Krytyczność i przejścia fazowe. Katarzyna Sznajd-Weron
|
|
- Miłosz Wawrzyniak
- 6 lat temu
- Przeglądów:
Transkrypt
1 Krytyczność i przejścia fazowe Katarzyna Sznajd-Weron
2 Temperatura Curie
3 Temperatura Curie ciągłe przejście fazowe magnes ferromagnetyk Przejście fazowe Katarzyna Sznajd-Weron Ferromagnetyk T T c Paramagnetyk T > T c Jak to zrozumieć?
4 Model Isinga (Lenza-Isinga?) 1925 rozprawa doktorska Ernsta Isinga Brak przejścia fazowego w 1D Jedyna praca Isinga Przejście fazowe w 2D (lata czterdzieste) Skala mikro tłumaczy zachowania makro L H = J L S i S j 1D H = J i=1 S i S i+1 <i,j>
5 Skąd taki Hamiltonian? L H = J S i S i+1 i=1 L H = J S i S i+1 = J ( 1) i=1 Każdy układ dąży do minimalizacji energii L H = J i=1 L S i S i+1 = J i=1 1 = JL
6 Argument Landaua o braku przejścia fazowego w 1D L min E E 0 min E E 0 ε E 0 + ε Stan równowagi energia swobodna minimalna: F = E TS Zmiana energii: ΔF = ΔE TΔ S = ε TΔ S Entropia z jedną ścianą domenową: S = k B ln Ω = k B ln(l 1) ΔF = ε TΔ S = ε Tk B ln L 1, dla L ΔF < 0
7 Oddziaływania pomiędzy cząstkami Ferromagnetyk (konformizm) Antyferromagnetyk (antykonformizm) Wpływ (siła oddziaływania) wzrasta wraz Ze zgodnością grupy Z rozmiarem grupy Wysoka temperatura nerwowo Piotr Nyczka
8 Czego się spodziewacie? Czego się spodziewacie? Zajrzyjcie na Models Library NetLogo (środowisko do ABM) Prof. Uri Wilensky Northwestern's Center for Connected Learning and Computer-Based Modeling (CCL)
9 Ewolucja układu w czasie (ferromagnetyk) niska temperatura Oddziaływanie porządkuje Temperatura losowe zmiany W niskich temperaturach porządek W wysokich temperaturach nieporządek m =< S i > = 1 N i=1 N S i
10 Dalsze losy modelu Isinga Przejście fazowe w 2D bez pola Onsager, lata czterdzieste Symulacje Komputerowe model Isinga w 3D i 2D z polem Wykorzystanie poza fizyką
11 Symulacja Monte Carlo Modelu Isinga Przygotuj stan początkowy układu Pozwól mu ewoluować Poczekaj aż ustali się magnetyzacja Zanotuj wartość m Powtarzaj to dużo razy Policz średnią magnetyzację Jaka to średnia? N m =< S i > = 1 N i=1 S i
12 Średnia po zespole Średnia po czasie i średnia po zespole Średnia po czasie Układ ergodyczny to średnia po zespole = średnia po czasie
13 Algorytm Metropolisa 1MCS = N losowań Wylosuj jeden spin S i Oblicz energię E = E(S i ) = S i J σ j nn S j Oblicz energię E = E( S i ) = S i J σ j nn S j Oblicz zmianę energii ΔE = E E Jeżeli ΔE 0 to S i S i Jeżeli ΔE > 0 to wylosuj r z przedziału [0,1] i akceptuj nową konfigurację jeżeli: r < p = exp ΔE k B T, k B = J = 1
14 Przejście fazowe w modelu Isinga
15 Przejścia fazowe wokół nas woda faza ciekła PUNKT KRYTYCZNY Lód faza stała para faza gazowa ciągłe przejście fazowe nieciągłe przejście fazowe 2014 Katarzyna Sznajd-Weron
16 Sylwester w górach i jajka 2014 Katarzyna Sznajd-Weron
17 Nieciągłe przejście fazowe 2014 Katarzyna Sznajd-Weron
18 Równowaga i stany metastabilne LÓD WODA LÓD WODA LÓD WODA Lód i woda w równowadze Przechłodzona woda
19 Stan metastabilny: przechłodzona woda
20 Ciągłe przejście fazowe: punkt krytyczny
21 Nieciągłe przejście fazowe: punkt potrójny
22 Nieciągłe przejścia fazowe F x = du dx V = F x dx 2014 Katarzyna Sznajd-Weron
23 Ciągłe (krytyczne) przejście fazowe 2014 Katarzyna Sznajd-Weron
24 Punkty trójkrytyczne
25 Jak sprawdzić na komputerze czy przejście nieciągłe (c) 2017 Urszula Grochocińska
26 Różnice pomiędzy ciągłym i nieciągłym przejściem fazowym Ciągłe przejścia fazowe Brak utajonego ciepła przemiany q = T S 1 S 2 = 0 Nieciągłe przejścia fazowe Utajone ciepło przemiany q = T S 1 S 2 0 Brak skoku entropii Skok entropii: S 1 S 2 0 Brak współistnienia faz Brak stanów metastabilnych Skalowanie, uniwersalność, wykładniki krytyczne Parametr porządku zmienia się w sposób ciągły: φ 0, T < T c φ = 0, T > T c Współistnienie faz Stany metastabilne trywialne wykładniki krytyczne Parametr porządku zmienia się w sposób nieciągły
27 Stan krytyczny i fluktuacje Funkcja korelacyjna parametru porządku: G r 1, r 2 < φ r 1 φ r 2 > = φ 2 +< δφ(r 1 ) δφ r 2 > Niech r = r 1 r 2 G r e r/ξ r d 2+η Definicja punktu krytycznego: T T c ξ
28 Wykładniki krytyczne t = T c T zredukowana temperatura T c m T, 0 t β, m T c, h h 1/δ χ T, 0 t γ c T, 0 t α ξ T, 0 t ν G r, T c, 0 r d+2 η Model Isinga Zależą od wymiaru parametru porządku i wymiaru przestrzennego d - uniwersalność
29 Wykładniki krytyczne w modelu Isinga i wymiar krytyczny d α (1) 0 Wyniki ścisłe (Onsager) β 1/ (3) 1/2 γ 7/ (5) 1 δ (2) 3 η 1/ (5) ν (4) 1/2 Wyniki ścisłe, takie same jak MFA
30 Związki pomiędzy wykładnikami Teoria skalowania α + 2β + γ = 2 (Rushbrooke) γ = β(δ 1) (Widom) γ = 2 η ν (Fisher) 2 α = νd (Josephson)
31 Skalowanie skończonego rozmiaru ξ T, 0 t ν Dla L < maksimum w temperaturze T c L T c L T c T c L θ θ = 1 ν dla dużych L Dwuwymiarowy FSS model Isinga ciepło właściwe c t α L α/ν promień korelacji ξ t ν L parametr porządku m t β L β/ν
32 Perkolacja 2014 Katarzyna Sznajd-Weron
33 Model perkolacji Model perkolacji : Każdy węzeł (wiązanie) sieci jest zajęty niezależnie z prawdopodobieństwem p Jak duże musi być to prawdopodobieństwo p aby powstał klaster łączący brzegi sieci (przepływ)?
34 Perkolacja: Pożary lasów
35 Prawdopodobieństwo przejścia Symulacja komputerowa 101x x x1003 gęstość zadrzewienia p Dla jakiego p pożar dotrze do drugiej strony lasu?
36 Perkolacja site Rozważmy sieć dwuwymiarową L na L Każde miejsce sieci jest zajęte niezależnie z prawdopodobieństwem p Klaster grupa zajętych węzłów znajdujących się wzajemnie w najbliższym sąsiedztwie (rozmiar s)
37 Krytyczność w modelu perkolacji Próg perkolacji - najmniejsza koncentracja zapełnionych węzłów na sieci, przy której powstaje nieskończony klaster. Parametr porządku Wyniki dla sieci 2D
38 Krytyczność w modelu perkolacji Próg perkolacji dla problemu site to najmniejsza koncentracja zapełnionych węzłów na sieci, przy której powstaje nieskończony klaster. Próg perkolacji dla problemu bond to najmniejsza koncentracja zapełnionych połączeń między węzłami sieci, przy której powstaje nieskończony klaster.
39 Perkolacja na sieci kwadratowej (bond): dualność sieci Sieć wyjściowa: p mogę przejść q=1-p nie mogę przejść Sieć dualna: p nie mogę przejść q=1-p mogę przejść
40 Samodualność sieci kwadratowej p p* q q p p* q q * * q* 1 p*, q* p p* 0.5 *
41 Próg perkolacji nie jest uniwersalny! sieć site bond heksagonalna kwadratowa trójkątna diamond Prosta kubiczna BCC FCC
42 Metoda Średniego Pola (MFA) perkolacja wiązań (bond) Pytanie: Jaka jest krytyczna wartość koncentracji wiązań (mostów), przy której powstanie nieskończony klaster? Oznaczenia: prawdopodobieństwo tego, że dwa dowolne węzły sieci są połączone (tzn. że istnieje wiązanie): p prawdopodobieństwo, że i-ty węzeł należy do nieskończonego klastra: P i
43 Kiedy należy do nieskończonego klastra? Żeby węzeł i należał do klastra to: musi on mieć przy najmniej jednego sąsiada j, z którym jest połączony mostem, j należy do nieskończonego klastra. Prawdopodobieństwo tego, że ma: pp j Prawd., że nie należy do klastra
44 Mean field aproximation (MFA) z 1 P i = j=1 1 pp j MFA: i P i = P (układ jednorodny) z 1 P = j=1 1 pp = 1 pp z 1 P = 1 pp z Dla układu jednowymiarowego (1D): z = 2 1 P = 1 pp 2
45 Układ jednowymiarowy, z = 2 1 P = 1 pp 2 Pytanie: Czy istnieje takie p, żeby P > 0? 1 P = 1 2pP + p 2 P 2 p 2 P p P = 0 P(p 2 P + 1 2p ) = 0 p 2 P + 1 2p = 0 P = 2p 1 p 2 P = 2p 1 p 2 > 0 2p 1 > 0 p > 1 2
46 p p ) (1 4 ) (1 2 ' p p p p p p p p Grupa renormalizacyjna (decymacja): Perkolacja na sieci kwadratowej p=0 p =0 p =0 p=1 p =1 p =1
47 ) (1 0 1 ) (1 0 ) 2 (1 2 ', 2 ' p p p p p p p p p p p p p p p p p p p 0 p*= Szukamy punktów stałych transformacji
48 Grupa renormalizacyjna (majority rule): Perkolacja na sieci trójkątnej p prawdopodobieństwo p prawdopodobieństwo p = p 3 + 3p 2 1 p p = p p = p 3 + 3p 2 1 p 0 p c = p 3 + 3p 2 p = 0 p( 2p 2 + 3p 1) = 0 1 p 1 p 2 p = 0
49 Trzewo (sieć) Bethego (z=3) Klaster perkolujący rozciąga się w nieskończoność Rozważmy spacer po perkolującym nieskończonym klastrze Kontynuując spacer z węzła i-tego możemy pójść w z 1 kierunkach Tylko p(z 1) jest wolnych Czyli musi być przynajmniej jedna wolna p z 1 1 p c = 1 z 1
50 Perkolacja ukierunkowana site i bond? woda przepływająca przez filtr wodny w polu grawitacyjnym prąd elektryczny płynący przez losową sieć izolatorów i przewodników
51 Izotropowa kontra ukierunowana perkolacja wiązań
52 Podobieństwa Oba modele trywialne w 1D (przepływ tylko dla p=1) i D (przepływ dla każdego p>0). W wymiarach skończonych wymiarach D>1 pojawia się ciągłe przejście fazowe (p=p*) między fazą mokrą i suchą. Dla p>p* układ jest przepuszczalny (P >0 ). Dla p<p* układ jest nieprzepuszczalny (P =0).
53 Różnice Krytyczny próg p* dla ukierunkowanej perkolacji jest wyższy niż dla izotropowej W przypadku izotropowym własności krytyczne są identyczne we wszystkich kierunkach w przeciwieństwie do perkolacji ukierunkowanej Dla DP nie znane są analityczne wartości progu perkolacji p* i wykładników krytycznych Wyniki numeryczne wykładniki krytyczne dla DP są liczbami niewymiernymi
54 czas t Perkolacja ukierunkowana jako proces dynamiczny t N(t) pozycja i Układ 2 D 1D układ dynamiczny (1+1)
55 czas t Perkolacja ukierunkowana w wymiarze 1+1 pozycja i
56 Zmiana średniej liczba cząstek w czasie dla DP (1+1) krytyczna
57 Modele należące do klasy uniwersalności Directed Percolation (DP) Procesy wzrostu Procesy kontaktowe modele epidemii Dyfuzja z reakcją chemiczną Reakcje katalityczne na powierzchniach (Ziff-Gulari-Barshad,1986)
58 Literatura
Krytyczność, przejścia fazowe i symulacje Monte Carlo. Katarzyna Sznajd-Weron Physics of Complex System
Krytyczność, przejścia fazowe i symulacje Monte Carlo Katarzyna Sznajd-Weron Physics of Complex System Przejścia fazowe wokół nas woda faza ciekła PUNKT KRYTYCZNY Lód faza stała para faza gazowa ciągłe
Modele sieciowe fizyki statystycznej i symulacje Monte Carlo. Katarzyna Sznajd-Weron
Modele sieciowe fizyki statystycznej i symulacje Monte Carlo Katarzyna Sznajd-Weron Perkolacja 2014 Katarzyna Sznajd-Weron Model erkolacji Model erkolacji : Każdy węzeł (wiązanie) sieci jest zajęty niezależnie
Wstęp do fizyki statystycznej: krytyczność i przejścia fazowe. Katarzyna Sznajd-Weron
Wstęp do fizyki statystycznej: krytyczność i przejścia fazowe Katarzyna Sznajd-Weron Co to jest fizyka statystyczna? Termodynamika poziom makroskopowy Fizyka statystyczna poziom mikroskopowy Marcin Weron
Fizyka statystyczna i termodynamika Wykład 1: Wstęp. Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej
Fizyka statystyczna i termodynamika Wykład 1: Wstęp Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej http://www.if.pwr.wroc.pl/~katarzynaweron/ Mój plan zajęć Strona kursu Kim jestem? Prof. dr hab. Katarzyna
Układ (fizyczny) Fizyka Systemów Złożonych (Physics of Complex Systems) Wyk 1: Wstęp
Układ (fizyczny) Fizyka Systemów Złożonych (Physics of Complex Systems) Wyk 1: Wstęp Katarzyna Sznajd Weron Wyodrębniony (realnie lub myślowo) fragment rzeczywistości Jednostka, którą będziemy się zajmować
Co to jest model Isinga?
Co to jest model Isinga? Fakty eksperymentalne W pewnych metalach (np. Fe, Ni) następuje spontaniczne ustawianie się spinów wzdłuż pewnego kierunku, powodując powstanie makroskopowego pola magnetycznego.
Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron
Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron Zagadka na początek wykładu Diagram fazowy wody w powiększeniu, problem metastabilności aktualny (Nature, 2011) Niższa temperatura topnienia
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 03 (uzupełnienie Wykładu 02) Jarosław Miszczak IITiS PAN Gliwice 31/03/2016 1 / 17 1 2 / 17 Dynamika populacji Równania Lotki-Voltery opisują model drapieżnik-ofiara.
Klasyfikacja przemian fazowych
Klasyfikacja przemian fazowych Faza- jednorodna pod względem własności część układu, oddzielona od pozostałej częsci układu powierzchnią graniczną, po której przekroczeniu własności zmieniaja się w sposób
Modelowanie Agentowe Układów Złożonych Wstęp. Katarzyna Sznajd-Weron
Modelowanie Agentowe Układów Złożonych Wstęp Katarzyna Sznajd-Weron Aperitif (2006) Physicists pretend not only to know everything, but also to know everything better. This applies in particular to computational
Przejścia fazowe w 1D modelu Isinga
Przejścia fazowe w 1D modelu Isinga z zero-temperaturową dynamiką Glaubera Rafał Topolnicki rafal.topolnicki@gmail.com Wydział Fizyki i Astronomii Uniwersytet Wrocławski Wydział Podstawowych Problemów
Fizyka statystyczna Teoria Ginzburga-Landaua w średnim polu. P. F. Góra
Fizyka statystyczna Teoria Ginzburga-Landaua w średnim polu P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Parametr porzadku W niskich temperaturach układy występuja w fazach, które łamia symetrię
Zadania treningowe na kolokwium
Zadania treningowe na kolokwium 3.12.2010 1. Stan układu binarnego zawierającego n 1 moli substancji typu 1 i n 2 moli substancji typu 2 parametryzujemy za pomocą stężenia substancji 1: x n 1. Stabilność
Elementy termodynamiki i wprowadzenie do zespołów statystycznych. Katarzyna Sznajd-Weron
Elementy termodynamiki i wprowadzenie do zespołów statystycznych Katarzyna Sznajd-Weron Wielkości makroskopowe - termodynamika Termodynamika - metoda fenomenologiczna Fenomenologia w fizyce: widzimy jak
Jak z ABM zrobić model analityczny? (Metoda pola średniego) Katarzyna Sznajd-Weron Physics of Complex System
Jak z ABM zrobić model analityczny? (Metoda pola średniego) Katarzyna Sznajd-Weron Physics of Complex System Plan Model dynamiki populacyjnej Pytania Model mikroskopowy Przybliżenie MFA: równania (wady
Równoległe symulacje Monte Carlo na współdzielonej sieci
Równoległe symulacje Monte Carlo na współdzielonej sieci Szymon Murawski, Grzegorz Musiał, Grzegorz Pawłowski Wydział Fizyki, Uniwersytet im. Adama Mickiewicza 12 maja 2015 S. Murawski, G. Musiał, G. Pawłowski
Voter model on Sierpiński fractals Model głosujący na fraktalach Sierpińskiego
Voter model on Sierpiński fractals Model głosujący na fraktalach Sierpińskiego Krzysztof Suchecki Janusz A. Hołyst Wydział Fizyki Politechniki Warszawskiej Plan Model głosujący : definicja i własności
Fizyka statystyczna Fenomenologia przejść fazowych. P. F. Góra
Fizyka statystyczna Fenomenologia przejść fazowych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Przejście fazowe transformacja układu termodynamicznego z jednej fazy (stanu materii) do innej, dokonywane
Elementy termodynamiki
Elementy termodynamiki Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej Politechnika Wrocławska 5 stycznia 2019 Katarzyna Sznajd-Weron (K4) Wstęp do Fizyki Statystycznej 5 stycznia 2019 1 / 27 Wielkości
Przejścia fazowe w uogólnionym modelu modelu q-wyborcy na grafie zupełnym
Przejścia fazowe w uogólnionym modelu modelu q-wyborcy na grafie zupełnym Piotr Nyczka Institute of Theoretical Physics University of Wrocław Artykuły Opinion dynamics as a movement in a bistable potential
Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)
Hierarchical Cont-Bouchaud model
Hierarchical Cont-Bouchaud model inż. Robert Paluch dr inż. Krzysztof Suchecki prof. dr hab. inż. Janusz Hołyst Pracownia Fizyki w Ekonomii i Naukach Społecznych Wydział Fizyki Politechniki Warszawskiej
Prawa potęgowe i samoorganizująca się krytyczność. Katarzyna Sznajd-Weron
Prawa potęgowe i samoorganizująca się krytyczność Katarzyna Sznajd-Weron Przystawka: Masa krytyczna (2004) Wybuch jądrowy: masa krytyczna materiału rozszczepialnego Rowerzyści: nieformalny ruch społeczny,
Wykład 8 i 9. Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna
Wykład 8 i 9 Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW)
Wielki rozkład kanoniczny
, granica termodynamiczna i przejścia fazowe Instytut Fizyki 2015 Podukład otwarty Podukład otwarty S opisywany układ + rezerwuar R Podukład otwarty S opisywany układ + rezerwuar R układ S + R jest izolowany
Prawdopodobieństwo i statystyka
Wykład XIV: Metody Monte Carlo 19 stycznia 2016 Przybliżone obliczanie całki oznaczonej Rozważmy całkowalną funkcję f : [0, 1] R. Chcemy znaleźć przybliżoną wartość liczbową całki 1 f (x) dx. 0 Jeden ze
PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω)
PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) określonych na tej samej przestrzeni probabilistycznej
model isinga 2d ab 10 grudnia 2016
model isinga 2d ab 10 grudnia 2016 tematyka Model spinów Isinga Hamiltonian i suma statystyczna modelu Metoda Monte-Carlo. Algorytm Metropolisa. Obserwable Modelowanie: Model Isinga 1 hamiltonian I Hamiltonian,
Katarzyna Sznajd-Weron. Fizyka układów złożonych
Katarzyna Sznajd-Weron Fizyka układów złożonych Spis Treści 1 Przemiany fazowe w wielkim skrócie 5 1.1 O gotowaniu jajek i parzeniu zielonej herbaty............ 6 1.2 Diagram fazowy i co to ma wspólnego
Zespół kanoniczny N,V, T. acc o n =min {1, exp [ U n U o ] }
Zespół kanoniczny Zespół kanoniczny N,V, T acc o n =min {1, exp [ U n U o ] } Zespół izobaryczno-izotermiczny Zespół izobaryczno-izotermiczny N P T acc o n =min {1, exp [ U n U o ] } acc o n =min {1, exp[
Prezentacje do wykładu: Modelarnia krytyczność i złożoność
Prezentacje do wykładu: Modelarnia krytyczność i złożoność Katarzyna Weron Wrocław, 2012 Projekt Rozwój potencjału i oferty edukacyjnej Uniwersytetu Wrocławskiego szansą zwiększenia konkurencyjności Uczelni
Równowaga. równowaga metastabilna (niepełna) równowaga niestabilna (nietrwała) równowaga stabilna (pełna) brak równowagi rozpraszanie energii
Równowaga równowaga stabilna (pełna) równowaga metastabilna (niepełna) równowaga niestabilna (nietrwała) brak równowagi rozpraszanie energii energia swobodna Co jest warunkiem równowagi? temperatura W
Transport jonów: kryształy jonowe
Transport jonów: kryształy jonowe JONIKA I FOTONIKA MICHAŁ MARZANTOWICZ Jodek srebra AgI W 42 K strukturalne przejście fazowe I rodzaju do fazy α stopiona podsieć kationowa. Fluorek ołowiu PbF 2 zdefektowanie
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Prawdopodobieństwo i statystyka
Wykład VII: Metody specjalne Monte Carlo 24 listopada 2014 Transformacje specjalne Przykład - symulacja rozkładu geometrycznego Niech X Ex(λ). Rozważmy zmienną losową [X ], która przyjmuje wartości naturalne.
Podstawy termodynamiki
Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach
PageRank. Bartosz Makuracki. 28 listopada B. Makuracki PageRank
PageRank Bartosz Makuracki 28 listopada 2013 Definicja Definicja PageRank jest algorytmem używanym przez wyszukiwarkę Google do ustalania kolejności stron pojawiających się w wynikach wyszukiwania. Definicja
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 9 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład
Dynamiki rynków oligopolistycznych oczami fizyka
KNF Migacz, Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski 7-10 listopada 2008 1 1 2 1 2 3 1 2 3 4 Wprowadzenie reklamy 1 2 3 4 Wprowadzenie reklamy 5 1 2 3 4 Wprowadzenie reklamy 5 6 1 2 3 4 Wprowadzenie
Ogólny schemat postępowania
Ogólny schemat postępowania 1. Należy zdecydować, który rozkład prawdopodobieństwa chcemy badać. Rozkład oznaczamy przez P; zależy od zespołu statystycznego. 2. Narzucamy warunek równowagi szczegółowej,
Proces rezerwy w czasie dyskretnym z losową stopą procentową i losową składką
z losową stopą procentową i losową składką Instytut Matematyki i Informatyki Politechniki Wrocławskiej 10 czerwca 2008 Oznaczenia Wprowadzenie ξ n liczba wypłat w (n 1, n], Oznaczenia Wprowadzenie ξ n
Twierdzenia graniczne fluktuacji procesów przebywania dla układów gałazkowych
Publiczna obrona rozprawy doktorskiej Twierdzenia graniczne fluktuacji procesów przebywania dla układów gałazkowych Piotr Miłoś Instytut Matematyczny Polskiej Akademii Nauk 23.10.2008 Warszawa Plan 1 Układy
Program MC. Obliczyć radialną funkcję korelacji. Zrobić jej wykres. Odczytać z wykresu wartość radialnej funkcji korelacji w punkcie r=
Program MC Napisać program symulujący twarde kule w zespole kanonicznym. Dla N > 100 twardych kul. Gęstość liczbowa 0.1 < N/V < 0.4. Zrobić obliczenia dla 2,3 różnych wartości gęstości. Obliczyć radialną
Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań do analizy rzeczywistych sieci złożonych
Gdańsk, Warsztaty pt. Układy Złożone (8 10 maja 2014) Agata Fronczak Zakład Fizyki Układów Złożonych Wydział Fizyki Politechniki Warszawskiej Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań
Prowadzący. http://luberski.w.interia.pl telefon PK: 126282746 Pokój 210A (Katedra Biotechnologii i Chemii Fizycznej C-5)
Tomasz Lubera dr Tomasz Lubera mail: luberski@interia.pl Prowadzący http://luberski.w.interia.pl telefon PK: 126282746 Pokój 210A (Katedra Biotechnologii i Chemii Fizycznej C-5) Konsultacje: we wtorki
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa.
VII. Elementy teorii stabilności. Funkcja Lapunowa. 1. Stabilność w sensie Lapunowa. W rozdziale tym zajmiemy się dokładniej badaniem stabilności rozwiązań równania różniczkowego. Pojęcie stabilności w
Badanie słabych przemian fazowych pierwszego rodzaju w eksperymencie komputerowym dla trójwymiarowego modelu Ashkina-Tellera
Badanie słabych przemian fazowych pierwszego rodzaju w eksperymencie komputerowym dla trójwymiarowego modelu Ashkina-Tellera D. Jeziorek-Knioła, Z. Wojtkowiak, G. Musiał Faculty of Physics, A. Mickiewicz
Modelowanie sieci złożonych
Modelowanie sieci złożonych B. Wacław Instytut Fizyki UJ Czym są sieci złożone? wiele układów ma strukturę sieci: Internet, WWW, sieć cytowań, sieci komunikacyjne, społeczne itd. sieć = graf: węzły połączone
Termodynamika materiałów
Termodynamika materiałów Plan wykładu 1. Funkcje termodynamiczne, pojemność cieplna. 2. Warunki równowagi termodynamicznej w układach jedno- i wieloskładnikowych, pojęcie potencjału chemicznego. 3. Modele
WĘDRÓWKI ATOMÓW W KRYSZTAŁACH: SKĄD SIĘ BIORĄ WŁASNOŚCI MATERIAŁÓW. Rafał Kozubski. Instytut Fizyki im. M. Smoluchowskiego Uniwersytet Jagielloński
WĘDRÓWKI ATOMÓW W KRYSZTAŁACH: SKĄD SIĘ BIORĄ WŁASNOŚCI MATERIAŁÓW Rafał Kozubski Instytut Fizyki im. M. Smoluchowskiego Uniwersytet Jagielloński TWARDOŚĆ: Odporność na odkształcenie plastyczne Co to jest
Prawdopodobieństwo i statystyka
Wykład XI: Testowanie hipotez statystycznych 12 stycznia 2015 Przykład Motywacja X 1, X 2,..., X N N (µ, σ 2 ), Y 1, Y 2,..., Y M N (ν, δ 2 ). Chcemy sprawdzić, czy µ = ν i σ 2 = δ 2, czyli że w obu populacjach
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 2 Badanie funkcji korelacji w przebiegach elektrycznych.
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie Badanie unkcji korelacji w przebiegach elektrycznych. Cel ćwiczenia: Celem ćwiczenia jest zbadanie unkcji korelacji w okresowych sygnałach
Elementy termodynamiki
Elementy termodynamiki Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej Politechnika Wrocławska 11 marca 2019 Katarzyna Sznajd-Weron (K4) Wstęp do Fizyki Statystycznej 11 marca 2019 1 / 37 Dwa poziomy
Spis treści. Przedmowa Obraz makroskopowy Ciepło i entropia Zastosowania termodynamiki... 29
Przedmowa... XI 1. Obraz makroskopowy... 1 1.1. Termodynamika... 1 1.2. Parametry termodynamiczne... 2 1.3. Granica termodynamiczna... 3 1.4. Procesy termodynamiczne... 4 1.5. Klasycznygazdoskonały...
Ważne rozkłady i twierdzenia c.d.
Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby
Równowagi fazowe. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny
Równowagi fazowe Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny Równowaga termodynamiczna Przemianom fazowym towarzyszą procesy, podczas których nie zmienia się skład chemiczny układu, polegają
Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36
Wykład 1 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 5 października 2015 1 / 36 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną
Redukcja wariancji w metodach Monte-Carlo
14.02.2006 Seminarium szkoleniowe 14 lutego 2006 Plan prezentacji Wprowadzenie Metoda losowania warstwowego Metoda próbkowania ważonego Metoda zmiennych kontrolnych Metoda zmiennych antytetycznych Metoda
Materiały Reaktorowe. Efekty fizyczne uszkodzeń radiacyjnych c.d.
Materiały Reaktorowe Efekty fizyczne uszkodzeń radiacyjnych c.d. Luki (pory) i pęcherze Powstawanie i formowanie luk zostało zaobserwowane w 1967 r. Podczas formowania luk w materiale następuje jego puchnięcie
Fenomenologiczna teoria przejść fazowych
3 Fenomenologiczna teoria przejść fazowych 3.1 Warunki równowagi termodynamicznej Pojęcie równowagi termodynamicznej jest definiowane poprzez brak zmian parametrów układu i systematycznych przepływów.
WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ
WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-06 Temat: Wyznaczanie zmiany entropii ciała
Krystalizacja. Zarodkowanie
Krystalizacja Ciecz ciało stałe Para ciecz ciało stałe Para ciało stałe Przechłodzenie T = T L - T c Przesycenie p = p g - p z > 0 Krystalizacja Zarodkowanie Rozrost zarodków Homogeniczne Heterogeniczne
16 Jednowymiarowy model Isinga
16 Jednowymiarowy model Isinga Jest to liniowy łańcuch N spinów mogących przyjmować wartości ± 1. Mikrostanem układu jest zbiór zmiennych σ i = ±1, gdzie i = 1,,..., N (16.1) Określają one czy i-ty spin
Układy statystyczne. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki
Instytut Fizyki 2015 Stany mikroskopowe i makroskopowe w układzie wielopoziomowym Stany mikroskopowe i makroskopowe w układzie wielopoziomowym N rozróżnialnych cząstek, z których każda może mieć energię
2.1 Przykład wstępny Określenie i konstrukcja Model dwupunktowy Model gaussowski... 7
Spis treści Spis treści 1 Przedziały ufności 1 1.1 Przykład wstępny.......................... 1 1.2 Określenie i konstrukcja...................... 3 1.3 Model dwupunktowy........................ 5 1.4
Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS
Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85
17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 17 KLASYCZNA DYNAMIKA MOLEKULARNA 17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek Rozważamy układ N punktowych cząstek
Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda
Wstęp do sieci neuronowych, wykład 9. M. Czoków, J. Piersa 2010-12-07 1 Sieci skierowane 2 Modele sieci rekurencyjnej Energia sieci 3 Sieci skierowane Sieci skierowane Sieci skierowane graf połączeń synaptycznych
Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały
Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki
Podstawy termodynamiki
Podstawy termodynamiki Temperatura i ciepło Praca jaką wykonuje gaz I zasada termodynamiki Przemiany gazowe izotermiczna izobaryczna izochoryczna adiabatyczna Co to jest temperatura? 40 39 38 Temperatura
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 02 Jarosław Miszczak IITiS PAN Gliwice 06/10/2016 1 / 31 Czego dowiedzieliśmy się na poprzednim wykładzie? 1... 2... 3... 2 / 31 1 2 3 3 / 31 to jeden z pierwszych
Komputerowa Analiza Danych Doświadczalnych
Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11, środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd
Termodynamiczny opis przejść fazowych pierwszego rodzaju
Wykład II Przejścia fazowe 1 Termodynamiczny opis przejść fazowych pierwszego rodzaju Woda występuje w trzech stanach skupienia jako ciecz, jako gaz, czyli para wodna, oraz jako ciało stałe, a więc lód.
czyli o szukaniu miejsc zerowych, których nie ma
zerowych, których nie ma Instytut Fizyki im. Mariana Smoluchowskiego Centrum Badania Systemów Złożonych im. Marka Kaca Uniwersytet Jagielloński Metoda Metoda dla Warszawa, 9 stycznia 2006 Metoda -Raphsona
Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości:
1 W stanie równowagi elektrostatycznej (nośniki ładunku są w spoczynku) wewnątrz przewodnika natężenie pola wynosi zero. Cały ładunek jest zgromadzony na powierzchni przewodnika. Tuż przy powierzchni przewodnika
Ekonometria Finansowa II EARF. Michał Rubaszek
Ekonometria Finansowa II EARF Michał Rubaszek 1 Cele - Zapoznanie z charakterystykami szeregów finansowych - Omówienie jednowymiarowych metod liczenia VaR - Omówienie wielowymiarowych metod liczenia VaR
Granica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27
SYGNAŁY STOCHASTYCZNE Przestrzeń probabilistyczna i zmienna losowa Definicja Przestrzenią probabilistyczną (doświadczeniem) nazywamy trójkę uporządkowaną (E, B, P ), gdzie: E przestrzeń zdarzeń elementarnych;
Spacery losowe generowanie realizacji procesu losowego
Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z
1.1 Przegląd wybranych równań i modeli fizycznych. , u x1 x 2
Temat 1 Pojęcia podstawowe 1.1 Przegląd wybranych równań i modeli fizycznych Równaniem różniczkowym cząstkowym rzędu drugiego o n zmiennych niezależnych nazywamy równanie postaci gdzie u = u (x 1, x,...,
Metody probabilistyczne
Metody probabilistyczne. Twierdzenia graniczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 20.2.208 / 26 Motywacja Rzucamy wielokrotnie uczciwą monetą i zliczamy
e E Z = P = 1 Z e E Kanoniczna suma stanów Prawdopodobieństwo wystąpienia mikrostanu U E = =Z 1 Wartość średnia energii
Metoda Metropolisa Z = e E P = 1 Z e E Kanoniczna suma stanów Prawdopodobieństwo wystąpienia mikrostanu U E = P E =Z 1 E e E Wartość średnia energii Średnia wartość A = d r N A r N exp[ U r N ] d r N exp[
Skoki o zerowej długości w formalizmie błądzenia losowego w czasie ciągłym
TEMATY PRAC MAGISTERSKICH Z EKONOFIZYKI Rok akademicki 2013/14 Skoki o zerowej długości w formalizmie błądzenia losowego w czasie ciągłym Opiekun: dr Tomasz Gubiec Email: Tomasz.Gubiec@fuw.edu.pl Błądzenie
Metoda Monte Carlo. Jerzy Mycielski. grudzien Jerzy Mycielski () Metoda Monte Carlo grudzien / 10
Metoda Monte Carlo Jerzy Mycielski grudzien 2012 Jerzy Mycielski () Metoda Monte Carlo grudzien 2012 1 / 10 Przybliżanie całek Powiedzmy, że mamy do policzenia następującą całkę: b f (x) dx = I a Założmy,
Modelowanie wieloskalowe. Automaty Komórkowe - podstawy
Modelowanie wieloskalowe Automaty Komórkowe - podstawy Dr hab. inż. Łukasz Madej Katedra Informatyki Stosowanej i Modelowania Wydział Inżynierii Metali i Informatyki Przemysłowej Budynek B5 p. 716 lmadej@agh.edu.pl
Potęga modeli agentowych
Potęga modeli agentowych Katarzyna Sznajd-Weron Katedra UNESCO Studiów Interdyscyplinarnych Seminarium S 3, 7 maja 2013 Aperitif (2006) Physicists pretend not only to know everything, but also to know
Algorytmy zrandomizowane
Algorytmy zrandomizowane http://zajecia.jakubw.pl/nai ALGORYTMY ZRANDOMIZOWANE Algorytmy, których działanie uzależnione jest od czynników losowych. Algorytmy typu Monte Carlo: dają (po pewnym czasie) wynik
S ścianki naczynia w jednostce czasu przekazywany
FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym
Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj
Repeta z wykładu nr 3 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:
SIMR 2017/18, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania
SIMR 7/8, Statystyka, Przykładowe zadania do kolokwium - Rozwiązania. Dana jest gęstość prawdopodobieństwa zmiennej losowej ciągłej X : { a( x) dla x [, ] f(x) = dla pozostałych x Znaleźć: i) Wartość parametru
Wstęp do komputerów kwantowych
Obwody kwantowe Uniwersytet Łódzki, Wydział Fizyki i Informatyki Stosowanej 2008/2009 Obwody kwantowe Bramki kwantowe 1 Algorytmy kwantowe 2 3 4 Algorytmy kwantowe W chwili obecnej znamy dwie obszerne
WŁASNOŚCI CIAŁ STAŁYCH I CIECZY
WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)
STATYSTYKA MATEMATYCZNA WYKŁAD 5. 2 listopada 2009
STATYSTYKA MATEMATYCZNA WYKŁAD 5 2 listopada 2009 Poprzedni wykład: przedział ufności dla µ, σ nieznane Rozkład N(µ, σ). Wnioskowanie o średniej µ, gdy σ nie jest znane Testowanie H : µ = µ 0, K : µ
[ P ] T PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES. [ u v u v u v ] T. wykład 4. Element trójkątny płaski stan (naprężenia lub odkształcenia)
PODSTAWY I ZASTOSOWANIA INŻYNIERSKIE MES wykład 4 Element trójkątny płaski stan (naprężenia lub odkształcenia) Obszar zdyskretyzowany trójkątami U = [ u v u v u v ] T stopnie swobody elementu P = [ P ]
Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej
Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2013-01-09
Wstęp do sieci neuronowych, wykład 14 Maszyna Boltzmanna
do sieci neuronowych, wykład 14 Maszyna Boltzmanna M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland 2014-01-21 Problemy z siecią Hopfilda
Metody Obliczeniowe w Nauce i Technice
Metody Obliczeniowe w Nauce i Technice 15. Obliczanie całek metodami Monte Carlo Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl
Podstawowe definicje
Wprowadzenie do równowag fazowych () odstawowe definicje Faza dla danej substancji jej postać charakteryzująca się jednorodnym składem chemicznym i stanem fizycznym. W obrę bie fazy niektóre intensywne
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 8 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład