky Northwestern's Center for Connected Learning and Computer-Based Modeling (CCL)

9 Ewolucja układu w czasie (ferromagnetyk) niska temperatura Oddziaływanie porządkuje Temperatura losowe zmiany W niskich temperaturach porządek W wysokich temperaturach nieporządek m =< S i > = 1 N i=1 N S i

10 Dalsze losy modelu Isinga Przejście fazowe w 2D bez pola Onsager, lata czterdzieste Symulacje Komputerowe model Isinga w 3D i 2D z polem Wykorzystanie poza fizyką

11 Symulacja Monte Carlo Modelu Isinga Przygotuj stan początkowy układu Pozwól mu ewoluować Poczekaj aż ustali się magnetyzacja Zanotuj wartość m Powtarzaj to dużo razy Policz średnią magnetyzację Jaka to średnia? N m =< S i > = 1 N i=1 S i

12 Średnia po zespole Średnia po czasie i średnia po zespole Średnia po czasie Układ ergodyczny to średnia po zespole = średnia po czasie

13 Algorytm Metropolisa 1MCS = N losowań Wylosuj jeden spin S i Oblicz energię E = E(S i ) = S i J σ j nn S j Oblicz energię E = E( S i ) = S i J σ j nn S j Oblicz zmianę energii ΔE = E E Jeżeli ΔE 0 to S i S i Jeżeli ΔE > 0 to wylosuj r z przedziału [0,1] i akceptuj nową konfigurację jeżeli: r < p = exp ΔE k B T, k B = J = 1

14 Przejście fazowe w modelu Isinga

15 Przejścia fazowe wokół nas woda faza ciekła PUNKT KRYTYCZNY Lód faza stała para faza gazowa ciągłe przejście fazowe nieciągłe przejście fazowe 2014 Katarzyna Sznajd-Weron

16 Sylwester w górach i jajka 2014 Katarzyna Sznajd-Weron

17 Nieciągłe przejście fazowe 2014 Katarzyna Sznajd-Weron

18 Równowaga i stany metastabilne LÓD WODA LÓD WODA LÓD WODA Lód i woda w równowadze Przechłodzona woda

19 Stan metastabilny: przechłodzona woda

20 Ciągłe przejście fazowe: punkt krytyczny

21 Nieciągłe przejście fazowe: punkt potrójny

22 Nieciągłe przejścia fazowe F x = du dx V = F x dx 2014 Katarzyna Sznajd-Weron

23 Ciągłe (krytyczne) przejście fazowe 2014 Katarzyna Sznajd-Weron

24 Punkty trójkrytyczne

25 Jak sprawdzić na komputerze czy przejście nieciągłe (c) 2017 Urszula Grochocińska

26 Różnice pomiędzy ciągłym i nieciągłym przejściem fazowym Ciągłe przejścia fazowe Brak utajonego ciepła przemiany q = T S 1 S 2 = 0 Nieciągłe przejścia fazowe Utajone ciepło przemiany q = T S 1 S 2 0 Brak skoku entropii Skok entropii: S 1 S 2 0 Brak współistnienia faz Brak stanów metastabilnych Skalowanie, uniwersalność, wykładniki krytyczne Parametr porządku zmienia się w sposób ciągły: φ 0, T < T c φ = 0, T > T c Współistnienie faz Stany metastabilne trywialne wykładniki krytyczne Parametr porządku zmienia się w sposób nieciągły

27 Stan krytyczny i fluktuacje Funkcja korelacyjna parametru porządku: G r 1, r 2 < φ r 1 φ r 2 > = φ 2 +< δφ(r 1 ) δφ r 2 > Niech r = r 1 r 2 G r e r/ξ r d 2+η Definicja punktu krytycznego: T T c ξ

28 Wykładniki krytyczne t = T c T zredukowana temperatura T c m T, 0 t β, m T c, h h 1/δ χ T, 0 t γ c T, 0 t α ξ T, 0 t ν G r, T c, 0 r d+2 η Model Isinga Zależą od wymiaru parametru porządku i wymiaru przestrzennego d - uniwersalność

29 Wykładniki krytyczne w modelu Isinga i wymiar krytyczny d α (1) 0 Wyniki ścisłe (Onsager) β 1/ (3) 1/2 γ 7/ (5) 1 δ (2) 3 η 1/ (5) ν (4) 1/2 Wyniki ścisłe, takie same jak MFA

30 Związki pomiędzy wykładnikami Teoria skalowania α + 2β + γ = 2 (Rushbrooke) γ = β(δ 1) (Widom) γ = 2 η ν (Fisher) 2 α = νd (Josephson)

31 Skalowanie skończonego rozmiaru ξ T, 0 t ν Dla L < maksimum w temperaturze T c L T c L T c T c L θ θ = 1 ν dla dużych L Dwuwymiarowy FSS model Isinga ciepło właściwe c t α L α/ν promień korelacji ξ t ν L parametr porządku m t β L β/ν

32 Perkolacja 2014 Katarzyna Sznajd-Weron

33 Model perkolacji Model perkolacji : Każdy węzeł (wiązanie) sieci jest zajęty niezależnie z prawdopodobieństwem p Jak duże musi być to prawdopodobieństwo p aby powstał klaster łączący brzegi sieci (przepływ)?

34 Perkolacja: Pożary lasów

35 Prawdopodobieństwo przejścia Symulacja komputerowa 101x x x1003 gęstość zadrzewienia p Dla jakiego p pożar dotrze do drugiej strony lasu?

36 Perkolacja site Rozważmy sieć dwuwymiarową L na L Każde miejsce sieci jest zajęte niezależnie z prawdopodobieństwem p Klaster grupa zajętych węzłów znajdujących się wzajemnie w najbliższym sąsiedztwie (rozmiar s)

37 Krytyczność w modelu perkolacji Próg perkolacji - najmniejsza koncentracja zapełnionych węzłów na sieci, przy której powstaje nieskończony klaster. Parametr porządku Wyniki dla sieci 2D

38 Krytyczność w modelu perkolacji Próg perkolacji dla problemu site to najmniejsza koncentracja zapełnionych węzłów na sieci, przy której powstaje nieskończony klaster. Próg perkolacji dla problemu bond to najmniejsza koncentracja zapełnionych połączeń między węzłami sieci, przy której powstaje nieskończony klaster.

39 Perkolacja na sieci kwadratowej (bond): dualność sieci Sieć wyjściowa: p mogę przejść q=1-p nie mogę przejść Sieć dualna: p nie mogę przejść q=1-p mogę przejść

40 Samodualność sieci kwadratowej p p* q q p p* q q * * q* 1 p*, q* p p* 0.5 *

41 Próg perkolacji nie jest uniwersalny! sieć site bond heksagonalna kwadratowa trójkątna diamond Prosta kubiczna BCC FCC

42 Metoda Średniego Pola (MFA) perkolacja wiązań (bond) Pytanie: Jaka jest krytyczna wartość koncentracji wiązań (mostów), przy której powstanie nieskończony klaster? Oznaczenia: prawdopodobieństwo tego, że dwa dowolne węzły sieci są połączone (tzn. że istnieje wiązanie): p prawdopodobieństwo, że i-ty węzeł należy do nieskończonego klastra: P i

43 Kiedy należy do nieskończonego klastra? Żeby węzeł i należał do klastra to: musi on mieć przy najmniej jednego sąsiada j, z którym jest połączony mostem, j należy do nieskończonego klastra. Prawdopodobieństwo tego, że ma: pp j Prawd., że nie należy do klastra

44 Mean field aproximation (MFA) z 1 P i = j=1 1 pp j MFA: i P i = P (układ jednorodny) z 1 P = j=1 1 pp = 1 pp z 1 P = 1 pp z Dla układu jednowymiarowego (1D): z = 2 1 P = 1 pp 2

45 Układ jednowymiarowy, z = 2 1 P = 1 pp 2 Pytanie: Czy istnieje takie p, żeby P > 0? 1 P = 1 2pP + p 2 P 2 p 2 P p P = 0 P(p 2 P + 1 2p ) = 0 p 2 P + 1 2p = 0 P = 2p 1 p 2 P = 2p 1 p 2 > 0 2p 1 > 0 p > 1 2

46 p p ) (1 4 ) (1 2 ' p p p p p p p p Grupa renormalizacyjna (decymacja): Perkolacja na sieci kwadratowej p=0 p =0 p =0 p=1 p =1 p =1

47 ) (1 0 1 ) (1 0 ) 2 (1 2 ', 2 ' p p p p p p p p p p p p p p p p p p p 0 p*= Szukamy punktów stałych transformacji

48 Grupa renormalizacyjna (majority rule): Perkolacja na sieci trójkątnej p prawdopodobieństwo p prawdopodobieństwo p = p 3 + 3p 2 1 p p = p p = p 3 + 3p 2 1 p 0 p c = p 3 + 3p 2 p = 0 p( 2p 2 + 3p 1) = 0 1 p 1 p 2 p = 0

49 Trzewo (sieć) Bethego (z=3) Klaster perkolujący rozciąga się w nieskończoność Rozważmy spacer po perkolującym nieskończonym klastrze Kontynuując spacer z węzła i-tego możemy pójść w z 1 kierunkach Tylko p(z 1) jest wolnych Czyli musi być przynajmniej jedna wolna p z 1 1 p c = 1 z 1

50 Perkolacja ukierunkowana site i bond? woda przepływająca przez filtr wodny w polu grawitacyjnym prąd elektryczny płynący przez losową sieć izolatorów i przewodników

51 Izotropowa kontra ukierunowana perkolacja wiązań

52 Podobieństwa Oba modele trywialne w 1D (przepływ tylko dla p=1) i D (przepływ dla każdego p>0). W wymiarach skończonych wymiarach D>1 pojawia się ciągłe przejście fazowe (p=p*) między fazą mokrą i suchą. Dla p>p* układ jest przepuszczalny (P >0 ). Dla p<p* układ jest nieprzepuszczalny (P =0).

53 Różnice Krytyczny próg p* dla ukierunkowanej perkolacji jest wyższy niż dla izotropowej W przypadku izotropowym własności krytyczne są identyczne we wszystkich kierunkach w przeciwieństwie do perkolacji ukierunkowanej Dla DP nie znane są analityczne wartości progu perkolacji p* i wykładników krytycznych Wyniki numeryczne wykładniki krytyczne dla DP są liczbami niewymiernymi

54 czas t Perkolacja ukierunkowana jako proces dynamiczny t N(t) pozycja i Układ 2 D 1D układ dynamiczny (1+1)

55 czas t Perkolacja ukierunkowana w wymiarze 1+1 pozycja i

56 Zmiana średniej liczba cząstek w czasie dla DP (1+1) krytyczna

57 Modele należące do klasy uniwersalności Directed Percolation (DP) Procesy wzrostu Procesy kontaktowe modele epidemii Dyfuzja z reakcją chemiczną Reakcje katalityczne na powierzchniach (Ziff-Gulari-Barshad,1986)

58 Literatura

Krytyczność, przejścia fazowe i symulacje Monte Carlo. Katarzyna Sznajd-Weron Physics of Complex System

Krytyczność, przejścia fazowe i symulacje Monte Carlo. Katarzyna Sznajd-Weron Physics of Complex System Krytyczność, przejścia fazowe i symulacje Monte Carlo Katarzyna Sznajd-Weron Physics of Complex System Przejścia fazowe wokół nas woda faza ciekła PUNKT KRYTYCZNY Lód faza stała para faza gazowa ciągłe

Bardziej szczegółowo

Modele sieciowe fizyki statystycznej i symulacje Monte Carlo. Katarzyna Sznajd-Weron

Modele sieciowe fizyki statystycznej i symulacje Monte Carlo. Katarzyna Sznajd-Weron Modele sieciowe fizyki statystycznej i symulacje Monte Carlo Katarzyna Sznajd-Weron Perkolacja 2014 Katarzyna Sznajd-Weron Model erkolacji Model erkolacji : Każdy węzeł (wiązanie) sieci jest zajęty niezależnie

Bardziej szczegółowo

Wstęp do fizyki statystycznej: krytyczność i przejścia fazowe. Katarzyna Sznajd-Weron

Wstęp do fizyki statystycznej: krytyczność i przejścia fazowe. Katarzyna Sznajd-Weron Wstęp do fizyki statystycznej: krytyczność i przejścia fazowe Katarzyna Sznajd-Weron Co to jest fizyka statystyczna? Termodynamika poziom makroskopowy Fizyka statystyczna poziom mikroskopowy Marcin Weron

Bardziej szczegółowo

Fizyka statystyczna i termodynamika Wykład 1: Wstęp. Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej

Fizyka statystyczna i termodynamika Wykład 1: Wstęp. Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej Fizyka statystyczna i termodynamika Wykład 1: Wstęp Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej http://www.if.pwr.wroc.pl/~katarzynaweron/ Mój plan zajęć Strona kursu Kim jestem? Prof. dr hab. Katarzyna

Bardziej szczegółowo

Układ (fizyczny) Fizyka Systemów Złożonych (Physics of Complex Systems) Wyk 1: Wstęp

Układ (fizyczny) Fizyka Systemów Złożonych (Physics of Complex Systems) Wyk 1: Wstęp Układ (fizyczny) Fizyka Systemów Złożonych (Physics of Complex Systems) Wyk 1: Wstęp Katarzyna Sznajd Weron Wyodrębniony (realnie lub myślowo) fragment rzeczywistości Jednostka, którą będziemy się zajmować

Bardziej szczegółowo

Co to jest model Isinga?

Co to jest model Isinga? Co to jest model Isinga? Fakty eksperymentalne W pewnych metalach (np. Fe, Ni) następuje spontaniczne ustawianie się spinów wzdłuż pewnego kierunku, powodując powstanie makroskopowego pola magnetycznego.

Bardziej szczegółowo

Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron

Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron Zagadka na początek wykładu Diagram fazowy wody w powiększeniu, problem metastabilności aktualny (Nature, 2011) Niższa temperatura topnienia

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 03 (uzupełnienie Wykładu 02) Jarosław Miszczak IITiS PAN Gliwice 31/03/2016 1 / 17 1 2 / 17 Dynamika populacji Równania Lotki-Voltery opisują model drapieżnik-ofiara.

Bardziej szczegółowo

Klasyfikacja przemian fazowych

Klasyfikacja przemian fazowych Klasyfikacja przemian fazowych Faza- jednorodna pod względem własności część układu, oddzielona od pozostałej częsci układu powierzchnią graniczną, po której przekroczeniu własności zmieniaja się w sposób

Bardziej szczegółowo

Modelowanie Agentowe Układów Złożonych Wstęp. Katarzyna Sznajd-Weron

Modelowanie Agentowe Układów Złożonych Wstęp. Katarzyna Sznajd-Weron Modelowanie Agentowe Układów Złożonych Wstęp Katarzyna Sznajd-Weron Aperitif (2006) Physicists pretend not only to know everything, but also to know everything better. This applies in particular to computational

Bardziej szczegółowo

Przejścia fazowe w 1D modelu Isinga

Przejścia fazowe w 1D modelu Isinga Przejścia fazowe w 1D modelu Isinga z zero-temperaturową dynamiką Glaubera Rafał Topolnicki rafal.topolnicki@gmail.com Wydział Fizyki i Astronomii Uniwersytet Wrocławski Wydział Podstawowych Problemów

Bardziej szczegółowo

Fizyka statystyczna Teoria Ginzburga-Landaua w średnim polu. P. F. Góra

Fizyka statystyczna Teoria Ginzburga-Landaua w średnim polu. P. F. Góra Fizyka statystyczna Teoria Ginzburga-Landaua w średnim polu P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Parametr porzadku W niskich temperaturach układy występuja w fazach, które łamia symetrię

Bardziej szczegółowo

Zadania treningowe na kolokwium

Zadania treningowe na kolokwium Zadania treningowe na kolokwium 3.12.2010 1. Stan układu binarnego zawierającego n 1 moli substancji typu 1 i n 2 moli substancji typu 2 parametryzujemy za pomocą stężenia substancji 1: x n 1. Stabilność

Bardziej szczegółowo

Elementy termodynamiki i wprowadzenie do zespołów statystycznych. Katarzyna Sznajd-Weron

Elementy termodynamiki i wprowadzenie do zespołów statystycznych. Katarzyna Sznajd-Weron Elementy termodynamiki i wprowadzenie do zespołów statystycznych Katarzyna Sznajd-Weron Wielkości makroskopowe - termodynamika Termodynamika - metoda fenomenologiczna Fenomenologia w fizyce: widzimy jak

Bardziej szczegółowo

Jak z ABM zrobić model analityczny? (Metoda pola średniego) Katarzyna Sznajd-Weron Physics of Complex System

Jak z ABM zrobić model analityczny? (Metoda pola średniego) Katarzyna Sznajd-Weron Physics of Complex System Jak z ABM zrobić model analityczny? (Metoda pola średniego) Katarzyna Sznajd-Weron Physics of Complex System Plan Model dynamiki populacyjnej Pytania Model mikroskopowy Przybliżenie MFA: równania (wady

Bardziej szczegółowo

Równoległe symulacje Monte Carlo na współdzielonej sieci

Równoległe symulacje Monte Carlo na współdzielonej sieci Równoległe symulacje Monte Carlo na współdzielonej sieci Szymon Murawski, Grzegorz Musiał, Grzegorz Pawłowski Wydział Fizyki, Uniwersytet im. Adama Mickiewicza 12 maja 2015 S. Murawski, G. Musiał, G. Pawłowski

Bardziej szczegółowo

Voter model on Sierpiński fractals Model głosujący na fraktalach Sierpińskiego

Voter model on Sierpiński fractals Model głosujący na fraktalach Sierpińskiego Voter model on Sierpiński fractals Model głosujący na fraktalach Sierpińskiego Krzysztof Suchecki Janusz A. Hołyst Wydział Fizyki Politechniki Warszawskiej Plan Model głosujący : definicja i własności

Bardziej szczegółowo

Fizyka statystyczna Fenomenologia przejść fazowych. P. F. Góra

Fizyka statystyczna Fenomenologia przejść fazowych. P. F. Góra Fizyka statystyczna Fenomenologia przejść fazowych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Przejście fazowe transformacja układu termodynamicznego z jednej fazy (stanu materii) do innej, dokonywane

Bardziej szczegółowo

Elementy termodynamiki

Elementy termodynamiki Elementy termodynamiki Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej Politechnika Wrocławska 5 stycznia 2019 Katarzyna Sznajd-Weron (K4) Wstęp do Fizyki Statystycznej 5 stycznia 2019 1 / 27 Wielkości

Bardziej szczegółowo

Przejścia fazowe w uogólnionym modelu modelu q-wyborcy na grafie zupełnym

Przejścia fazowe w uogólnionym modelu modelu q-wyborcy na grafie zupełnym Przejścia fazowe w uogólnionym modelu modelu q-wyborcy na grafie zupełnym Piotr Nyczka Institute of Theoretical Physics University of Wrocław Artykuły Opinion dynamics as a movement in a bistable potential

Bardziej szczegółowo

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek

Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)

Bardziej szczegółowo

Hierarchical Cont-Bouchaud model

Hierarchical Cont-Bouchaud model Hierarchical Cont-Bouchaud model inż. Robert Paluch dr inż. Krzysztof Suchecki prof. dr hab. inż. Janusz Hołyst Pracownia Fizyki w Ekonomii i Naukach Społecznych Wydział Fizyki Politechniki Warszawskiej

Bardziej szczegółowo

Prawa potęgowe i samoorganizująca się krytyczność. Katarzyna Sznajd-Weron

Prawa potęgowe i samoorganizująca się krytyczność. Katarzyna Sznajd-Weron Prawa potęgowe i samoorganizująca się krytyczność Katarzyna Sznajd-Weron Przystawka: Masa krytyczna (2004) Wybuch jądrowy: masa krytyczna materiału rozszczepialnego Rowerzyści: nieformalny ruch społeczny,

Bardziej szczegółowo

Wykład 8 i 9. Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna

Wykład 8 i 9. Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna Wykład 8 i 9 Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW)

Bardziej szczegółowo

Wielki rozkład kanoniczny

Wielki rozkład kanoniczny , granica termodynamiczna i przejścia fazowe Instytut Fizyki 2015 Podukład otwarty Podukład otwarty S opisywany układ + rezerwuar R Podukład otwarty S opisywany układ + rezerwuar R układ S + R jest izolowany

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XIV: Metody Monte Carlo 19 stycznia 2016 Przybliżone obliczanie całki oznaczonej Rozważmy całkowalną funkcję f : [0, 1] R. Chcemy znaleźć przybliżoną wartość liczbową całki 1 f (x) dx. 0 Jeden ze

Bardziej szczegółowo

PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω)

PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) określonych na tej samej przestrzeni probabilistycznej

Bardziej szczegółowo

model isinga 2d ab 10 grudnia 2016

model isinga 2d ab 10 grudnia 2016 model isinga 2d ab 10 grudnia 2016 tematyka Model spinów Isinga Hamiltonian i suma statystyczna modelu Metoda Monte-Carlo. Algorytm Metropolisa. Obserwable Modelowanie: Model Isinga 1 hamiltonian I Hamiltonian,

Bardziej szczegółowo

Katarzyna Sznajd-Weron. Fizyka układów złożonych

Katarzyna Sznajd-Weron. Fizyka układów złożonych Katarzyna Sznajd-Weron Fizyka układów złożonych Spis Treści 1 Przemiany fazowe w wielkim skrócie 5 1.1 O gotowaniu jajek i parzeniu zielonej herbaty............ 6 1.2 Diagram fazowy i co to ma wspólnego

Bardziej szczegółowo

Zespół kanoniczny N,V, T. acc o n =min {1, exp [ U n U o ] }

Zespół kanoniczny N,V, T. acc o n =min {1, exp [ U n U o ] } Zespół kanoniczny Zespół kanoniczny N,V, T acc o n =min {1, exp [ U n U o ] } Zespół izobaryczno-izotermiczny Zespół izobaryczno-izotermiczny N P T acc o n =min {1, exp [ U n U o ] } acc o n =min {1, exp[

Bardziej szczegółowo

Prezentacje do wykładu: Modelarnia krytyczność i złożoność

Prezentacje do wykładu: Modelarnia krytyczność i złożoność Prezentacje do wykładu: Modelarnia krytyczność i złożoność Katarzyna Weron Wrocław, 2012 Projekt Rozwój potencjału i oferty edukacyjnej Uniwersytetu Wrocławskiego szansą zwiększenia konkurencyjności Uczelni

Bardziej szczegółowo

Równowaga. równowaga metastabilna (niepełna) równowaga niestabilna (nietrwała) równowaga stabilna (pełna) brak równowagi rozpraszanie energii

Równowaga. równowaga metastabilna (niepełna) równowaga niestabilna (nietrwała) równowaga stabilna (pełna) brak równowagi rozpraszanie energii Równowaga równowaga stabilna (pełna) równowaga metastabilna (niepełna) równowaga niestabilna (nietrwała) brak równowagi rozpraszanie energii energia swobodna Co jest warunkiem równowagi? temperatura W

Bardziej szczegółowo

Transport jonów: kryształy jonowe

Transport jonów: kryształy jonowe Transport jonów: kryształy jonowe JONIKA I FOTONIKA MICHAŁ MARZANTOWICZ Jodek srebra AgI W 42 K strukturalne przejście fazowe I rodzaju do fazy α stopiona podsieć kationowa. Fluorek ołowiu PbF 2 zdefektowanie

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Metody specjalne Monte Carlo 24 listopada 2014 Transformacje specjalne Przykład - symulacja rozkładu geometrycznego Niech X Ex(λ). Rozważmy zmienną losową [X ], która przyjmuje wartości naturalne.

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach

Bardziej szczegółowo

PageRank. Bartosz Makuracki. 28 listopada B. Makuracki PageRank

PageRank. Bartosz Makuracki. 28 listopada B. Makuracki PageRank PageRank Bartosz Makuracki 28 listopada 2013 Definicja Definicja PageRank jest algorytmem używanym przez wyszukiwarkę Google do ustalania kolejności stron pojawiających się w wynikach wyszukiwania. Definicja

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

Dynamiki rynków oligopolistycznych oczami fizyka

Dynamiki rynków oligopolistycznych oczami fizyka KNF Migacz, Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski 7-10 listopada 2008 1 1 2 1 2 3 1 2 3 4 Wprowadzenie reklamy 1 2 3 4 Wprowadzenie reklamy 5 1 2 3 4 Wprowadzenie reklamy 5 6 1 2 3 4 Wprowadzenie

Bardziej szczegółowo

Ogólny schemat postępowania

Ogólny schemat postępowania Ogólny schemat postępowania 1. Należy zdecydować, który rozkład prawdopodobieństwa chcemy badać. Rozkład oznaczamy przez P; zależy od zespołu statystycznego. 2. Narzucamy warunek równowagi szczegółowej,

Bardziej szczegółowo

Proces rezerwy w czasie dyskretnym z losową stopą procentową i losową składką

Proces rezerwy w czasie dyskretnym z losową stopą procentową i losową składką z losową stopą procentową i losową składką Instytut Matematyki i Informatyki Politechniki Wrocławskiej 10 czerwca 2008 Oznaczenia Wprowadzenie ξ n liczba wypłat w (n 1, n], Oznaczenia Wprowadzenie ξ n

Bardziej szczegółowo

Twierdzenia graniczne fluktuacji procesów przebywania dla układów gałazkowych

Twierdzenia graniczne fluktuacji procesów przebywania dla układów gałazkowych Publiczna obrona rozprawy doktorskiej Twierdzenia graniczne fluktuacji procesów przebywania dla układów gałazkowych Piotr Miłoś Instytut Matematyczny Polskiej Akademii Nauk 23.10.2008 Warszawa Plan 1 Układy

Bardziej szczegółowo

Program MC. Obliczyć radialną funkcję korelacji. Zrobić jej wykres. Odczytać z wykresu wartość radialnej funkcji korelacji w punkcie r=

Program MC. Obliczyć radialną funkcję korelacji. Zrobić jej wykres. Odczytać z wykresu wartość radialnej funkcji korelacji w punkcie r= Program MC Napisać program symulujący twarde kule w zespole kanonicznym. Dla N > 100 twardych kul. Gęstość liczbowa 0.1 < N/V < 0.4. Zrobić obliczenia dla 2,3 różnych wartości gęstości. Obliczyć radialną

Bardziej szczegółowo

Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań do analizy rzeczywistych sieci złożonych

Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań do analizy rzeczywistych sieci złożonych Gdańsk, Warsztaty pt. Układy Złożone (8 10 maja 2014) Agata Fronczak Zakład Fizyki Układów Złożonych Wydział Fizyki Politechniki Warszawskiej Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań

Bardziej szczegółowo

Prowadzący. http://luberski.w.interia.pl telefon PK: 126282746 Pokój 210A (Katedra Biotechnologii i Chemii Fizycznej C-5)

Prowadzący. http://luberski.w.interia.pl telefon PK: 126282746 Pokój 210A (Katedra Biotechnologii i Chemii Fizycznej C-5) Tomasz Lubera dr Tomasz Lubera mail: luberski@interia.pl Prowadzący http://luberski.w.interia.pl telefon PK: 126282746 Pokój 210A (Katedra Biotechnologii i Chemii Fizycznej C-5) Konsultacje: we wtorki

Bardziej szczegółowo

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.

VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w

Bardziej szczegółowo

Badanie słabych przemian fazowych pierwszego rodzaju w eksperymencie komputerowym dla trójwymiarowego modelu Ashkina-Tellera

Badanie słabych przemian fazowych pierwszego rodzaju w eksperymencie komputerowym dla trójwymiarowego modelu Ashkina-Tellera Badanie słabych przemian fazowych pierwszego rodzaju w eksperymencie komputerowym dla trójwymiarowego modelu Ashkina-Tellera D. Jeziorek-Knioła, Z. Wojtkowiak, G. Musiał Faculty of Physics, A. Mickiewicz

Bardziej szczegółowo

Modelowanie sieci złożonych

Modelowanie sieci złożonych Modelowanie sieci złożonych B. Wacław Instytut Fizyki UJ Czym są sieci złożone? wiele układów ma strukturę sieci: Internet, WWW, sieć cytowań, sieci komunikacyjne, społeczne itd. sieć = graf: węzły połączone

Bardziej szczegółowo

Termodynamika materiałów

Termodynamika materiałów Termodynamika materiałów Plan wykładu 1. Funkcje termodynamiczne, pojemność cieplna. 2. Warunki równowagi termodynamicznej w układach jedno- i wieloskładnikowych, pojęcie potencjału chemicznego. 3. Modele

Bardziej szczegółowo

WĘDRÓWKI ATOMÓW W KRYSZTAŁACH: SKĄD SIĘ BIORĄ WŁASNOŚCI MATERIAŁÓW. Rafał Kozubski. Instytut Fizyki im. M. Smoluchowskiego Uniwersytet Jagielloński

WĘDRÓWKI ATOMÓW W KRYSZTAŁACH: SKĄD SIĘ BIORĄ WŁASNOŚCI MATERIAŁÓW. Rafał Kozubski. Instytut Fizyki im. M. Smoluchowskiego Uniwersytet Jagielloński WĘDRÓWKI ATOMÓW W KRYSZTAŁACH: SKĄD SIĘ BIORĄ WŁASNOŚCI MATERIAŁÓW Rafał Kozubski Instytut Fizyki im. M. Smoluchowskiego Uniwersytet Jagielloński TWARDOŚĆ: Odporność na odkształcenie plastyczne Co to jest

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XI: Testowanie hipotez statystycznych 12 stycznia 2015 Przykład Motywacja X 1, X 2,..., X N N (µ, σ 2 ), Y 1, Y 2,..., Y M N (ν, δ 2 ). Chcemy sprawdzić, czy µ = ν i σ 2 = δ 2, czyli że w obu populacjach

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 2 Badanie funkcji korelacji w przebiegach elektrycznych.

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 2 Badanie funkcji korelacji w przebiegach elektrycznych. Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie Badanie unkcji korelacji w przebiegach elektrycznych. Cel ćwiczenia: Celem ćwiczenia jest zbadanie unkcji korelacji w okresowych sygnałach

Bardziej szczegółowo

Elementy termodynamiki

Elementy termodynamiki Elementy termodynamiki Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej Politechnika Wrocławska 11 marca 2019 Katarzyna Sznajd-Weron (K4) Wstęp do Fizyki Statystycznej 11 marca 2019 1 / 37 Dwa poziomy

Bardziej szczegółowo

Spis treści. Przedmowa Obraz makroskopowy Ciepło i entropia Zastosowania termodynamiki... 29

Spis treści. Przedmowa Obraz makroskopowy Ciepło i entropia Zastosowania termodynamiki... 29 Przedmowa... XI 1. Obraz makroskopowy... 1 1.1. Termodynamika... 1 1.2. Parametry termodynamiczne... 2 1.3. Granica termodynamiczna... 3 1.4. Procesy termodynamiczne... 4 1.5. Klasycznygazdoskonały...

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Równowagi fazowe. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny

Równowagi fazowe. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny Równowagi fazowe Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny Równowaga termodynamiczna Przemianom fazowym towarzyszą procesy, podczas których nie zmienia się skład chemiczny układu, polegają

Bardziej szczegółowo

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36 Wykład 1 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 5 października 2015 1 / 36 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną

Bardziej szczegółowo

Redukcja wariancji w metodach Monte-Carlo

Redukcja wariancji w metodach Monte-Carlo 14.02.2006 Seminarium szkoleniowe 14 lutego 2006 Plan prezentacji Wprowadzenie Metoda losowania warstwowego Metoda próbkowania ważonego Metoda zmiennych kontrolnych Metoda zmiennych antytetycznych Metoda

Bardziej szczegółowo

Materiały Reaktorowe. Efekty fizyczne uszkodzeń radiacyjnych c.d.

Materiały Reaktorowe. Efekty fizyczne uszkodzeń radiacyjnych c.d. Materiały Reaktorowe Efekty fizyczne uszkodzeń radiacyjnych c.d. Luki (pory) i pęcherze Powstawanie i formowanie luk zostało zaobserwowane w 1967 r. Podczas formowania luk w materiale następuje jego puchnięcie

Bardziej szczegółowo

Fenomenologiczna teoria przejść fazowych

Fenomenologiczna teoria przejść fazowych 3 Fenomenologiczna teoria przejść fazowych 3.1 Warunki równowagi termodynamicznej Pojęcie równowagi termodynamicznej jest definiowane poprzez brak zmian parametrów układu i systematycznych przepływów.

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-06 Temat: Wyznaczanie zmiany entropii ciała

Bardziej szczegółowo

Krystalizacja. Zarodkowanie

Krystalizacja. Zarodkowanie Krystalizacja Ciecz ciało stałe Para ciecz ciało stałe Para ciało stałe Przechłodzenie T = T L - T c Przesycenie p = p g - p z > 0 Krystalizacja Zarodkowanie Rozrost zarodków Homogeniczne Heterogeniczne

Bardziej szczegółowo

16 Jednowymiarowy model Isinga

16 Jednowymiarowy model Isinga 16 Jednowymiarowy model Isinga Jest to liniowy łańcuch N spinów mogących przyjmować wartości ± 1. Mikrostanem układu jest zbiór zmiennych σ i = ±1, gdzie i = 1,,..., N (16.1) Określają one czy i-ty spin

Bardziej szczegółowo

Układy statystyczne. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki

Układy statystyczne. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki Instytut Fizyki 2015 Stany mikroskopowe i makroskopowe w układzie wielopoziomowym Stany mikroskopowe i makroskopowe w układzie wielopoziomowym N rozróżnialnych cząstek, z których każda może mieć energię

Bardziej szczegółowo

2.1 Przykład wstępny Określenie i konstrukcja Model dwupunktowy Model gaussowski... 7

2.1 Przykład wstępny Określenie i konstrukcja Model dwupunktowy Model gaussowski... 7 Spis treści Spis treści 1 Przedziały ufności 1 1.1 Przykład wstępny.......................... 1 1.2 Określenie i konstrukcja...................... 3 1.3 Model dwupunktowy........................ 5 1.4

Bardziej szczegółowo

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85

Bardziej szczegółowo

17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek

17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 17 KLASYCZNA DYNAMIKA MOLEKULARNA 17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek Rozważamy układ N punktowych cząstek

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda

Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda Wstęp do sieci neuronowych, wykład 9. M. Czoków, J. Piersa 2010-12-07 1 Sieci skierowane 2 Modele sieci rekurencyjnej Energia sieci 3 Sieci skierowane Sieci skierowane Sieci skierowane graf połączeń synaptycznych

Bardziej szczegółowo

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Temperatura i ciepło Praca jaką wykonuje gaz I zasada termodynamiki Przemiany gazowe izotermiczna izobaryczna izochoryczna adiabatyczna Co to jest temperatura? 40 39 38 Temperatura

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 02 Jarosław Miszczak IITiS PAN Gliwice 06/10/2016 1 / 31 Czego dowiedzieliśmy się na poprzednim wykładzie? 1... 2... 3... 2 / 31 1 2 3 3 / 31 to jeden z pierwszych

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11, środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd

Bardziej szczegółowo

Termodynamiczny opis przejść fazowych pierwszego rodzaju

Termodynamiczny opis przejść fazowych pierwszego rodzaju Wykład II Przejścia fazowe 1 Termodynamiczny opis przejść fazowych pierwszego rodzaju Woda występuje w trzech stanach skupienia jako ciecz, jako gaz, czyli para wodna, oraz jako ciało stałe, a więc lód.

Bardziej szczegółowo

czyli o szukaniu miejsc zerowych, których nie ma

czyli o szukaniu miejsc zerowych, których nie ma zerowych, których nie ma Instytut Fizyki im. Mariana Smoluchowskiego Centrum Badania Systemów Złożonych im. Marka Kaca Uniwersytet Jagielloński Metoda Metoda dla Warszawa, 9 stycznia 2006 Metoda -Raphsona

Bardziej szczegółowo

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości:

Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości: 1 W stanie równowagi elektrostatycznej (nośniki ładunku są w spoczynku) wewnątrz przewodnika natężenie pola wynosi zero. Cały ładunek jest zgromadzony na powierzchni przewodnika. Tuż przy powierzchni przewodnika

Bardziej szczegółowo

Ekonometria Finansowa II EARF. Michał Rubaszek

Ekonometria Finansowa II EARF. Michał Rubaszek Ekonometria Finansowa II EARF Michał Rubaszek 1 Cele - Zapoznanie z charakterystykami szeregów finansowych - Omówienie jednowymiarowych metod liczenia VaR - Omówienie wielowymiarowych metod liczenia VaR

Bardziej szczegółowo

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej

Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej

Bardziej szczegółowo

2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27

2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27 SYGNAŁY STOCHASTYCZNE Przestrzeń probabilistyczna i zmienna losowa Definicja Przestrzenią probabilistyczną (doświadczeniem) nazywamy trójkę uporządkowaną (E, B, P ), gdzie: E przestrzeń zdarzeń elementarnych;

Bardziej szczegółowo

Spacery losowe generowanie realizacji procesu losowego

Spacery losowe generowanie realizacji procesu losowego Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z

Bardziej szczegółowo

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2

1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2 Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne. Twierdzenia graniczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 20.2.208 / 26 Motywacja Rzucamy wielokrotnie uczciwą monetą i zliczamy

Bardziej szczegółowo

e E Z = P = 1 Z e E Kanoniczna suma stanów Prawdopodobieństwo wystąpienia mikrostanu U E = =Z 1 Wartość średnia energii

e E Z = P = 1 Z e E Kanoniczna suma stanów Prawdopodobieństwo wystąpienia mikrostanu U E = =Z 1 Wartość średnia energii Metoda Metropolisa Z = e E P = 1 Z e E Kanoniczna suma stanów Prawdopodobieństwo wystąpienia mikrostanu U E = P E =Z 1 E e E Wartość średnia energii Średnia wartość A = d r N A r N exp[ U r N ] d r N exp[

Bardziej szczegółowo

Skoki o zerowej długości w formalizmie błądzenia losowego w czasie ciągłym

Skoki o zerowej długości w formalizmie błądzenia losowego w czasie ciągłym TEMATY PRAC MAGISTERSKICH Z EKONOFIZYKI Rok akademicki 2013/14 Skoki o zerowej długości w formalizmie błądzenia losowego w czasie ciągłym Opiekun: dr Tomasz Gubiec Email: Tomasz.Gubiec@fuw.edu.pl Błądzenie

Bardziej szczegółowo

Metoda Monte Carlo. Jerzy Mycielski. grudzien Jerzy Mycielski () Metoda Monte Carlo grudzien / 10

Metoda Monte Carlo. Jerzy Mycielski. grudzien Jerzy Mycielski () Metoda Monte Carlo grudzien / 10 Metoda Monte Carlo Jerzy Mycielski grudzien 2012 Jerzy Mycielski () Metoda Monte Carlo grudzien 2012 1 / 10 Przybliżanie całek Powiedzmy, że mamy do policzenia następującą całkę: b f (x) dx = I a Założmy,

Bardziej szczegółowo

Modelowanie wieloskalowe. Automaty Komórkowe - podstawy

Modelowanie wieloskalowe. Automaty Komórkowe - podstawy Modelowanie wieloskalowe Automaty Komórkowe - podstawy Dr hab. inż. Łukasz Madej Katedra Informatyki Stosowanej i Modelowania Wydział Inżynierii Metali i Informatyki Przemysłowej Budynek B5 p. 716 lmadej@agh.edu.pl

Bardziej szczegółowo

Potęga modeli agentowych

Potęga modeli agentowych Potęga modeli agentowych Katarzyna Sznajd-Weron Katedra UNESCO Studiów Interdyscyplinarnych Seminarium S 3, 7 maja 2013 Aperitif (2006) Physicists pretend not only to know everything, but also to know

Bardziej szczegółowo

Algorytmy zrandomizowane

Algorytmy zrandomizowane Algorytmy zrandomizowane http://zajecia.jakubw.pl/nai ALGORYTMY ZRANDOMIZOWANE Algorytmy, których działanie uzależnione jest od czynników losowych. Algorytmy typu Monte Carlo: dają (po pewnym czasie) wynik

Bardziej szczegółowo

S ścianki naczynia w jednostce czasu przekazywany

S ścianki naczynia w jednostce czasu przekazywany FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym

Bardziej szczegółowo

Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj

Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj Repeta z wykładu nr 3 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

SIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania

SIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania SIMR 7/8, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania. Dana jest gęstość prawdopodobieństwa zmiennej losowej ciągłej X : { a( x) dla x [, ] f(x) = dla pozostałych x Znaleźć: i) Wartość parametru

Bardziej szczegółowo

Wstęp do komputerów kwantowych

Wstęp do komputerów kwantowych Obwody kwantowe Uniwersytet Łódzki, Wydział Fizyki i Informatyki Stosowanej 2008/2009 Obwody kwantowe Bramki kwantowe 1 Algorytmy kwantowe 2 3 4 Algorytmy kwantowe W chwili obecnej znamy dwie obszerne

Bardziej szczegółowo

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 5. 2 listopada 2009

STATYSTYKA MATEMATYCZNA WYKŁAD 5. 2 listopada 2009 STATYSTYKA MATEMATYCZNA WYKŁAD 5 2 listopada 2009 Poprzedni wykład: przedział ufności dla µ, σ nieznane Rozkład N(µ, σ). Wnioskowanie o średniej µ, gdy σ nie jest znane Testowanie H : µ = µ 0, K : µ

Bardziej szczegółowo

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)

[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia) PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej

Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2013-01-09

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 14 Maszyna Boltzmanna

Wstęp do sieci neuronowych, wykład 14 Maszyna Boltzmanna do sieci neuronowych, wykład 14 Maszyna Boltzmanna M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland 2014-01-21 Problemy z siecią Hopfilda

Bardziej szczegółowo

Metody Obliczeniowe w Nauce i Technice

Metody Obliczeniowe w Nauce i Technice Metody Obliczeniowe w Nauce i Technice 15. Obliczanie całek metodami Monte Carlo Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl

Bardziej szczegółowo

Podstawowe definicje

Podstawowe definicje Wprowadzenie do równowag fazowych () odstawowe definicje Faza dla danej substancji jej postać charakteryzująca się jednorodnym składem chemicznym i stanem fizycznym. W obrę bie fazy niektóre intensywne

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 8 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo