Model Isinga. Katarzyna Sznajd-Weron
|
|
- Aneta Olejniczak
- 5 lat temu
- Przeglądów:
Transkrypt
1 Model Isinga Katarzyna Sznajd-Weron
2 Temperatura Curie ciągłe przejście fazowe magnes ferromagnetyk Przejście fazowe Katarzyna Sznajd-Weron Ferromagnetyk T T c Paramagnetyk T > T c Jak to zrozumieć?
3 Model Isinga (Lenza-Isinga?) 1920 Lenz wymyślił prosty model 1925 rozprawa doktorska Ernsta Isinga Brak przejścia fazowego w 1D Konkluzja: brak przejścia w dowolnym wymiarze Jedyna praca Isinga L H = J <i,j> S i S j h i S i
4 Beitrag zur Theorie des Ferromagnetismus Ising, Ernst. Zeitschrift für Physik Volume: 31 Issue 1 (1924)
5 Artykuły nawiązujące do modelu
6 Model Isinga w 1D brak przejścia L L H = J 1D S i S j h S i H = J i=1 S i S i+1 h S i <i,j> i i Z = exp βh = exp βh S i =±1 S 1 =±1 S 2 =±1 S L =±1 f = F N = kt lim N 1 N lnz = ktlnz max m = f h T = 0 T > 0
7 Complexity and criticality, strony
8 Energia swobodna - ścisłe rozwiązanie modelu Isinga w 1D
9 Podatność - ścisłe rozwiązanie modelu Isinga w 1D
10 Energia wewnętrzna
11 Ciepło właściwe
12 Ising się mylił
13 Dalsze losy modelu Isinga Przejście fazowe w 2D bez pola Średnie pole: T c = qj k B = 4 J k B Peierls (1936): T c = J Onsager (1944): sinh 2J k B T k B = 1, T c = J k B Nie istnieje rozwiązanie w 2D+pole i 3D Symulacje Komputerowe 3D i 2D z polem
14 Rozwiązanie średniopolowe m = tanh βjzm + βh m 0 = tanh βjzm 0 = tanh T c T m 0 T c = Jz/k B
15 Rozwiązanie średniopolowe
16 Rozwiązanie średniopolowe
17 Wynik analityczny w 2D
18 Argument Landaua o braku porządku w 1D dla oddziaływań krótkozasięgowych L min E E 0 min E E 0 ε E 0 + ε ΔE = ε W stanie równowagi energia swobodna minimalna: F = E TS ΔF = ΔE TΔS = ε TΔS
19 Co ze zmianą entropii? L S = k B lnω Ω = L 1 L 1 ΔF = ΔE TΔS = ε TΔS = ε Tk B ln(l 1) Dla L mamy ΔF < 0 Energia maleje gdy pojawia się ściana domenowa!!!
20 Co jeśli oddziaływanie dalekozasięgowe? (Efekt Thoulessa)
21 Algorytm Metropolisa
22 Algorytm Metropolisa 1MCS = N losowań Wylosuj jeden spin S i Oblicz energię E = E(S i ) = S i J σ j nn S j Oblicz energię E = E( S i ) = S i J σ j nn S j Oblicz zmianę energii ΔE = E E Jeżeli ΔE 0 to S i S i Jeżeli ΔE > 0 to wylosuj r z przedziału [0,1] i akceptuj nową konfigurację jeżeli: r < p = exp ΔE k B T, k B = J = 1
23 Wylosuj spin S i Oblicz ΔE obrotu S i S i Obróć spin TAK NIE ΔE < 0? S i S i Wylosuj x U(0, 1) Obróć spin TAK x < exp( ΔE/ NIE S i S i T)? iter N? TAK Oblicz magnetyzację NIE
24 Trajektorie dla T=1.85, L=100 (symulacje Jakub Pawłowski)
25 Trajektorie dla T=2.26 (symulacje Jakub Pawłowski)
26 Przejście fazowe w modelu Isinga (symulacje Maciej Tabiszewski)
27 Symulacja Monte Carlo Modelu Isinga dla zadanej temperatury T Przygotuj stan początkowy układu Pozwól mu ewoluować jak? Poczekaj aż ustali się magnetyzacja Zanotuj wartość m Powtarzaj to dużo razy Policz średnią magnetyzację Jaka to średnia? N m =< S i > 1 N i=1 S i
28 Średnia po zespole Średnia po czasie i średnia po zespole Średnia po czasie Układ ergodyczny to średnia po zespole = średnia po czasie
29 Ewolucja układu w czasie (ferromagnetyk) niska temperatura Oddziaływanie porządkuje Temperatura losowe zmiany W niskich temperaturach porządek W wysokich temperaturach nieporządek m =< S i > = 1 N i=1 N S i
30 Dynamiki w modelu Isinga
31 Ewolucja gęstości prawdopodobieństwa dp r dt = s r dp r dt = s r W s r P s s r W r s P r W s r P s W r s P r = 0 W s r P s = W r s P r Warunek stacjonarności Warunek równowagi szczegółowej P r = Zexp βe r Rozkład w równowadze W s r W r s = P r P s = Zexp βe r Zexp βe S = exp( βδe)
32 Prawdopodobieństwo przejścia dynamika Metropolisa: W M = min[1, exp( βδe)] dynamika Glaubera lub heat-bath: W G = exp(βδe) W temperaturze T = 0: 0 jeśli ΔE > 0 W(ΔE) = W 0 jeśli ΔE = 0 1 jeśli ΔE < 0
33 Prawdopodobieństwo przejścia
34 Rozkład magnetyzacji w czasie dla T=1.85 (symulacje Jakub Pawłowski)
35 Rozkład magnetyzacji w czasie dla T=2.26 (symulacje Jakub Pawłowski)
36 Relaksacja w T=0 z aktualizacją sekwencyjną
37 Co jeśli aktualizacja synchroniczna?
38 Jaki jest typ przejścia fazowego? Przejścia nieciągłe: Skok parametru porządku β = 0 Histereza (czułość na warunki początkowe) Współistnienie faz Brak skalowania?
39 Jaki jest typ przejścia fazowego?
40 Dyskusja o typie przejścia Dla W absorpcyjny stan ferromagnetyczny Dla W 0 > 0.5 stan stacjonarny zależy od typu aktualizacji Dla aktualizacji synchronicznej nieciągłe przejście fazowe w W 0 = 0.5 T = 0 brak równowagi
Krytyczność i przejścia fazowe. Katarzyna Sznajd-Weron
Krytyczność i przejścia fazowe Katarzyna Sznajd-Weron Temperatura Curie Temperatura Curie ciągłe przejście fazowe magnes ferromagnetyk Przejście fazowe Katarzyna Sznajd-Weron Ferromagnetyk T T c Paramagnetyk
Krytyczność, przejścia fazowe i symulacje Monte Carlo. Katarzyna Sznajd-Weron Physics of Complex System
Krytyczność, przejścia fazowe i symulacje Monte Carlo Katarzyna Sznajd-Weron Physics of Complex System Przejścia fazowe wokół nas woda faza ciekła PUNKT KRYTYCZNY Lód faza stała para faza gazowa ciągłe
Wstęp do fizyki statystycznej: krytyczność i przejścia fazowe. Katarzyna Sznajd-Weron
Wstęp do fizyki statystycznej: krytyczność i przejścia fazowe Katarzyna Sznajd-Weron Co to jest fizyka statystyczna? Termodynamika poziom makroskopowy Fizyka statystyczna poziom mikroskopowy Marcin Weron
Co to jest model Isinga?
Co to jest model Isinga? Fakty eksperymentalne W pewnych metalach (np. Fe, Ni) następuje spontaniczne ustawianie się spinów wzdłuż pewnego kierunku, powodując powstanie makroskopowego pola magnetycznego.
Fizyka statystyczna i termodynamika Wykład 1: Wstęp. Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej
Fizyka statystyczna i termodynamika Wykład 1: Wstęp Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej http://www.if.pwr.wroc.pl/~katarzynaweron/ Mój plan zajęć Strona kursu Kim jestem? Prof. dr hab. Katarzyna
Układ (fizyczny) Fizyka Systemów Złożonych (Physics of Complex Systems) Wyk 1: Wstęp
Układ (fizyczny) Fizyka Systemów Złożonych (Physics of Complex Systems) Wyk 1: Wstęp Katarzyna Sznajd Weron Wyodrębniony (realnie lub myślowo) fragment rzeczywistości Jednostka, którą będziemy się zajmować
Przejścia fazowe w 1D modelu Isinga
Przejścia fazowe w 1D modelu Isinga z zero-temperaturową dynamiką Glaubera Rafał Topolnicki rafal.topolnicki@gmail.com Wydział Fizyki i Astronomii Uniwersytet Wrocławski Wydział Podstawowych Problemów
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 03 (uzupełnienie Wykładu 02) Jarosław Miszczak IITiS PAN Gliwice 31/03/2016 1 / 17 1 2 / 17 Dynamika populacji Równania Lotki-Voltery opisują model drapieżnik-ofiara.
Modele sieciowe fizyki statystycznej i symulacje Monte Carlo. Katarzyna Sznajd-Weron
Modele sieciowe fizyki statystycznej i symulacje Monte Carlo Katarzyna Sznajd-Weron Perkolacja 2014 Katarzyna Sznajd-Weron Model erkolacji Model erkolacji : Każdy węzeł (wiązanie) sieci jest zajęty niezależnie
model isinga 2d ab 10 grudnia 2016
model isinga 2d ab 10 grudnia 2016 tematyka Model spinów Isinga Hamiltonian i suma statystyczna modelu Metoda Monte-Carlo. Algorytm Metropolisa. Obserwable Modelowanie: Model Isinga 1 hamiltonian I Hamiltonian,
Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron
Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron Zagadka na początek wykładu Diagram fazowy wody w powiększeniu, problem metastabilności aktualny (Nature, 2011) Niższa temperatura topnienia
e E Z = P = 1 Z e E Kanoniczna suma stanów Prawdopodobieństwo wystąpienia mikrostanu U E = =Z 1 Wartość średnia energii
Metoda Metropolisa Z = e E P = 1 Z e E Kanoniczna suma stanów Prawdopodobieństwo wystąpienia mikrostanu U E = P E =Z 1 E e E Wartość średnia energii Średnia wartość A = d r N A r N exp[ U r N ] d r N exp[
Układy statystyczne. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki
Instytut Fizyki 2015 Stany mikroskopowe i makroskopowe w układzie wielopoziomowym Stany mikroskopowe i makroskopowe w układzie wielopoziomowym N rozróżnialnych cząstek, z których każda może mieć energię
Wielki rozkład kanoniczny
, granica termodynamiczna i przejścia fazowe Instytut Fizyki 2015 Podukład otwarty Podukład otwarty S opisywany układ + rezerwuar R Podukład otwarty S opisywany układ + rezerwuar R układ S + R jest izolowany
Modelowanie Agentowe Układów Złożonych Wstęp. Katarzyna Sznajd-Weron
Modelowanie Agentowe Układów Złożonych Wstęp Katarzyna Sznajd-Weron Aperitif (2006) Physicists pretend not only to know everything, but also to know everything better. This applies in particular to computational
Ilustracja metody Monte Carlo obliczania pola obszaru D zawartego w kwadracie [a,b]x[a,b]
Ilustracja metody Monte Carlo obliczania pola obszaru D zawartego w kwadracie [a,b]x[a,b] Dagna Bieda, Piotr Jarecki, Tomasz Nachtigall, Jakub Ciesiółka, Marek Kubiczek Metoda Monte Carlo Metoda Monte
Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa
Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa 2010-12-21 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3 Łańcuch Markova Definicja Własności Losowanie z rozkładu
Wstęp do sieci neuronowych, wykład 14 Maszyna Boltzmanna
do sieci neuronowych, wykład 14 Maszyna Boltzmanna M. Czoków, J. Piersa Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland 2014-01-21 Problemy z siecią Hopfilda
Równoległe symulacje Monte Carlo na współdzielonej sieci
Równoległe symulacje Monte Carlo na współdzielonej sieci Szymon Murawski, Grzegorz Musiał, Grzegorz Pawłowski Wydział Fizyki, Uniwersytet im. Adama Mickiewicza 12 maja 2015 S. Murawski, G. Musiał, G. Pawłowski
WĘDRÓWKI ATOMÓW W KRYSZTAŁACH: SKĄD SIĘ BIORĄ WŁASNOŚCI MATERIAŁÓW. Rafał Kozubski. Instytut Fizyki im. M. Smoluchowskiego Uniwersytet Jagielloński
WĘDRÓWKI ATOMÓW W KRYSZTAŁACH: SKĄD SIĘ BIORĄ WŁASNOŚCI MATERIAŁÓW Rafał Kozubski Instytut Fizyki im. M. Smoluchowskiego Uniwersytet Jagielloński TWARDOŚĆ: Odporność na odkształcenie plastyczne Co to jest
17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 17 KLASYCZNA DYNAMIKA MOLEKULARNA 17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek Rozważamy układ N punktowych cząstek
Klasyfikacja przemian fazowych
Klasyfikacja przemian fazowych Faza- jednorodna pod względem własności część układu, oddzielona od pozostałej częsci układu powierzchnią graniczną, po której przekroczeniu własności zmieniaja się w sposób
Fizyka statystyczna Fenomenologia przejść fazowych. P. F. Góra
Fizyka statystyczna Fenomenologia przejść fazowych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Przejście fazowe transformacja układu termodynamicznego z jednej fazy (stanu materii) do innej, dokonywane
Momentem dipolowym ładunków +q i q oddalonych o 2a (dipola) nazwamy wektor skierowany od q do +q i o wartości:
1 W stanie równowagi elektrostatycznej (nośniki ładunku są w spoczynku) wewnątrz przewodnika natężenie pola wynosi zero. Cały ładunek jest zgromadzony na powierzchni przewodnika. Tuż przy powierzchni przewodnika
Badanie słabych przemian fazowych pierwszego rodzaju w eksperymencie komputerowym dla trójwymiarowego modelu Ashkina-Tellera
Badanie słabych przemian fazowych pierwszego rodzaju w eksperymencie komputerowym dla trójwymiarowego modelu Ashkina-Tellera D. Jeziorek-Knioła, Z. Wojtkowiak, G. Musiał Faculty of Physics, A. Mickiewicz
Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda
Wstęp do sieci neuronowych, wykład 9. M. Czoków, J. Piersa 2010-12-07 1 Sieci skierowane 2 Modele sieci rekurencyjnej Energia sieci 3 Sieci skierowane Sieci skierowane Sieci skierowane graf połączeń synaptycznych
Program MC. Obliczyć radialną funkcję korelacji. Zrobić jej wykres. Odczytać z wykresu wartość radialnej funkcji korelacji w punkcie r=
Program MC Napisać program symulujący twarde kule w zespole kanonicznym. Dla N > 100 twardych kul. Gęstość liczbowa 0.1 < N/V < 0.4. Zrobić obliczenia dla 2,3 różnych wartości gęstości. Obliczyć radialną
Dynamiki rynków oligopolistycznych oczami fizyka
KNF Migacz, Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski 7-10 listopada 2008 1 1 2 1 2 3 1 2 3 4 Wprowadzenie reklamy 1 2 3 4 Wprowadzenie reklamy 5 1 2 3 4 Wprowadzenie reklamy 5 6 1 2 3 4 Wprowadzenie
Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa
Algorytmy MCMC (Markowowskie Monte Carlo) dla skokowych procesów Markowa Wojciech Niemiro 1 Uniwersytet Warszawski i UMK Toruń XXX lat IMSM, Warszawa, kwiecień 2017 1 Wspólne prace z Błażejem Miasojedowem,
Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.
Kwantyle Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p, że P(X x p ) p P(X x p ) 1 p Możemy go obliczyć z dystrybuanty: Jeżeli F(x p ) = p, to x p jest kwantylem rzędu p Jeżeli F(x p )
Modelarnia krytyczność i złożoność
Modelarnia krytyczność i złożoność skrypt do wykładu Katarzyna Weron Projekt Rozwój potencjału i oferty edukacyjnej Uniwersytetu Wrocławskiego szansą zwiększenia konkurencyjności Uczelni współfinansowany
Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów
Stochastyczna dynamika z opóźnieniem czasowym w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 14
Metody inwersji Bayesowskiej -L7- IGF PAN, 21.IV.2005
Metody inwersji Bayesowskiej -L7- Podejście optymalizacyjne i probabilistyczne podobieństwa i różnice (C) G(m) d obs + λ m m apr = min d obs m apr d th = d true + ɛ obs = m true + ɛ apr = G(m) + ɛ th G(m)
PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω)
PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) określonych na tej samej przestrzeni probabilistycznej
Elementy termodynamiki i wprowadzenie do zespołów statystycznych. Katarzyna Sznajd-Weron
Elementy termodynamiki i wprowadzenie do zespołów statystycznych Katarzyna Sznajd-Weron Wielkości makroskopowe - termodynamika Termodynamika - metoda fenomenologiczna Fenomenologia w fizyce: widzimy jak
Janusz Adamowski METODY OBLICZENIOWE FIZYKI Kwantowa wariacyjna metoda Monte Carlo. Problem własny dla stanu podstawowego układu N cząstek
Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 20 KWANTOWE METODY MONTE CARLO 20.1 Kwantowa wariacyjna metoda Monte Carlo Problem własny dla stanu podstawowego układu N cząstek (H E 0 )ψ 0 (r)
Zespół kanoniczny N,V, T. acc o n =min {1, exp [ U n U o ] }
Zespół kanoniczny Zespół kanoniczny N,V, T acc o n =min {1, exp [ U n U o ] } Zespół izobaryczno-izotermiczny Zespół izobaryczno-izotermiczny N P T acc o n =min {1, exp [ U n U o ] } acc o n =min {1, exp[
Wykład 8 i 9. Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna
Wykład 8 i 9 Hipoteza ergodyczna, rozkład mikrokanoniczny, wzór Boltzmanna dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW)
Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań do analizy rzeczywistych sieci złożonych
Gdańsk, Warsztaty pt. Układy Złożone (8 10 maja 2014) Agata Fronczak Zakład Fizyki Układów Złożonych Wydział Fizyki Politechniki Warszawskiej Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań
16 Jednowymiarowy model Isinga
16 Jednowymiarowy model Isinga Jest to liniowy łańcuch N spinów mogących przyjmować wartości ± 1. Mikrostanem układu jest zbiór zmiennych σ i = ±1, gdzie i = 1,,..., N (16.1) Określają one czy i-ty spin
TERMODYNAMIKA MODELU FALICOVA KIMBALLA SYMULACJE MONTE CARLO
TERMODYNAMIKA MODELU FALICOVA KIMBALLA SYMULACJE MONTE CARLO Katarzyna Czajka, Maciej M. Maśka Zakład Fizyki Teoretycznej, Instytut Fizyki Uniwersytet Ślaski Kazimierz 2005 PLAN Model Falicova-Kimballa
Przejścia fazowe w uogólnionym modelu modelu q-wyborcy na grafie zupełnym
Przejścia fazowe w uogólnionym modelu modelu q-wyborcy na grafie zupełnym Piotr Nyczka Institute of Theoretical Physics University of Wrocław Artykuły Opinion dynamics as a movement in a bistable potential
Metody probabilistyczne
Metody probabilistyczne. Twierdzenia graniczne Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 20.2.208 / 26 Motywacja Rzucamy wielokrotnie uczciwą monetą i zliczamy
Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda
Wstęp do sieci neuronowych, wykład 10. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-13 1 Modele sieci rekurencyjnej Energia sieci 2 3 Modele sieci
Ogólny schemat postępowania
Ogólny schemat postępowania 1. Należy zdecydować, który rozkład prawdopodobieństwa chcemy badać. Rozkład oznaczamy przez P; zależy od zespołu statystycznego. 2. Narzucamy warunek równowagi szczegółowej,
Potęga modeli agentowych
Potęga modeli agentowych Katarzyna Sznajd-Weron Katedra UNESCO Studiów Interdyscyplinarnych Seminarium S 3, 7 maja 2013 Aperitif (2006) Physicists pretend not only to know everything, but also to know
Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej
Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2013-01-09
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych
zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa
WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I wykład 2 i 3 Zmienna losowa Agata Boratyńska Agata Boratyńska Rachunek prawdopodobieństwa, wykład 2 i 3 1 / 19 Zmienna losowa Definicja Dana jest przestrzeń probabilistyczna
Fizyka statystyczna Teoria Ginzburga-Landaua w średnim polu. P. F. Góra
Fizyka statystyczna Teoria Ginzburga-Landaua w średnim polu P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Parametr porzadku W niskich temperaturach układy występuja w fazach, które łamia symetrię
Metoda Monte Carlo. Katarzyna Sznajd-Weron
Metoda Monte Carlo Katarzyna Sznajd-Weron Stanisław Ulam i metoda Monte Carlo The idea for what was later called the Monte Carlo method occurred to me when I was laying solitaire during my illness. I noticed
Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap
Wykład 1 Próba i populacja. Estymacja parametrów z wykorzystaniem metody bootstrap Magdalena Frąszczak Wrocław, 21.02.2018r Tematyka Wykładów: Próba i populacja. Estymacja parametrów z wykorzystaniem metody
MODELOWANIE RZECZYWISTOŚCI
MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona
Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE
1. 1. W p r owadze n ie 1 Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1.1. WPROWADZENIE SYGNAŁ nośnik informacji ANALIZA SYGNAŁU badanie, którego celem jest identyfikacja własności, cech, miar sygnału; odtwarzanie
Rzadkie gazy bozonów
Rzadkie gazy bozonów Tomasz Sowiński Proseminarium Fizyki Teoretycznej 15 listopada 2004 Rzadkie gazy bozonów p.1/25 Bardzo medialne zdjęcie Rok 1995. Pierwsza kondensacja. Zaobserwowana w przestrzeni
2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27
SYGNAŁY STOCHASTYCZNE Przestrzeń probabilistyczna i zmienna losowa Definicja Przestrzenią probabilistyczną (doświadczeniem) nazywamy trójkę uporządkowaną (E, B, P ), gdzie: E przestrzeń zdarzeń elementarnych;
S ścianki naczynia w jednostce czasu przekazywany
FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym
Algorytmy MCMC i ich zastosowania statystyczne
Algorytmy MCMC i ich zastosowania statystyczne Wojciech Niemiro Uniwersytet Mikołaja Kopernika, Toruń i Uniwersytet Warszawski Statystyka Matematyczna Wisła, grudzień 2010 Wykład 1 1 Co to jest MCMC? 2
Algorytm Metropolisa-Hastingsa
Seminarium szkoleniowe, 25 kwietnia 2006 Plan prezentacji 1 Problem Metoda MCMC 2 Niezależny algorytm Metropolisa-Hastingsa Bła dzenie losowe Zbieżność procedury Metropolisa-Hastingsa Problem Metoda MCMC
Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda
Wstęp do sieci neuronowych, wykład 9. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-12-10 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu
Wielowymiarowy próbnik Gibbsa
29.05.2006 Seminarium szkoleniowe 30 maja 2006 Plan prezentacji Slgorytm MH i PG przypomnienie wiadomości Wielowymiarowy PG Algorytm PG z dopełnieniem Odwracalny PG Modele hierarchiczne Modele hybrydowe
Ważne rozkłady i twierdzenia
Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne
Redukcja wariancji w metodach Monte-Carlo
14.02.2006 Seminarium szkoleniowe 14 lutego 2006 Plan prezentacji Wprowadzenie Metoda losowania warstwowego Metoda próbkowania ważonego Metoda zmiennych kontrolnych Metoda zmiennych antytetycznych Metoda
Spis treści. Przedmowa Obraz makroskopowy Ciepło i entropia Zastosowania termodynamiki... 29
Przedmowa... XI 1. Obraz makroskopowy... 1 1.1. Termodynamika... 1 1.2. Parametry termodynamiczne... 2 1.3. Granica termodynamiczna... 3 1.4. Procesy termodynamiczne... 4 1.5. Klasycznygazdoskonały...
Elementy termodynamiki
Elementy termodynamiki Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej Politechnika Wrocławska 5 stycznia 2019 Katarzyna Sznajd-Weron (K4) Wstęp do Fizyki Statystycznej 5 stycznia 2019 1 / 27 Wielkości
Prawdopodobieństwo geometryczne
Prawdopodobieństwo geometryczne Krzysztof Jasiński Wydział Matematyki i Informatyki UMK, Toruń V Lieceum Ogólnokształące im. Jana Pawała II w Toruniu 13.03.2014 Krzysztof Jasiński (WMiI UMK) Prawdopodobieństwo
Modelowanie rynków finansowych z wykorzystaniem pakietu R
Modelowanie rynków finansowych z wykorzystaniem pakietu R Metody numeryczne i symulacje stochastyczne Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Całkowanie
Elementy termodynamiki
Elementy termodynamiki Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej Politechnika Wrocławska 11 marca 2019 Katarzyna Sznajd-Weron (K4) Wstęp do Fizyki Statystycznej 11 marca 2019 1 / 37 Dwa poziomy
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3.
RACHUNEK PRAWDOPODOBIEŃSTWA WYKŁAD 3. ZMIENNA LOSOWA JEDNOWYMIAROWA. Zmienną losową X nazywamy funkcję (praktycznie każdą) przyporządkowującą zdarzeniom elementarnym liczby rzeczywiste. X : Ω R (dokładniej:
Procesy stochastyczne
Wykład IV: dla łańcuchów Markowa 14 marca 2017 Wykład IV: Klasyfikacja stanów Kiedy rozkład stacjonarny jest jedyny? Przykład Macierz jednostkowa I wymiaru #E jest macierzą stochastyczną. Dla tej macierzy
Funkcje charakteryzujące proces. Dr inż. Robert Jakubowski
Funkcje charakteryzujące proces eksploatacji Dr inż. Robert Jakubowski Niezawodność Niezawodność Rprawdopodobieństwo, że w przedziale czasu od do t cechy funkcjonalne statku powietrznego Ubędą się mieścić
LABORATORIUM PODSTAW TELEKOMUNIKACJI
WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego w Warszawie Wydział Elektroniki LABORATORIUM PODSTAW TELEKOMUNIKACJI Grupa Podgrupa Data wykonania ćwiczenia Ćwiczenie prowadził... Skład podgrupy:
Równowaga. równowaga metastabilna (niepełna) równowaga niestabilna (nietrwała) równowaga stabilna (pełna) brak równowagi rozpraszanie energii
Równowaga równowaga stabilna (pełna) równowaga metastabilna (niepełna) równowaga niestabilna (nietrwała) brak równowagi rozpraszanie energii energia swobodna Co jest warunkiem równowagi? temperatura W
Maksymalne powtórzenia w tekstach i zerowa intensywność entropii
Maksymalne powtórzenia w tekstach i zerowa intensywność entropii Łukasz Dębowski ldebowsk@ipipan.waw.pl i Instytut Podstaw Informatyki PAN Warszawa 1 Wprowadzenie 2 Ograniczenia górne i dolne 3 Przykłady
Metody Obliczeniowe w Nauce i Technice
Metody Obliczeniowe w Nauce i Technice 15. Obliczanie całek metodami Monte Carlo Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl
1 Rachunek prawdopodobieństwa
1 Rachunek prawdopodobieństwa 1. Obliczyć średnią i wariancję rozkładu Bernouliego 2. Wykonać przejście graniczne p 0, N w rozkładzie Bernouliego przy zachowaniu stałej wartości średniej: λ = N p = const
Prezentacje do wykładu: Modelarnia krytyczność i złożoność
Prezentacje do wykładu: Modelarnia krytyczność i złożoność Katarzyna Weron Wrocław, 2012 Projekt Rozwój potencjału i oferty edukacyjnej Uniwersytetu Wrocławskiego szansą zwiększenia konkurencyjności Uczelni
Ferromagnetyki, paramagnetyki, diamagnetyki.
Ferromagnetyki, paramagnetyki, diamagnetyki https://www.youtube.com/watch?v=u36qppveh2c Materiały magnetyczne Do tej pory rozważaliśmy przewody z prądem umieszczone w powietrzu lub w próżni. Jednak w praktycznych
Sterowanie wielkością zamówienia w Excelu - cz. 3
Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji
GRA Przykład. 1) Zbiór graczy. 2) Zbiór strategii. 3) Wypłaty. n = 2 myśliwych. I= {1,,n} S = {polować na jelenia, gonić zająca} S = {1,,m} 10 utils
GRA Przykład 1) Zbiór graczy n = 2 myśliwych I= {1,,n} 2) Zbiór strategii S = {polować na jelenia, gonić zająca} S = {1,,m} 3) Wypłaty jeleń - zając - 10 utils 3 utils U i : S n R i=1,,n J Z J Z J 5 0
Podstawy OpenCL część 2
Podstawy OpenCL część 2 1. Napisz program dokonujący mnożenia dwóch macierzy w wersji sekwencyjnej oraz OpenCL. Porównaj czasy działania obu wersji dla różnych wielkości macierzy, np. 16 16, 128 128, 1024
Geometryczna zbieżność algorytmu Gibbsa
Geometryczna zbieżność algorytmu Gibbsa Iwona Żerda Wydział Matematyki i Informatyki, Uniwersytet Jagielloński 6 grudnia 2013 6 grudnia 2013 1 / 19 Plan prezentacji 1 Algorytm Gibbsa 2 Tempo zbieżności
Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa
Wykład z analizy danych: powtórzenie zagadnień z rachunku prawdopodobieństwa Marek Kubiak Instytut Informatyki Politechnika Poznańska Plan wykładu Podstawowe pojęcia rachunku prawdopodobieństwa Rozkład
Matematyka ubezpieczeń majątkowych r.
Matematyka ubezpieczeń majątkowych 3..007 r. Zadanie. Każde z ryzyk pochodzących z pewnej populacji charakteryzuje się tym że przy danej wartości λ parametru ryzyka Λ rozkład wartości szkód z tego ryzyka
Termodynamika materiałów
Termodynamika materiałów Plan wykładu 1. Funkcje termodynamiczne, pojemność cieplna. 2. Warunki równowagi termodynamicznej w układach jedno- i wieloskładnikowych, pojęcie potencjału chemicznego. 3. Modele
Czym się różni ciecz od ciała stałego?
Szkła Czym się różni ciecz od ciała stałego? gęstość Czy szkło to ciecz czy ciało stałe? Szkło powstaje w procesie chłodzenia cieczy. Czy szkło to ciecz przechłodzona? kryształ szkło ciecz przechłodzona
Wykład 9: Markov Chain Monte Carlo
RAP 412 17.12.2008 Wykład 9: Markov Chain Monte Carlo Wykładowca: Andrzej Ruciński Pisarz: Ewelina Rychlińska i Wojciech Wawrzyniak Wstęp W tej części wykładu zajmiemy się zastosowaniami łańcuchów Markowa
Prawdopodobieństwo i statystyka
Wykład VII: Metody specjalne Monte Carlo 24 listopada 2014 Transformacje specjalne Przykład - symulacja rozkładu geometrycznego Niech X Ex(λ). Rozważmy zmienną losową [X ], która przyjmuje wartości naturalne.
Stochastyczne dynamiki z opóźnieniami czasowymi w grach ewolucyjnych
Stochastyczne dynamiki z opóźnieniami czasowymi w grach ewolucyjnych Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki Uniwersytet Warszawski Warszawa 10 listopada 2016 Proseminarium licencjackie
Model Pasywnego Trasera w Lokalnie Ergodycznym Środowisku
w Lokalnie Ergodycznym Środowisku Tymoteusz Chojecki UMCS, Lublin Tomasz Komorowski IMPAN, Warszawa Kościelisko, 10 września 2016, XLV Konferencja Zastosowań Matematyki T. Komorowski, T. Chojecki w Lokalnie
Statystyki kwantowe. P. F. Góra
Statystyki kwantowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2016 Statystyki kwantowe Rozpatrujemy gaz doskonały o Hamiltonianie H = N i=1 p i 2 2m. (1) Zamykamy czastki w bardzo dużym pudle o idealnie
Mikroekonometria 6. Mikołaj Czajkowski Wiktor Budziński
Mikroekonometria 6 Mikołaj Czajkowski Wiktor Budziński Metody symulacyjne Monte Carlo Metoda Monte-Carlo Wykorzystanie mocy obliczeniowej komputerów, aby poznać charakterystyki zmiennych losowych poprzez
Nadsubtelne pola magnetyczne 57 Fe w kwazibinarnych fazach Lavesa Sc(Fe Ni 1 x x ) 2 zsyntetyzowanych pod wysokim ciśnieniem
OGÓLNOPOLSKIE SEMINARIUM SPEKTROSKOPII MÖSSBAUEROWSKIEJ Koninki, 8 11 czerwca 28 Nadsubtelne pola magnetyczne 57 Fe w kwazibinarnych fazach Lavesa Sc(Fe Ni 1 x x ) 2 zsyntetyzowanych pod wysokim ciśnieniem
Problemy i rozwiązania
Problemy i rozwiązania Znakomita większość układów, które badamy liczy sobie co najmniej mol cząsteczek >> 10 23 Typowy krok czasowy symulacji to 10-15 s natomiast zjawiska, które zachodzą wokół nas trwają
FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w
FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym
Tematy prac magisterskich i doktorskich
Tematy prac magisterskich i doktorskich Stochastyczna dynamika z opóźnieniami czasowymi w grach ewolucyjnych oraz modelach ekspresji i regulacji genów Jacek Miękisz Instytut Matematyki Stosowanej i Mechaniki
Monte Carlo, bootstrap, jacknife
Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział
Prawdopodobieństwo i statystyka r.
Zadanie. Niech (X, Y) ) będzie dwuwymiarową zmienną losową, o wartości oczekiwanej (μ, μ, wariancji każdej ze współrzędnych równej σ oraz kowariancji równej X Y ρσ. Staramy się obserwować niezależne realizacje
Podstawy termodynamiki
Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach