Eliza Wajch: Topologia

Wielkość: px
Rozpocząć pokaz od strony:

Download "Eliza Wajch: Topologia"

Transkrypt

1 General Topology in ZF a brief introduction Eliza Wajch Abstract. This is a collection of my lectures on general topology in ZF for Polish students who apply for Master s degree in mathematics and are after a brief course on topologies induced by metrics in ZFC. If this is possible, proofs from classical books on general topology in ZFC are modified to proofs in ZF. Some important results that are independent of ZF are shown. Literatura podstawowa: 1. A. W. Archangielski, W. I. Ponomariow, Podstawy Topologii Ogólnej w Zadaniach, PWN Waszawa R. Duda, Wprowadzenie do Topologii, PWN Warszawa R. Engelking, Topologia Ogólna, PWN Warszawa R. Engelking, K. Sieklucki, Wstęp do Topologii, PWN Warszawa Literatura dodatkowa: 5. K. Kunen, Set Theory, North-Holland, Amsterdam K. Kunen, The Foundations of Mathematics, College Publications, London K. Kunen, J. E. Vaughan (eds.), Handbook of Set-Theoretic Topology, North-Holland, Amsterdam K. Kuratowski, Wstęp do Teorii Mnogości i Topologii PWN Warszawa K. Kuratowski, A. Mostowski, Teoria Mnogości, PWN Warszawa J. Mioduszewski, Wykłady z Topologii, Wydawnictwo Uniwersytetu Śląskiego w Katowicach. W ciągu wykładów będzie wykorzystywana teŝ następująca bardzo waŝne ksiąŝki: 11. H. Herrlich, Axiom of Choice, Springer Berlin Heidelberg New York P. Howard, J. E. Rubin, Consequences of the Axiom of Choice, AMS Uwaga. Ten cykl wykładów jest opracowany na podstawie mych wykładów z lat poprzednich, ale dowody niektórych twierdzeń pokazywane poprzednio w ZFC z wyraźnym uŝyciem pewnika wyboru lub aksjomatu pokrewnego z pewnikiem wyboru są teraz przeprowadzone nieco inaczej w ZF, bez wykorzystania kontrowersyjnego aksjomatu wyboru. Niektóre twierdzenia i zadania w tej wersji pliku są nowe. JednakŜe doskonalsza wersja wykładów z topologii w ZF jest w trakcie opracowywania, ale w bieŝącym cyklu juŝ będzie na ogół zaznaczone, które z twierdzeń są udowodnione w ZF, a których dowody są z wykorzystaniem pewnika wyboru. Niektóre twierdzenia w tym pliku nie zostały jeszcze opublikowane. Wykład 1 Wprowadzenie Słowo topologia pochodzi od greckich słów tópos (miejsce, okolica) oraz lógos (słowo, nauka). Zostało wprowadzone przez matematyka niemieckiego Johanna Benedicta Listinga [ ] i opublikowane w jego artykule zamieszczonym do druku w 1847 roku i wydrukowanym w 1848 roku w Getyndze. Będziemy tego słowa uŝywać w dwu 1

2 znaczeniach: jako dział matematyki zwany wcześniej Analysis Situs i zaliczany do geometrii oraz jako rodzina wszystkich zbiorów otwartych w przestrzeni topologicznej, której definicja będzie w dalszej części wykładu. Matematycy specjalizujący się w topologii są zwani topologami. MoŜna uznać, Ŝe właściwy dynamiczny rozwój topologii współczesnej został zainicjowany przez F. Hausdorffa [ , Niemcy] jego monografią Grundzüge der Mengenlehre (Lipsk, 1914) (topologia ogólna) i wcześniejszą pracą M. Frécheta [ , Francja] wydrukowaną w 1906 roku (teoria przestrzeni metrycznych). W Polsce szczególnie udanie wpłynął na dynamiczny rozwój topologii K. Kuratowski [ ], poźniej jego uczniowie (np. R. Engelking) związani ze szkołą warszawską, natomiast w Rosji P. Aleksandrow [ ]. Bardzo znaczącą rolę odegrał Uniwersytet Wrocławski (profesorowie Roman Duda, Janusz Charatonik [ ] i inni), a takŝe Uniwersytet Śląski (prof. Jerzy Mioduszewski). Wspomniałam tylko niektórych. Topologią zajmują się matematycy w kaŝdej szanującej się, dbającej o swój prestiŝ uczelni wyŝszej z wykładaną matematyką w całym świecie. Teoria ZFC: KaŜdą porządną teorię powinno się rozpocząć od ustalenia jej układu aksjomatów. Zakładamy zatem dogodną interpretację układu ZFC zapoczątkowanego w 1907/1908 przez E. Zermelo [ ], uzupełnionego o aksjomat zastępowania między innymi przez A. A. Fraenkela [ , Izrael, początki w Niemczech], o aksjomat ufundowania przez J. von Neumanna [ ] i niezaleŝnie od von Neumanna przez Zermelo, dokładniej przeanalizowanego np. w [5] i [6] oraz [9]. Jednym z aksjomatów tego układu jest pochodzący od E. Zermelo pewnik wyboru (AC): Aksjomat wyboru (AC). Dla kaŝdej niepustej rodziny parami rozłącznych zbiorów niepustych istnieje zbiór mający z kaŝdym ze zbiorów tej rodziny po dokładnie jednym elemencie wspólnym. Aksjomat ten nie jest powszechnie akceptowany w tym sensie, Ŝe nie ma pewności, iŝ jest absolutnie prawdziwy. W teorii ZFC czyni się jedynie hipotetyczne załoŝenie, iŝ aksjomat ten orzeka prawdę. Innym kontrowersyjnym aksjomatem teorii ZFC jest tak zwany aksjomat nieskończoności (oznaczany Inf) o tym, Ŝe istnieje zbiór nieskończony, choć nie moŝe być pewności, Ŝe zbiory nieskończone istnieją we wszechświecie. Szczególnie udanie o aksjomacie nieskończoności i niemoŝności jego udowodnienia pisał noblista B. Russell [ , Wielka Brytania]. W ZFC aksjomat nieskończoności podaje się zwykle w następującej postaci: Aksjomat nieskończoności (Inf). Istnieje zbiór o wszystkich elementach będących zbiorami taki, Ŝe zbiór pusty naleŝy do oraz jeśli, to. W teorii ZFC-Inf+ Inf kaŝdy zbiór jest skończony, natomiast w teorii ZFC-Inf istnienie zbiorów nieskończonych jest nieudowadniane i Ŝaden wiarygodny przykład zbioru nieskończonego zaistnieć nie moŝe. W teorii ZFC istnienie zbiorów nieskończonych jest 2

3 konsekwencją hipotetycznych aksjomatów tej teorii, a nie zdań na pewno orzekających prawdę absolutną. W interpretacji logika i matematyka amerykańskiego K. Kunena teorii ZFC zakłada się, Ŝe wszystkie elementy zbiorów są zbiorami, klas właściwych nie ma (tzn. nie ma kolekcji elementów, które nie są zbiorami), przy czym dopuszczalny jest np. zapis : jako skrót zdania jest liczbą porządkową, ale nie oznacza u Kunena klasy wszystkich liczb porządkowych, która w jego teorii nie istnieje. W innych, pokrewnych aksjomatycznych teoriach zbiorów, np. w NBG (von Neumann, P. Bernays [ , Szwajcaria], K. Gödel [ ]) lub MK (A. P. Morse [ , USA], J. L. Kelley [ , USA]), dopuszcza się istnienie klas właściwych i w tych teoriach klasa wszystkich liczb porządkowych istnieje, ale nie jest zbiorem. Wyjaśnimy potem co naleŝy obecnie rozumieć przez liczbę porządkową. Oto zapisane niezbyt sformalizowanym, raczej potocznym językiem pozostałe aksjomaty zbiorów teorii ZFC. Aksjomat zbioru pustego. Istnieje zbiór pusty Ø, który nie ma Ŝadnego elementu. Aksjomat ekstensjonalności. JeŜeli i są zbiorami takimi, Ŝe kaŝdy element zbioru jest elementem zbioru i kaŝdy element zbioru jest elementem zbioru, to jest tym samym zbiorem co zbiór (to zapisujemy: ). Aksjomat wyróŝniania. JeŜeli jest formułą zdaniową o argumentach ze zbioru, to istnieje zbiór : wszystkich tych elementów ze zbioru, dla których zdanie jest prawdziwe (część zbioru jest zbiorem). Aksjomat pary. JeŜeli,, jest parą elementów, to istnieje zbiór taki, Ŝe oraz. Aksjomat sumy. JeŜeli jest rodziną zbiorów, to istnieje suma mnogościowa wszystkich zbiorów naleŝących do. Aksjomat zbioru potęgowego. podzbiorów zbioru. Dla kaŝdego zbioru istnieje zbiór wszystkich Aksjomat ufundowania. zbiorem. W kaŝdym niepustym zbiorze jest element rozłączny z tym Aksjomat zastępowania. JeŜeli jest przyporządkowaniem kaŝdemu elementowi ze zbioru dokładnie jednego elementu, to istnieje zbiór : wszystkich elementów, które przyporządkowane zostały przez elementom ze zbioru. Teoria, której aksjomatami zbiorów są wszystkie aksjomaty teorii ZFC bez aksjomatów ufundowania, zastępowania i pewnika wyboru, bywa oznaczana, natomiast ZFC bez pewnika wyboru oznacza się ZF. Trwają badania naukowe dotyczące takich teorii., przy czym liderem tych badań jest K. Kunen, z którym miałam przyjemność korespondować i wymieniać się spostrzeŝeniami. 3

4 W odróŝnieniu od autorów większości podręczników z topologii, w tym cyklu wykładów zakładamy układ ZF, a tylko, gdy zajdzie taka konieczność, układ ZFC. Ponadto, stosować będziemy raczej nadal niezbyt formalne w ZF następujące prawo uŝywane przez wielu matematyków: Prawo skończonego wyboru: jeŝeli jest traktowaną jak ustalona niepustą skończoną rodziną parami rozłącznych zbiorów niepustych, to moŝna uznać, Ŝe jest ustalony teŝ zbiór, który z kaŝdym ze zbiorów rodziny ma po dokładnie jednym elemencie wspólnym. Niektóre twierdzenia dowodzone w przeszłości z uŝyciem pewnika wyboru, zostaną potwierdzone dowodami w ZF, o niektórych innych twierdzeniach będzie informacja, Ŝe są niedowodliwe w ZF. Bez prawa skończonego wyboru, niektóre zapisane w ksiąŝkach dowody, jak np. dowód twierdzenia Kelley a o równowaŝności twierdzenia Tichonowa i pewnika wyboru (zob. wykłady 9 i 10) mogą być uznane za niepoprawne. Do dowodów niektórych twierdzeń w ZFC zamiast pewnika wyboru, wystarczy zastosować następujący pewnik wyboru przeliczalnego (CC): (CC) Dla kaŝdej przeliczalnej niepustej rodziny parami rozłącznych zbiorów niepustych istnieje zbiór mający z kaŝdym ze zbiorów rodziny po dokładnie jednym elemencie wspólnym. Uwaga. W tym cyklu wykładów nie będziemy analizować aksjomatów pokrewnych pewnikowi wyboru, słabszych niŝ CC ze względu na brak czasu i konieczność pewnych uproszczeń w tym cyklu. Liczby porządkowe: Definicja liczby porządkowej. Liczbą porządkową nazywamy zbiór, którego kaŝdy element jest podzbiorem zbioru, a ponadto kaŝdy niepusty podzbiór zbioru ma element rozłączny z tym podzbiorem oraz, dla dowolnej pary, róŝnych elementów zbioru jest: lub. Pojęcie liczby porządkowej w powyŝszym sensie pochodzi od Zermelo i von Neumanna. W literaturze takie liczby porządkowe bywają nazwane liczbami porządkowymi von Neumanna (l.p.vn), ale wiadomo juŝ, Ŝe teoria liczb porządkowych E. Zermelo była o co najmniej kilka lat wcześniejsza od teorii von Neumanna. Jeszcze wcześniejsza, przedaksjomatyczna teoria Cantora (G. Cantor [ ]) nie była zadowalająca i przez znawców jest uwaŝana za przestarzałą oraz zbyt naiwną. Definicja następnika liczby porządkowej. Następnikiem liczby porządkowej nazywamy zbiór 1. Podstawowe własności liczb porządkowych w ZF. Niech i będą liczbami porządkowymi. Wówczas: 4

5 (i) lub, przy czym: wtedy i tylko wtedy, gdy i. (ii) Następnik liczby porządkowej jest liczbą porządkową. (iii) KaŜdy niepusty zbiór liczb porządkowych jest dobrze uporządkowany przez relację inkluzji. (iv) KaŜdy element liczby porządkowej jest liczbą porządkową. (v) Suma mnogościowa i część wspólna niepustej rodziny liczb porządkowych jest liczbą porządkową. (vi) W ZF kaŝdy zbiór dobrze uporządkowany jest podobny do jakiejś liczby porządkowej uporządkowanej dobrze przez relację inkluzji. (vii) Zbiór pusty jest liczbą porządkową. (viii) (liczba porządkowa nie moŝe być swoim elementem). Porównywanie liczb porządkowych. Przyjmujemy, Ŝe: Niech i będą liczbami porządkowymi. ;. Definicja liczby kardynalnej. Liczbą kardynalną (von Neumanna) nazywamy kaŝdą taką liczbę porządkową, która nie jest równoliczna z Ŝadnym ze swoich elementów. Uwaga. W matematyce uŝywane są co najmniej trzy nierównowaŝne w ZF definicje liczb kardynalnych. Na przykład, liczba kardynalna w sensie Cantora to klasa abstrakcji relacji równoliczności zbiorów. Gdy jest zbiorem, to liczba kardynalna w sensie Cantora zbioru (równowaŝnie: moc zbioru w sensie Cantora) to klasa wszystkich zbiorów równolicznych ze zbiorem. W literaturze są pewne modyfikacje pojęcia liczby kardynalnej w sensie Cantora. W tym cyklu wykładów przez liczbę kardynalną rozumieć będziemy liczbę kardynalną w sensie von Neumanna. Definicja liczby całkowitej nieujemnej. skończoną liczbę porządkową. Liczbą całkowitą nieujemną nazywamy kaŝdą Przykłady liczb całkowitych nieujemnych. Liczbami całkowitymi nieujemnymi są: 0=Ø (zbiór pusty), 1={0}, 2={0,{0}},, 1 0,1,.,,., gdy jest juŝ określoną liczbą całkowitą nieujemną ( naleŝy powołać się na korespondencję Grellinga z E. Zermelo z 1912 roku i artykuł von Neumanna z 1923 roku, gdzie taki pomysł określenia liczby całkowitej nieujemnej został wyeksponowany po raz pierwszy). JuŜ tradycyjnie, klasę wszystkich takich liczb całkowitych nieujemnych oznacza się, a \ 0 jest zbiorem wszystkich liczb całkowitych dodatnich (naturalnych). Postulat nieskończoności w ZFC orzeka, Ŝe klasa istnieje i jest ona zbiorem. Wszystkie liczby całkowite nieujemne w powyŝszym sensie są liczbami kardynalnymi. Zbiór jest najmniejszą nieskończoną liczbą porządkową i jest on liczbą kardynalną. 5

6 Definicja zbioru przeliczalnego. KaŜdy zbiór równoliczny z jakąś liczbą całkowitą nieujemną lub z nazywać będziemy zbiorem przeliczalnym. Klasa wszystkich przeliczalnych liczb porządkowych jest najmniejszą nieprzeliczalną liczbą kardynalną. Liczby porządkowe 1 i 1 są przykładami liczb porządkowych, które nie są liczbami kardynalnymi. W teorii ZFC, dla kaŝdego zbioru istnieje dokładnie jedna liczba kardynalna równoliczna z i zwana mocą zbioru. W teorii ZF nie moŝna tego udowodnić. Twierdzenie. [ZF] Prawdą jest w ZF, Ŝe pewnik wyboru jest równowaŝny zdaniu: Dla kaŝdego zbioru istnieje dokładnie jedna liczba kardynalna von Neumanna równoliczna z. Ustalamy zbiór R wszystkich liczb rzeczywistych w sensie Hilberta-Huntingtona (D. Hilbert [ ], E. V. Huntington [ ]), mając na myśli ustalone liniowo uporządkowane ciało algebraiczne (R,+,, ), którego kaŝdy niepusty ograniczony z góry ze względu na podzbiór ma w R kres górny względem. W ZF takie ciało jest jedno z dokładnością do izomorfizmu. Przez przedział będziemy rozumieć taki podzbiór zbioru R, Ŝe dla dowolnej pary elementów, zbioru i dowolnego elementu zbioru R, jeśli, to. Przedziały w R będziemy oznaczać tradycyjnie: ;, ;, ;, ;, ;, ;, ;, ;. Warto przyjąć, Ŝe liczbami całkowitymi nieujemnymi w R są elementy klasy, a więc, Ŝe jest zbiorem wszystkich liczb całkowitych nieujemnych w R. Zwykle, dla zbiorów,, symbol oznacza zbiór wszystkich funkcji określonych na, o wartościach w. Zatem, dla, R jest zbiorem wszystkich funkcji określonych na zbiorze, o wszystkich swoich wartościach w R, przy czym, gdy R, moŝemy pisać: 0,, 1 lub na przykład:,,. Określenie przestrzeni topologicznej: Definicje. Przestrzenią topologiczną nazywamy parę uporządkowaną,, gdzie jest zbiorem, natomiast jest rodziną podzbiorów zbioru, zwaną topologią w, spełniającą następujące warunki: (T1 ; (T2) ; (T3),. Zbiorem otwartym w przestrzeni topologicznej, nazywamy kaŝdy zbiór naleŝący do topologii. Zbiór nazywamy domkniętym w przestrzeni topologicznej, gdy jego dopełnienie \ jest zbiorem otwartym w,. Zbiory jednocześnie domknięte i otwarte w danej przestrzeni topologicznej nazywamy domknięto-otwartymi w tej przestrzeni. 6

7 Przestrzenie antydyskretna i dyskretna. Niech będzie zbiorem. Gdy Ø,, to jest topologią w zwaną topologią antydyskretną i wówczas parę, nazywamy przestrzenią antydyskretną. Rodzina wszystkich podzbiorów zbioru jest topologią w zwaną topologią dyskretną, a parę, nazywamy przestrzenią dyskretną. Przestrzeń pusta. Przestrzenią topologiczną pustą nazywamy parę uporządkowaną Ø, Ø Ø, Ø, Ø 1,2. Umowa. Gdy będzie wiadomo jaką topologię w zbiorze mamy na myśli, przestrzeń topologiczną, będziemy oznaczać krótko i czasami nazywać po prostu przestrzenią. Zadania: Zadanie 1. Uzasadnić, Ŝe jeśli jest liczbą porządkową, to. Zadanie 2. Uzasadnić, Ŝe liczby porządkowe i są nieskończone. Zadanie 3. Wyjaśnić, Ŝe zbiór nie jest przeliczalny. Zadanie 4. ZauwaŜyć, Ŝe para uporządkowana (3, 4) jest przestrzenią topologiczną oraz wskazać rodzinę wszystkich zbiorów otwartych oraz rodzinę wszystkich zbiorów domkniętych w tej przestrzeni. Które ze zbiorów otwartych w przestrzeni (3, 4) są domkniętootwarte w tej przestrzeni. Zadanie 5. Uzasadnić, Ŝe jeśli jest liczbą porządkową, to para uporządkowana, 1 jest przestrzenią topologiczną. Wykład 2 Wprowadzanie topologii przez pełny układ otoczeń: Definicje otoczenia i bazy otoczeń punktu w przestrzeni topologicznej. Otoczeniem punktu w przestrzeni topologicznej nazywamy kaŝdy zbiór taki, Ŝe istnieje zbiór otwarty w taki, iŝ. Baza otoczeń punktu w przestrzeni topologicznej nazywamy rodzinę otwartych otoczeń punktu w przestrzeni taką, Ŝe kaŝde otwarte otoczenie punktu w przestrzeni zawiera jakiś zbiór z rodziny. Definicja pełnego układu otoczeń. JeŜeli, dla kaŝdego punktu przestrzeni topologicznej, rodzina jest bazą otoczeń punktu w tej przestrzeni, to rodzinę : nazywamy pełnym układem otoczeń przestrzeni. Elementarne własności pełnego układu otoczeń. KaŜdy pełny układ otoczeń : przestrzeni topologicznej ma następujące własności: 7

8 (UO1) ; (UO2), ; (UO3). Twierdzenie o wyznaczaniu topologii przez pełny układ otoczeń. [ZF] ZałóŜmy, Ŝe jest zbiorem i dla kaŝdego dana jest rodzina taka, Ŝe rodzina : ma własności (UO1)-(UO3). Wówczas rodzina : jest jedyną topologią w zbiorze taką, Ŝe rodzina : jest pełnym układem otoczeń przestrzeni topologicznej,. Dowód. Oczywiście, Ø. To, Ŝe wnioskujemy z (UO1). Niech, i niech. Wobec określenia rodziny, istnieją zbiory, takie, Ŝe dla 1,2. Wobec (UO2), istnieje takie, Ŝe. Skoro, to. ZałóŜmy teraz, Ŝe i. Istnieje takie, Ŝe. Skoro ponadto, to istnieje takie, Ŝe. Podsumowując, otrzymujemy, Ŝe jest topologią w zbiorze. Aby pokazać, Ŝe dla kaŝdego, rozwaŝmy dowolny punkt i zbiór. Z warunku (UO3) i określenia rodziny wnioskujemy, Ŝe. Zatem. A to, wraz z określeniem topologii daje nam informację, Ŝe jest bazą otoczeń punktu w przestrzeni topologicznej,. Jeśli jest topologią w zbiorze taką, Ŝe : jest pełnym układem otoczeń przestrzeni topologicznej,, to z definicji pełnego układu otoczeń i z informacji uzyskanych o rodzinie wnioskujemy, Ŝe. Definicja topologii wyznaczonej przez pełny układ otoczeń. JeŜeli rodzina : rodzin ) podzbiorów zbioru ma własności (UO1)-(U03), to topologię : nazywamy wprowadzoną lub wyznaczoną w zbiorze przez pełny układ otoczeń :. Przykład zastosowania twierdzenia o wprowadzaniu topologii przez pełny układ otoczeń wyznaczanie topologii przez (quasi-)metryki: Definicja quasi-metryki [Wilson, 1931]. (Quasi-)metryką w zbiorze nazywamy funkcję : 0; mającą następujące własności: (QM1),, 0 ; 8

9 (QM2),,,,,. Gdy quasi-metryka w zbiorze spełnia dodatkowo warunek symetrii:,,, nazywamy ją metryką. Definicja quasi-metryki niearchimedesowskiej. spełnia warunek: JeŜeli (quasi-)metryka w zbiorze nazywamy ją niearchimedesowską. 2,,, max,,,, Definicja przestrzeni (quasi-)metrycznej. Przestrzenią (quasi-)metryczną nazywamy parę uporządkowaną,, gdzie jest (quasi-)metryką w zbiorze. Definicja kuli w przestrzeni (quasi-)metrycznej. Niech będzie (quasi-)metryką w zbiorze oraz niech i 0;. Kulą otwartą o środku w punkcie i promieniu w przestrzeni (quasi-) metrycznej, nazywamy zbiór natomiast zbiór, :,,, :, nazywamy kulą domkniętą o środku w punkcie i promieniu w przestrzeni (quasi-) metrycznej,. Uwaga. W literaturze angielskojęzycznej kule, są oznaczane,, gdyŝ kula po angielsku to ball. Twierdzenie o wprowadzaniu topologii przez (quasi-)metrykę. [ZF] ZałóŜmy, Ŝe jest (quasi-) metryką w zbiorze. Jeśli dla jest, :, to rodzina : spełnia warunki (UO1)-(UO3), a rodzina 1 :, 2 jest topologią w zbiorze taką, Ŝe dla kaŝdego rodzina, : jest bazą otoczeń punktu w przestrzeni topologicznej,. Definicja topologii wprowadzonej przez (quasi-)metrykę. Gdy jest (quasi-)metryką w zbiorze, topologię :, w zbiorze nazywamy wprowadzoną lub wyznaczoną przez (quasi-)metrykę. 9

10 Umowa. Gdy nie zaznaczymy inaczej, w przestrzeni (quasi-)metrycznej będziemy rozwaŝać topologię wyznaczoną przez (quasi-)metrykę tej przestrzeni. Definicja (quasi-)metryk równowaŝnych. Quasi-metryki w zbiorze nazywamy równowaŝnymi, gdy wyznaczają one tę samą topologię w. Definicja przestrzeni (quasi-)metryzowalnej. Przestrzeń topologiczną nazywamy (quasi-) metryzowalną, gdy jej topologia jest wyznaczona przez jakąś (quasi-)metrykę. Definicja -przestrzeni. Przestrzeń topologiczną nazywamy -przestrzenią, kaŝdy jej punkt ma bazę otoczeń w przestrzeni taką, Ŝe. Jeden z warunków koniecznych quasi-metryzowalności. [ZF] JeŜeli przestrzeń topologiczna jest quasi-metryzowalna, to jest ona -przestrzenią. Dowód. Wystarczy zauwaŝyć, Ŝe gdy jest quasi-metryką wyznaczającą topologię przestrzeni topologicznej i, to,. Przykład przestrzeni topologicznej, która nie jest quasi-metryzowalna. Nie kaŝda przestrzeń topologiczna jest quasi-metryzowalna. Na przykład, gdy jest przestrzenią antydyskretną mającą przynajmniej dwa róŝne punkty, to nie jest ona -przestrzenią, a więc przestrzeń ta nie jest quasi-metryzowalna. Definicja przestrzeni Hausdorffa. Mówimy, Ŝe przestrzeń topologiczna spełnia warunek Hausdorffa, gdy dla kaŝdej pary, róŝnych punktów zbioru istnieje para, rozłącznych zbiorów otwartych w taka, Ŝe i. Przestrzenie topologiczne spełniające warunek Hausdorffa są zwane przestrzeniami Hausdorffa lub -przestrzeniami. Jeden z warunków koniecznych metryzowalności. [ZF] JeŜeli przestrzeń topologiczna jest metryzowalna, to spełnia warunek Hausdorffa. Dowód powyŝszego twierdzenia powinien być znany z wykładów ze wstępu do topologii i dlatego go pominiemy. Przykład przestrzeni quasi-metryzowalnej, która nie jest metryzowalna. quasi metrykę w zbiorze wzorem: Określamy 0, gdy, 1, gdy 2 dla,. Wtedy, dla dowolnego oraz, zachodzi równość:, \, a zatem, dla kaŝdej pary, róŝnych punktów zbioru i kaŝdej pary, elementów zbioru zachodzi inkluzja \,,, więc, nie spełnia warunku Hausdorffa, co dowodzi, Ŝe przestrzeń quasi-metryzowalna, nie jest metryzowalna. 10

11 Topologia naturalna przestrzeni R : Metryka euklidesowa w zbiorze R jest określona wzorem:, dla, R, a topologię wyznaczoną przez metrykę nazywamy topologią naturalną przestrzeni R. Umawiamy się, Ŝe gdy nie zaznaczymy inaczej, przez R będziemy rozumieć zbiór R wyposaŝony w topologię naturalną. Pierwszy warunek przeliczalności. Mówimy, Ŝe przestrzeń topologiczna spełnia pierwszy warunek przeliczalności (zwany teŝ pierwszym aksjomatem przeliczalności), gdy kaŝdy punkt tej przestrzeni ma przeliczalną bazę otoczeń w tej przestrzeni. Swierdzenie. [ZF] przeliczalności. KaŜda przestrzeń quasi-metryzowalna spełnia pierwszy warunek Twierdzenie o nieudowadnialności istnienia przestrzeni (quasi-)metryzowalnych. W teorii ZFC-Inf nie moŝe zaistnieć Ŝaden wiarygodny przykład przestrzeni (quasi-) metryzowalnej. W teorii ZFC-Inf istnienie przestrzeni (quasi-)metryzowalnych jest nieudowadniane. W teorii ZFC-Inf+ Inf przestrzenie (quasi-)metryzowalne nie istnieją. Wprowadzanie topologii przez bazę: Definicja. Bazą otwartą (krótko: bazą) przestrzeni topologicznej, nazywamy taką rodzinę, Ŝe dla kaŝdego i kaŝdego istnieje takie, Ŝe. Stwierdzenie o związku pełnego układu otoczeń z bazą otwartą. [ZF] JeŜeli rodzina jest bazą otwartą przestrzeni topologicznej oraz : dla kaŝdego, to rodzina : jest pełnym układem otoczeń przestrzeni. Odwrotnie, jeśli jakaś rodzina : jest pełnym układem otoczeń przestrzeni topologicznej, to rodzina = jest bazą otwartą przestrzeni topologicznej. Drugi warunek przeliczalności. Mówimy, Ŝe przestrzeń topologiczna spełnia drugi warunek przeliczalności (zwany teŝ drugim aksjomatem przeliczalności), gdy ma ona przeliczalną bazę otwartą. Powiązanie warunków przeliczalności. KaŜda przestrzeń topologiczna spełniająca drugi warunek przeliczalności spełnia teŝ pierwszy warunek przeliczalności. Nieprzeliczalna przestrzeń dyskretna spełnia pierwszy warunek przeliczalności, lecz nie spełnia drugiego. Elementarne własności baz otwartych. [ZF] KaŜda baza otwarta przestrzeni topologicznej ma następujące własności: 11

12 (B1) ; (B2),. Twierdzenie o wprowadzaniu topologii przez bazę. [ZF] ZałóŜmy, Ŝe jest rodziną podzbiorów zbioru mającą własności (B1) i (B2). Wówczas rodzina : jest jedyną topologią w zbiorze taką, Ŝe jest bazą przestrzeni topologicznej,. Dowód w zarysie. MoŜna sprawdzić bezpośrednio, Ŝe jest topologią w lub zauwaŝyć, Ŝe rodzina :, gdzie : dla kaŝdego, spełnia warunki (UO1)-(UO3) i następnie wykorzystać twierdzenie o wprowadzaniu topologii przez pełny układ otoczeń. Przykład zastosowania twierdzenia o wprowadzaniu topologii przez bazę topologia w produkcie przestrzeni topologicznych: Niech : będzie indeksowaną elementami zbioru rodziną zbiorów. Iloczynem kartezjańskim (uogólnionym) lub produktem wszystkich zbiorów tej rodziny nazywamy zbiór wszystkich funkcji : takich, Ŝe dla kaŝdego. Dla ustalonego, przekształcenie : określone wzorem dla kaŝdego nazywamy rzutem zbioru na zbiór. Bez pewnika wyboru nie moŝna udowodnić, Ŝe wszystkie takie rzuty są przekształceniami na, gdy kaŝdy z czynników produktu, którego te rzuty dotyczą jest niepusty. Twierdzenie o równowaŝności pewnika wyboru z niepustością produktów zbiorów niepustych. [ZF] W teorii ZF pewnik wyboru jest równowaŝny zdaniu: Dla kaŝdej niepustej rodziny : zbiorów niepustych produkt jest zbiorem niepustym. ZałóŜmy teraz, Ŝe w kaŝdym ze zbiorów, gdzie, jest topologia. Niech będzie rodziną wszystkich zbiorów postaci, gdzie dla kaŝdego oraz zbiór : jest skończony. Ta rodzina podzbiorów zbioru spełnia warunki (B1)-(B2). Wobec twierdzenia o wprowadzaniu topologii przez bazę, istnieje w zbiorze dokładnie jedna topologia taka, Ŝe rodzina jest bazą przestrzeni topologicznej,. Tak otrzymaną przestrzeń, nazywamy iloczynem Tichonowa lub produktem wszystkich przestrzeni topologicznych rodziny, :. Gdy wszystkie przestrzenie topologiczne rodziny, : są tą samą przestrzenią np.,, ich produkt oznaczamy. W niektórych pracach produkty Tichonowa bywają teŝ nazywane produktami Hausdorffa. Zadania: A. Tichonow [ , Rosja] 12

13 Umowa: gdy nie zaznaczymy inaczej, wszystkie zadania będziemy rozwiązywać w ZF. Zadanie 6. Sprawdzić, Ŝe funkcja : 0; określona wzorem: 0, gdy, 1 2, gdy jest quasi-metryką niearchimedesowską taką, Ŝe, \ dla i. Zadanie 7. Niech będzie zbiorem nieskończonym. Wykazać, Ŝe rodzina : \ jest topologią w zbiorze taką, Ŝe przestrzeń topologiczna, nie spełnia warunku Hausdorffa, ale jest -przestrzenią. ZauwaŜyć, Ŝe dla kaŝdej topologii w zbiorze takiej, Ŝe, jest -przestrzenią zachodzi inkluzja. Uwaga: topologia bywa nazywana ko-skończoną. Zadanie 8. Uzasadnić, Ŝe topologia w zbiorze wyznaczona przez quasi-metrykę z zadania 6 jest ko-skończona. Zadanie 9. Niech, i, będą przestrzeniami topologicznymi. Sprawdzić, Ŝe rodzina : spełnia warunki bazy (B1) i (B2), a ponadto, dla kaŝdego zbioru domkniętego w, oraz dla kaŝdego zbioru domkniętego w,, zbiór jest domknięty w przestrzeni wyposaŝonej w topologię wprowadzoną przez bazę. Zadanie 10. [ZFC] Uzasadnić, Ŝe prawdą jest w ZFC, iŝ jeŝeli jest zbiorem nieprzeliczalnym, a : jest rodziną przestrzeni topologicznych, z których Ŝadna nie jest antydyskretna, to produkt, nie spełnia pierwszego warunku przeliczalności. Uwaga. CUT(fin) to zdanie: suma przeliczalnie wielu zbiorów skończonych jest zbiorem przeliczalnym. Zdanie CUT(fin) jest niezaleŝne od ZF. MoŜna wykazać, Ŝe w kaŝdym modelu dla ZF+ CUT(fin) istnieje zbiór nieprzeliczalny taki, Ŝe przestrzeń R jest metryzowalna, więc spełnia pierwszy warunek przeliczalności. Wykład 3 Produkty przestrzeni metryzowalnych. Podprzestrzenie. Wnętrze, domknięcie i brzeg zbioru. Zbiory gęste. Ośrodkowość: Twierdzenie o metryzowalności produktu przeliczalnie wielu przestrzeni metryzowalnych w ZF+CC. ZałóŜmy, Ŝe 0 1, natomiast : jest rodziną przestrzeni quasi-metryzowalnych oraz. Wówczas prawdą jest w ZF+CC, Ŝe przestrzeń jest quasi-metryzowalna, a ponadto, gdy wszystkie przestrzenie dla są metryzowalne, równieŝ ich produkt jest przestrzenią metryzowalną. 13

14 Szkic dowodu w ZF+CC. Wobec CC, nawet, gdy, istnieje rodzina : taka, Ŝe, dla kaŝdego, jest quasi-metryką wyznaczającą topologię przestrzeni. Niech min, 1 dla. ZauwaŜmy, Ŝe jest quasi-metryką w równowaŝną quasimetryce. Dla, określamy,,. Funkcja jest quasi-metryką w, a gdy wszystkie funkcje są metrykami, funkcja jest teŝ metryką. Niech będzie topologią produktową w. WykaŜemy, Ŝe. RozwaŜmy przypadek, gdy. ZałóŜmy najpierw, Ŝe. Z określenia produktu przestrzeni topologicznych wnioskujemy, Ŝe istnieje oraz istnieją zbiory takie, Ŝe oraz dla kaŝdego \ 1. Dla kaŝdego 1 istnieje liczba rzeczywista dodatnia taka, Ŝe,. Dla min : 1 zachodzi inkluzja,, skąd wnioskujemy, Ŝe. ZałóŜmy teraz, Ŝe. Istnieje liczba rzeczywista dodatnia taka, Ŝe,. Skoro szereg jest zbieŝny, istnieje takie, Ŝe \. Niech dla kaŝdego \ 1, natomiast, dla kaŝdego 1. Mamy, a ponadto, zatem. Dowód w przypadku, gdy pozostawiam do samodzielnego przeprowadzenia. Uwaga. Gdy 0, a, : jest rodziną przestrzeni (quasi-)metrycznych oraz, to funkcja : R określona, dla,, wzorem:,, jest (quasi-)metryką w zbiorze wyznaczającą topologię produktu,. OstrzeŜenie. W niektórych modelach teorii ZF nie kaŝdy produkt przeliczalnie wielu przestrzeni metryzowalnych jest przestrzenią quasi-metryzowalną. PoniŜsze twierdzenie pochodzi z 2015 roku. Podstawowe twierdzenie (quasi-)metryzacyjne dla produktów przestrzeni quasimetryzowalnych w ZF. (Wajch, ) ZałóŜmy, Ŝe jest niepustym zbiorem będącym sumą przeliczalnie wielu zbiorów skończonych, a, : jest rodziną przestrzeni topologicznych taką, Ŝe istnieje rodzina : taka, Ŝe, gdy, to jest (quasi-) metryką w zbiorze wyznaczającą topologię. Wówczas prawdą jest w ZF, Ŝe produkt, jest przestrzenią (quasi-) metryzowalną. Niemetryzowalność produktu nieprzeliczalnie wielu co najmniej dwuelementowych przestrzeni metryzowalnych w ZFC. ZałóŜmy, Ŝe jest zbiorem nieprzeliczalnym, a ; jest rodziną co najmniej dwuelementowych przestrzeni quasi-metryzowalnych. 14

15 Wówczas prawdą jest w ZFC, Ŝe produkt nie spełnia pierwszego warunku przeliczalności, a więc nie jest przestrzenią quasi-metryzowalną, zatem nie jest przestrzenią metryzowalną. Natomiast w ZF, gdy jest zbiorem nieprzeliczalnym będącym sumą przeliczalnie wielu zbiorów skończonych, to produkt jest przestrzenią quasimetryzowalną wtedy i tylko wtedy, gdy jest rodzina ; quasi-metryk taka, Ŝe jest quasi-metryką wyznaczającą topologię przestrzeni, gdy. MoŜna wykazać w ZF, Ŝe R jest przestrzenią metryzowalną wtedy i tylko wtedy, gdy jest sumą przeliczalnie wielu zbiorów skończonych. Podprzestrzenie: Niech, będzie przestrzenią topologiczną i niech. Wówczas rodzina : jest topologią w zbiorze indukowaną z, a parę, nazywamy podprzestrzenią przestrzeni topologicznej,. Umawiamy się, Ŝe, gdy nie zaznaczymy inaczej, wszystkie podzbiory przestrzeni topologicznej będziemy rozwaŝać z topologiami podprzestrzeni w nich indukowanymi z topologii całej przestrzeni. W szczególności, wszystkie podzbiory przestrzeni R rozwaŝamy z topologią naturalną w nich, to znaczy z topologią w nich indukowaną z topologii naturalnej w R, ale od czasu do czasu będziemy postępować inaczej, co wyraźnie będziemy zaznaczać ilekroć inną niŝ naturalna topologię w jakimś podzbiorze zbioru R będziemy badać. ZauwaŜmy, Ŝe jeŝeli jest bazą otwartą przestrzeni topologicznej, natomiast jest podprzestrzenią przestrzeni, to rodzina : jest bazą otwartą podprzestrzeni. Wnętrze, domknięcie i brzeg zbioru: Niech będzie przestrzenią topologiczną. Definicja wnętrza zbioru. Wnętrzem zbioru w przestrzeni topologicznej nazywamy sumę mnogościową wszystkich tych zbiorów otwartych w, które są zawarte w. Wnętrze zbioru w oznaczamy: int lub int. Warunek konieczny i wystarczający na to, aby punkt naleŝał do wnętrza zbioru. Niech B będzie bazą otoczeń punktu w przestrzeni topologicznej oraz niech. Wówczas: int B. Elementarne własności operacji wnętrza. [ZF] Niech, będą podzbiorami przestrzeni topologicznej. Wówczas: 15

16 i) int jest zbiorem otwartym w oraz dla kaŝdego zbioru otwartego w takiego, Ŝe zachodzi inkluzja int ; ii) int ; iii) int oraz int ; iv) int int int ; v) int int int ; vi) int int int. Twierdzenie o wprowadzaniu topologii przez operację wnętrza. [ZF] ZałóŜmy, Ŝe jest zbiorem, a : jest przekształceniem mającym następujące własności: (W1) ; (W2) ( ; (W3) ; (W3). Wówczas rodzina : jest topologią w zbiorze taką, Ŝe dla kaŝdego zachodzi równość: int,. Definicja domknięcia zbioru. Domknięciem zbioru w przestrzeni topologicznej nazywamy część wspólną wszystkich tych zbiorów domkniętych w, w których zawarty jest zbiór. Domknięcie zbioru w oznaczamy: cl lub cl. Warunek konieczny i wystarczający na to, aby punkt naleŝał do domknięcia zbioru. [ZF] Niech będzie bazą otoczeń punktu w przestrzeni topologicznej oraz niech. Wówczas: cl. Związek między wnętrzem i domknięciem zbioru. [ZF] Dla dowolnego podzbioru przestrzeni topologicznej zachodzi równość: int cl. Elementarne własności operacji domknięcia. [ZF] Niech, będą podzbiorami przestrzeni topologicznej. Wówczas: i) cl jest zbiorem domkniętym w oraz dla kaŝdego zbioru domkniętego w takiego, Ŝe zachodzi inkluzja cl ; ii) cl ; iii) cl oraz cl ; iv) cl cl cl ; v) cl cl cl ; vi) cl cl cl. 16

17 Twierdzenie o wprowadzaniu topologii przez operację domknięcia (operator Kuratowskiego). [ZF] ZałóŜmy, Ŝe jest zbiorem, natomiast : jest przekształceniem mającym następujące własności: (C1) ; (C2) ; (C3) ; (C3). Wówczas rodzina : jest topologią w zbiorze taką, Ŝe dla kaŝdego zachodzi równość: cl,. Definicja brzegu zbioru. Brzegiem zbioru w przestrzeni topologicznej nazywamy zbiór bd cl int. Warunek konieczny i wystarczający na to, aby punkt naleŝał do brzegu zbioru. [ZF] Niech ) będzie bazą otoczeń punktu w przestrzeni topologicznej oraz niech. Wówczas: bd. Definicje punktu skupienia i pochodnej zbioru. Punkt nazywamy punktem skupienia zbioru w przestrzeni topologicznej, gdy cl. Pochodną zbioru w przestrzeni topologicznej nazywamy zbiór wszystkich punktów skupienia zbioru w przestrzeni. Definicja punktu izolowanego przestrzeni. Punkt przestrzeni topologicznej nazywamy punktem izolowanym tej przestrzeni, gdy zbiór jest otwarty w przestrzeni. Punktami izolowanymi przestrzeni topologicznej nie są punktami skupienia zbioru w przestrzeni. są dokładnie te punkty zbioru, które Zbiory gęste: Definicja zbioru gęstego w przestrzeni topologicznej. Zbiorem gęstym w przestrzeni topologicznej nazywamy kaŝdy taki podzbiór zbioru, którego domknięcie w jest równe. Warunek konieczny i wystarczający na to, aby zbiór był gęsty. Zbiór jest gęsty w przestrzeni topologicznej wtedy i tylko wtedy, gdy w kaŝdym niepustym zbiorze otwartym w jest jakiś element ze zbioru. 17

18 Definicje przestrzeni ośrodkowej i dziedzicznie ośrodkowej. Mówimy, Ŝe przestrzeń topologiczna jest ośrodkowa, gdy istnieje zbiór przeliczalny gęsty w niej. Przestrzeń topologiczną nazywamy przestrzenią dziedzicznie ośrodkową, gdy kaŝda jej podprzestrzeń jest ośrodkowa. Związek między ośrodkowością i dziedziczną ośrodkowością oraz drugim warunkiem przeliczalności ogólnie. KaŜda przestrzeń dziedzicznie ośrodkowa jest ośrodkowa. W teorii ZF+CC kaŝda przestrzeń spełniająca drugi warunek przeliczalności jest dziedzicznie ośrodkowa. Dowód. Wprost z odpowiednich definicji wynika, Ŝe przestrzenie dziedzicznie ośrodkowe są ośrodkowe. ZałóŜmy, Ŝe przestrzeń topologiczna spełnia drugi warunek przeliczalności i załóŝmy układ ZF+CC. Korzystając z pewnika wyboru przeliczalnego (CC) udowodnimy, Ŝe istnieje przeliczalny zbiór gęsty w. Niech B będzie przeliczalną bazą otwartą przestrzeni. Wobec CC, istnieje funkcja : B taka, Ŝe dla kaŝdego B jest. Zbiór : jest przeliczalny i gęsty w. Skoro kaŝda podprzestrzeń przestrzeni spełniającej drugi warunek przeliczalności teŝ spełnia drugi warunek przeliczalności, to z wykazanego wyŝej wnioskujemy, Ŝe w ZF+CC, moŝna dowieść, Ŝe w kaŝda podprzestrzeń przestrzeni spełniającej drugi warunek przeliczalności jest ośrodkowa. Związek między ośrodkowością, dziedziczną ośrodkowością i drugim warunkiem przeliczalności w klasie przestrzeni metryzowalnych w teorii ZF+CC. W ZF+CC przestrzeń metryzowalna spełnia drugi warunek przeliczalności wtedy i tylko wtedy, gdy jest ośrodkowa, co zachodzi wtedy i tylko wtedy, gdy przestrzeń ta jest dziedzicznie ośrodkowa. Dowód. Wobec poprzedniego twierdzenia, wystarczy dowieść, Ŝe w ZF prawdą jest, iŝ kaŝda metryzowalna przestrzeń ośrodkowa ma bazę przeliczalną. ZałóŜmy zatem, Ŝe jest ośrodkową przestrzenią metryzowalną. Niech będzie metryką wyznaczającą topologię przestrzeni, natomiast niech będzie przeliczalnym zbiorem gęstym w. Wówczas prawdą jest w ZF, Ŝe rodzina ={, : i jest przeliczalną bazą otwartą przestrzeni. Uwaga. W niektórych modelach dla ZF niektóre przestrzenie metryzowalne spełniające drugi warunek przeliczalności nie są ośrodkowe. W ZFC nie kaŝda ośrodkowa przestrzeń quasimetryzowalna ma bazę otwartą przeliczalną oraz nie kaŝda quasi-metryzowalna przestrzeń ośrodkowa jest dziedzicznie ośrodkowa. Przykład (Przestrzeń zwana strzałka ). W zbiorze R wszystkich liczb rzeczywistych określamy quasi-metrykę wzorem:, gdy, 1, gdy dla, R. Przestrzeń topologiczną (R, nazywamy strzałka. Jest to w ZFC dziedzicznie ośrodkowa przestrzeń quasi-metryzowalna nie spełniająca drugiego warunku przeliczalności, a jej kwadrat jest przestrzenią quasi-metryzowalną ośrodkową, która nie 18

19 jest dziedzicznie ośrodkowa, bo zawiera nieprzeliczalną podprzestrzeń dyskretną, :. Zadania: Uwaga. Gdy dla liczby całkowitej nieujemnej n piszemy przestrzeń topologiczna, 1, to jest zbiorem wszystkich punktów tej przestrzeni, a 1 jej topologią. Zadanie 11. Wskazać wszystkie elementy zbiorów int, 3, cl, 3, bd, 3. Zadanie 12. Wskazać wszystkie punkty skupienia i wszystkie punkty izolowane przestrzeni topologicznej (9,10), gdzie 9 jest zbiorem wszystkich punktów tej przestrzeni, a 10 jej topologią. Zadanie 13. Uzasadnić, Ŝe kaŝdy podzbiór przestrzeni dyskretnej jest w niej zarówno otwarty jak i domknięty, a jedynym zbiorem gęstym w danej przestrzeni dyskretnej jest cała ta przestrzeń. Zadanie 14. Niech będzie metryką w zbiorze, a metryką w zbiorze. Sprawdzić, Ŝe funkcja określona wzorem: a),,,,,, b),,, max, ),, } jest metryką w zbiorze taką, Ŝe ={ :,,. Zadanie 15. Uzasadnić, Ŝe na przykład w z topologią naturalną część wspólna przeliczalnie wielu zbiorów otwartych nie musi być zbiorem otwartym, a suma mnogościowa przeliczalnie wielu zbiorów domkniętych nie musi być zbiorem domkniętym. Zadanie 16. Sprawdzić, Ŝe wzór, gdy, 1, gdy gdzie, określa quasi-metrykę w. Zadanie 17. Udowodnić, Ŝe strzałka jest przestrzenią dziedzicznie ośrodkową w ZFC. Uwaga. W niektórych modelach dla ZF ani strzałka, ani z topologią naturalną nie są dziedzicznie ośrodkowe! Zadanie 18. Udowodnić, Ŝe strzałka nie ma bazy otwartej przeliczalnej. Zadanie 19. ZałóŜmy, Ŝe jest quasi-metryką w zbiorze. 19

20 a) Sprawdzić, Ŝe funkcja max, }, gdzie,, dla kaŝdego,, jest metryką w zbiorze. b) ZauwaŜyć, Ŝe równość nie musi zachodzić. Zadanie 20. Niech będzie metryką w zbiorze. Czy dla i 0,, domknięcie w, kuli otwartej, musi być kulą domkniętą,? Zadanie 21. ZałóŜmy, Ŝe jest gęstą podprzestrzenią przestrzeni topologicznej. Uzasadnić, Ŝe jeŝeli jest zbiorem otwartym w, to cl cl. Zadanie 22. Podać przykład przestrzeni topologicznej i jej gęstej podprzestrzeni takiej, Ŝe dla pewnego zbioru równość cl cl nie zachodzi. Wykład 4. Zbiory brzegowe, nigdziegęste i doskonałe: Definicje. Niech będzie przestrzenią topologiczną. Zbiór nazywamy: i) brzegowym w, gdy kaŝdy niepusty zbiór otwarty w ma pewien element ze zbioru ; ii) nigdziegęstym w, gdy kaŝdy niepusty zbiór otwarty w zawiera niepusty zbiór otwarty w rozłączny z ; iii) doskonałym w, gdy jest domknięty w i zawarty w swojej pochodnej. Popularnym przykładem zbioru jednocześnie doskonałego i nigdziegęstego w R jest zbiór trójkowy Cantora wszystkich liczb rzeczywistych postaci, gdzie 0,2 dla kaŝdego 0. Zbiory typów i. Zbiorem typu w przestrzeni topologicznej nazywamy przecięcie przeliczalnie wielu zbiorów otwartych w. Zbiorem typu w przestrzeni topologicznej nazywamy sumę mnogościową przeliczalnie wielu zbiorów domkniętych w. Przekształcenia ciągłe: Niech będzie topologią w zbiorze, a topologią w zbiorze. Ciągłość przekształcenia w punkcie i ciągłość globalna względem pary topologii - definicje. Mówimy, Ŝe przekształcenie : jest: i) ciągłe względem pary, w punkcie lub, -ciągłe w punkcie, gdy: ; 20

21 ii) ciągłe względem pary, lub, -ciągłe, gdy jest, -ciągłe w kaŝdym punkcie. Gdy jest ciągłe względem pary,, mówimy, Ŝe jest ciągłe globalnie na względem,. Charakteryzacja ciągłości w punkcie w terminach baz otoczeń. [ZF] Niech : oraz niech B będzie bazą otoczeń punktu w przestrzeni,, a B bazą otoczeń punktu w przestrzeni,. Wówczas jest, -ciągłe w punkcie wtedy i tylko wtedy, gdy:. Dowód powyŝszego faktu pozostawiam do samodzielnego przeprowadzenia jako ćwiczenie. Definicja ciągłości przekształcenia w punkcie względem pary (quasi-)metryk. ZałóŜmy, Ŝe jest (quasi-)metryką w zbiorze, a (quasi-) metryką w zbiorze. Przekształcenie : nazywamy ciągłym (w sensie Cauchy ego) w punkcie względem pary (quasi-) metryk (, ) (lub przestrzeni (quasi-)metrycznej, w przestrzeń (quasi-) metryczną, ), lub (, -ciągłe w punkcie ), gdy:,, [,, ]. Twierdzenie o równowaŝności ciągłości względem pary quasi-metryk i względem pary topologii wyznaczonych przez te quasi-metryki. [ZF] ZałóŜmy, Ŝe jest (quasi-)metryką w zbiorze, a (quasi-) metryką w zbiorze. Przekształcenie : jest, ciągłe w punkcie wtedy i tylko wtedy, gdy jest ono (, -ciągłe w tym punkcie. Twierdzenie o równowaŝności ciągłości w kaŝdym punkcie i otwartości przeciwobrazów zbiorów otwartych. [ZF] Przekształcenie : jest ciągłe globalnie na względem, wtedy i tylko wtedy, gdy:. Dowód. ZałóŜmy najpierw, Ŝe jest ciągłe globalnie na względem,, natomiast, a. Skoro jest ciągłe w punkcie względem,, to istnieje takie, Ŝe oraz. Widać, Ŝe, więc int. Zatem kaŝdy punkt zbioru jest punktem wewnętrznym tego zbioru w,, więc zachodzi równość int, co dowodzi, Ŝe. ZałóŜmy teraz, Ŝe:. RozwaŜmy dowolny punkt oraz dowolny zbiór taki, Ŝe. Niech. Wobec poczynionego załoŝenia,. Skoro ponadto oraz, to jest ciągłe względem pary, w punkcie, co kończy dowód. Twierdzenie o równowaŝności ciągłości w kaŝdym punkcie i domkniętości przeciwobrazów zbiorów domkniętych. [ZF] Przekształcenie : jest ciągłe globalnie na względem, wtedy i tylko wtedy, gdy dla kaŝdego zbioru domkniętego w, zbiór jest domknięty w,. 21

22 Dowód. ZałóŜmy, Ŝe : jest ciągłe globalnie na względem,, natomiast jest zbiorem domkniętym w,. Wtedy, \, więc wobec poprzedniego twierdzenia, \. Skoro ponadto \ \, to jest zbiorem domkniętym w,. Odwrotnie, załóŝmy, Ŝe przeciwobraz względem kaŝdego zbioru domkniętego w, jest zbiorem domkniętym w,. Niech. Wtedy \ jest zbiorem domkniętym w,, więc \ \ jest zbiorem domkniętym w,, zatem, co kończy dowód. Definicja przekształcenia otwartego. Przekształcenie : nazywamy otwartym względem, lub, -otwartym, gdy:. Definicja przekształcenia domkniętego. Przekształcenie : nazywamy domkniętym względem, lub, -domkniętym gdy dla kaŝdego zbioru domkniętego w,, zbiór jest domknięty w,. Definicja homeomorfizmu. Przekształcenie wzajemnie jednoznaczne : nazywamy homeomorfizmem przestrzeni topologicznej, na przestrzeń topologiczną, lub, -homeomorfizmem gdy jest ciągłe względem pary,, a przekształcenie jest ciągłe względem pary,. Warunki konieczne i wystarczające na to, aby przekształcenie było homeomorfizmem. [ZF] Przekształcenie wzajemnie jednoznaczne : jest homeomorfizmem przestrzeni topologicznej, na przestrzeń topologiczną, wtedy i tylko wtedy, gdy jest jednocześnie ciągłe i otwarte względem,, co zachodzi wtedy i tylko wtedy, gdy jest jednocześnie ciągłe i domknięte względem,. Definicja zanurzenia homeomorficznego. Przekształcenie : nazywamy zanurzeniem homeomorficznym przestrzeni topologicznej, w przestrzeń topologiczną,, gdy jest homeomorfizmem przestrzeni, na podprzestrzeń, przestrzeni,. Uwaga. Gdy jest ustalona topologia w zbiorze oraz topologia w zbiorze, zamiast mówić, Ŝe : jest ciągłe (odp. otwarte, domknięte) względem,, mówi się krótko, Ŝe jest przekształceniem ciągłym (odp. otwartym, domkniętym) przestrzeni topologicznej w przestrzeń topologiczną. Definicja przestrzeni homeomorficznych. Przestrzenie topologiczne i nazywamy homeomorficznymi, gdy istnieje homeomorfizm przestrzeni na przestrzeń. Własności topologiczne. Niezmienniki homeomorfizmów są zwane własnościami topologicznymi, gdzie przez niezmiennik homeomorfizmu rozumie się taką własność, którą posiada kaŝda przestrzeń topologiczna homeomorficzna z przestrzenią topologiczną mającą tę własność. Na przykład metryzowalność, quasi-metryzowalność, ośrodkowość, dziedziczna ośrodkowość, spełnianie pierwszego warunku przeliczalności, spełnianie drugiego warunku przeliczalności, spełnianie warunku Hausdorffa, bycie przestrzenią są własnościami topologicznymi. W dalszym ciągu będziemy poznawać inne własności topologiczne. 22

23 Wprowadzanie topologii przez rodzinę przekształceń: ZałóŜmy, Ŝe, : jest indeksowaną elementami niepustego zbioru rodziną przestrzeni topologicznych, jest zbiorem i dla kaŝdego dane jest przekształcenie : natomiast jest rodziną wszystkich niepustych skończonych podzbiorów zbioru. Wówczas rodzina B wszystkich zbiorów postaci, gdzie oraz dla kaŝdego spełnia warunki (B1)-(B2), zatem wobec twierdzenia o wprowadzaniu topologii przez bazę, istnieje w zbiorze jedyna topologia taka, Ŝe B jest bazą otwartą przestrzeni topologicznej,. Topologię tę nazywamy wprowadzoną przez rodzinę przekształceń { :, :. Topologia ta jest taka, Ŝe kaŝde przekształcenie jest, -ciągłe, a ponadto, gdy jest topologią w taką, Ŝe dla kaŝdego, przekształcenie jest, - ciągłe, to. Niech i niech będzie rzutowaniem zbioru w zbiór dla. Topologia produktowa (Tichonowa ) w produkcie, jest topologią w zbiorze wprowadzoną przez rodzinę przekształceń :, :. Jest to najmniejsza ze względu na relację inkluzji topologia w zbiorze taka, Ŝe kaŝde z rzutowań jest, -ciągłe. Oddzielanie przez zbiory otwarte: Definicje. Mówimy, Ŝe przestrzeń topologiczna jest: 0) przestrzenią, gdy dla kaŝdej pary, róŝnych punktów zbioru istnieje zbiór otwarty w taki, Ŝe zbiór, ma dokładnie jeden element; 1) przestrzenią, gdy dla kaŝdej pary, róŝnych punktów zbioru istnieje zbiór otwarty w taki, Ŝe i ; 2) przestrzenią lub przestrzenią Hausdorffa, gdy dla kaŝdej pary, róŝnych punktów zbioru istnieje para, rozłącznych zbiorów otwartych w taka, Ŝe i ; 3) przestrzenią regularną, gdy dla kaŝdego zbioru domkniętego w i kaŝdego punktu, istnieje para, rozłącznych zbiorów otwartych w taka, Ŝe i ; regularne przestrzenie bywają nazywane przestrzeniami; 4) przestrzenią normalną, gdy dla kaŝdej pary, rozłącznych zbiorów domkniętych w istnieje para, rozłącznych zbiorów otwartych w taka, Ŝe i ; normalne przestrzenie bywają nazywane przestrzeniami; 5) przestrzenią dziedzicznie normalną, gdy kaŝda podprzestrzeń przestrzeni jest normalna; przestrzenie dziedzicznie normalne bywają nazywane przestrzeniami; 6) przestrzenią doskonale normalną, gdy jest przestrzenią, w której kaŝdy zbiór otwarty jest typu w. Zadania: 23

24 Zadanie 23. Uzasadnić, Ŝe zbiór jest brzegowy w przestrzeni topologicznej wtedy i tylko wtedy, gdy int. Zadanie 24. Uzasadnić, Ŝe zbiór jest nigdziegęsty w przestrzeni topologicznej wtedy i tylko wtedy, gdy int cl. Zadanie 25. Wskazać wszystkie zbiory brzegowe w przestrzeni topologicznej (4, {, 4, 1,3, 2,3, 1,2,3, 3. Zadanie 26. Wskazać wszystkie zbiory nigdziegęste w przestrzeni topologicznej (4,5), gdzie 5 jest topologią w 4. Zadanie 27. Podać przykład zbioru R takiego, Ŝe. Zadanie 28. Uzasadnić, Ŝe jeśli jest podprzestrzenią przestrzeni topologicznej oraz, to cl cl. Zadanie 29. Uzasadnić, Ŝe jeśli : jest indeksowaną elementami zbioru rodziną przestrzeni topologicznych oraz dla kaŝdego, natomiast i, to prawdą jest w ZF, Ŝe cl cl. (*) Udowodnić, Ŝe pewnik wyboru jest równowaŝny zdaniu: dla kaŝdej rodziny : przestrzeni topologicznych oraz dla dowolnych zbiorów dla, zachodzi równość: cl cl, gdzie. Zadanie 30. Niech id oznacza przekształcenie toŝsamościowe (identycznościowe) na zbiorze oraz niech, będą topologiami w zbiorze. Wstawić odpowiednie inkluzje lub znak równości w następujących zdaniach: i) id jest ciągłe względem, wtedy i tylko wtedy, gdy ; ii) id jest otwarte względem, wtedy i tylko wtedy, gdy ; iii) id jest domknięte względem, wtedy i tylko wtedy, gdy ; iv) id jest homeomorfizmem, na, wtedy i tylko wtedy, gdy ;. Zadanie 31. sprawdzić, czy przekształcenie f: 5 4 jest ciągłe względem pary topologii (, ), gdzie f(0)=1, f(1)=2 =f(3), f(2)=0=f(4), ={, 5, {0,1,4}, {1,2,3}, {1}}, ={, 4, {1, 2}, {0, 2,3}, {2}}. Zadanie 32. Sprawdzić, czy przekształcenie : 5 4 jest ciągłe względem pary topologii (6, 5), gdzie 1 dla kaŝdego 5, a 6 jest topologią w 5, natomiast 5 jest topologią w 4. Wykład 5. Warunki oddzielania ciąg dalszy: 24

25 Podstawowy warunek równowaŝny regularności przestrzeni. [ZF] Niech dla kaŝdego rodzina B będzie bazą otoczeń punktu w przestrzeni topologicznej. Wówczas jest przestrzenią regularną wtedy i tylko wtedy gdy: cl. Dowód. Konieczność. ZałóŜmy najpierw, Ŝe jest przestrzenią regularną oraz i. Wtedy zbiór jest domknięty w oraz. Wobec regularności przestrzeni, istnieje para, rozłącznych zbiorów otwartych w taka, Ŝe i. Istnieje takie, Ŝe. Skoro i jest zbiorem domkniętym w, to cl. Oczywiście,, zatem cl. Dostateczność. ZałóŜmy, Ŝe spełniony jest warunek: cl. Aby pokazać, Ŝe jest przestrzenią regularną, rozwaŝmy dowolny zbiór domknięty w oraz przypuśćmy, Ŝe. Istnieje takie, Ŝe. Niech będzie takie, Ŝe cl. Zbiór cl jest otwarty w, rozłączny z, a ponadto, co dowodzi regularności. Podstawowy warunek równowaŝny normalności przestrzeni. [ZF] Przestrzeń topologiczna jest normalna wtedy i tylko wtedy, gdy dla dowolnego zbioru domkniętego w i dowolnego zbioru otwartego w takiego, Ŝe, istnieje zbiór otwarty w taki, Ŝe cl. Dowód tego twierdzenia pozostawiam jako ćwiczenie, gdyŝ moŝna go przeprowadzić podobnie jak dowód poprzedniego twierdzenia dla regularności. Podstawowy warunek równowaŝny dziedzicznej normalności przestrzeni. [ZF] Przestrzeń topologiczna jest dziedzicznie normalna wtedy i tylko wtedy, gdy kaŝda jej otwarta podprzestrzeń jest normalna. Dowód. Oczywiście, gdy przestrzeń topologiczna jest dziedzicznie normalna, to kaŝda jej otwarta podprzestrzeń jest normalna. ZałóŜmy zatem, Ŝe kaŝda otwarta podprzestrzeń przestrzeni topologicznej jest normalna i rozwaŝmy jej jakąkolwiek podprzestrzeń. Niech, będzie parą rozłącznych zbiorów domkniętych w. Zbiór cl cl jest domknięty w, zatem zbiór jest otwarty w, natomiast zbiory cl oraz cl są domknięte w oraz rozłączne. Skoro jest podprzestrzenią normalną przestrzeni, to istnieje para, rozłącznych zbiorów otwartych w taka, Ŝe i. Zbiory oraz są otwarte w, rozłączne, a ponadto oraz, więc jest przestrzenią normalną. Twierdzenie o dziedziczeniu normalności przez podprzestrzenie domknięte. [ZF] KaŜda podprzestrzeń domknięta przestrzeni normalnej jest normalna. Dowód. Niech będzie podprzestrzenią domkniętą przestrzeni normalnej. Niech, będzie parą rozłącznych zbiorów domkniętych w. Zbiory, są domknięte w, a więc z normalności wynika, Ŝe istnieje para, rozłącznych zbiorów otwartych w taka, Ŝe i. Zbiory oraz są otwarte w, rozłączne oraz i. Zatem jest przestrzenią normalną. 25

Eliza Wajch, Geometria z Topologią, wykład 1, 2012/2013

Eliza Wajch, Geometria z Topologią, wykład 1, 2012/2013 Eliza Wajch Wykłady i ćwiczenia z geometrii analitycznej z elementami topologii w UPH w Siedlcach w semestrze zimowym roku akad. 2012/2013. Literatura podstawowa: 1. K. Kuratowski, A. Mostowski: Teoria

Bardziej szczegółowo

TEST A. A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty

TEST A. A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty TEST A A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty T 1 przestrzeni. Czym ta aksjomatyka różni się od aksjomatyki zbiorów otwartych? A-2. Ile różnych zbiorów otwartych

Bardziej szczegółowo

A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty

A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty A-1. Podaj aksjomaty przestrzeni topologicznej według W. Sierpińskiego: aksjomaty T 1 przestrzeni. Czym ta aksjomatyka różni się od aksjomatyki zbiorów otwartych? A-2. Wyprowadź z aksjomatów topologii

Bardziej szczegółowo

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =.

1 Zbiory. 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1 Zbiory 1.1 Kiedy {a} = {b, c}? (tzn. podać warunki na a, b i c) 1.2 Udowodnić, że A {A} A =. 1.3 Pokazać, że jeśli A, B oraz (A B) (B A) = C C, to A = B = C. 1.4 Niech {X t } będzie rodziną niepustych

Bardziej szczegółowo

Topologia - Zadanie do opracowania. Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski

Topologia - Zadanie do opracowania. Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski Topologia - Zadanie do opracowania Wioletta Osuch, Magdalena Żelazna, Piotr Kopyrski 5 grudnia 2013 Zadanie 1. (Topologie na płaszczyźnie) Na płaszczyźnie R 2 rozważmy następujące topologie: a) Euklidesową

Bardziej szczegółowo

zbiorów domkniętych i tak otrzymane zbiory domknięte ustawiamy w ciąg. Oznaczamy

zbiorów domkniętych i tak otrzymane zbiory domknięte ustawiamy w ciąg. Oznaczamy 5. Funkcje 1 klasy Baire a. Pod koniec XIX i początkiem XX wieku kilku matematyków zajmowało się problemami dotyczącymi klasyfikacji funkcji borelowskich: między innymi R. Baire, E. Borel, H. Lebesgue

Bardziej szczegółowo

Ciągłość i topologia. Rozdział Ciągłość funkcji wg. Cauchy

Ciągłość i topologia. Rozdział Ciągłość funkcji wg. Cauchy Rozdział 1 Ciągłość i topologia Nadanie precyzyjnego sensu intiucyjnemu pojęciu ciągłości jest jednym z głównych tematów dziedziny matematyki, zwanej topologią. Definicja funkcji ciągłej znana z podstawowego

Bardziej szczegółowo

Zbiory liczbowe widziane oczami topologa

Zbiory liczbowe widziane oczami topologa Zbiory liczbowe widziane oczami topologa Aleksander Błaszczyk Instytut Matematyki Uniwersytetu Ślaskiego Brenna, 25 wrzesień 2018 Aleksander Błaszczyk (UŚ) Zbiory liczbowe widziane oczami topologa Brenna,

Bardziej szczegółowo

Uwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów.

Uwaga 1. Zbiory skończone są równoliczne wtedy i tylko wtedy, gdy mają tyle samo elementów. Logika i teoria mnogości Wykład 11 i 12 1 Moce zbiorów Równoliczność zbiorów Def. 1. Zbiory X i Y są równoliczne (X ~ Y), jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy, że ustala równoliczność

Bardziej szczegółowo

Równoliczność zbiorów

Równoliczność zbiorów Logika i Teoria Mnogości Wykład 11 12 Teoria mocy 1 Równoliczność zbiorów Def. 1. Zbiory X i Y nazywamy równolicznymi, jeśli istnieje bijekcja f : X Y. O funkcji f mówimy wtedy,że ustala równoliczność

Bardziej szczegółowo

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. 3. Funkcje borelowskie. Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. (1): Jeśli zbiór Y należy do rodziny F, to jego dopełnienie X

Bardziej szczegółowo

1 Działania na zbiorach

1 Działania na zbiorach M. Beśka, Wstęp do teorii miary, rozdz. 1 1 1 Działania na zbiorach W rozdziale tym przypomnimy podstawowe działania na zbiorach koncentrując się na własnościach tych działań, które będą przydatne w dalszej

Bardziej szczegółowo

Wstęp do przestrzeni metrycznych i topologicznych oraz ich zastosowań w ekonomii

Wstęp do przestrzeni metrycznych i topologicznych oraz ich zastosowań w ekonomii Wstęp do przestrzeni metrycznych i topologicznych oraz ich zastosowań w ekonomii Mirosław Sobolewski 25 maja 2010 Definicja. Przestrzenią metryczną nazywamy zbiór X z funkcją ρ : X X R przyporządkowującą

Bardziej szczegółowo

Topologia I Wykład 4.

Topologia I Wykład 4. Topologia I Wykład 4. Stefan Jackowski 24 października 2012 Przeciąganie topologii przez rodzinę przekształceń X zbiór. f = {f i : X Y i } i I rodziną przekształceń o wartościach w przestrzeniach topologicznych

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Topologia Topology Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Matematyka Poziom kwalifikacji: I stopnia Semestr: IV Rodzaj zajęć: wykład, ćwiczenia Liczba godzin/tydzień:

Bardziej szczegółowo

Stanisław Betley, Józef Chaber, Elżbieta Pol i Roman Pol TOPOLOGIA I. wykłady i zadania

Stanisław Betley, Józef Chaber, Elżbieta Pol i Roman Pol TOPOLOGIA I. wykłady i zadania Stanisław Betley, Józef Chaber, Elżbieta Pol i Roman Pol TOPOLOGIA I wykłady i zadania WSTĘP. Materiał w skrypcie odpowiada programowi zajęć z Topologii I w trzecim semestrze studiów na Wydziale MIM Uniwersytetu

Bardziej szczegółowo

Wstęp do Matematyki (4)

Wstęp do Matematyki (4) Wstęp do Matematyki (4) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Liczby kardynalne Jerzy Pogonowski (MEG) Wstęp do Matematyki (4) Liczby kardynalne 1 / 33 Wprowadzenie

Bardziej szczegółowo

Topologia I*, jesień 2012 Zadania omawiane na ćwiczeniach lub zadanych jako prace domowe, grupa 1 (prowadzący H. Toruńczyk).

Topologia I*, jesień 2012 Zadania omawiane na ćwiczeniach lub zadanych jako prace domowe, grupa 1 (prowadzący H. Toruńczyk). Topologia I*, jesień 2012 Zadania omawiane na ćwiczeniach lub zadanych jako prace domowe, grupa 1 (prowadzący H. Toruńczyk). Zadania w dużej mierze pochodzą z zestawu zadań w rozdziale 8 skryptu autorów

Bardziej szczegółowo

Wykład ze Wstępu do Logiki i Teorii Mnogości

Wykład ze Wstępu do Logiki i Teorii Mnogości Wykład ze Wstępu do Logiki i Teorii Mnogości rok ak. 2016/2017, semestr zimowy Wykład 1 1 Wstęp do Logiki 1.1 Rachunek zdań, podstawowe funktory logiczne 1.1.1 Formuła atomowa; zdanie logiczne definicje

Bardziej szczegółowo

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = :

n=0 Dla zbioru Cantora prawdziwe są wersje lematu 3.6 oraz lematu 3.8 przy założeniu α = : 4. Zbiory borelowskie. Zbiór wszystkich podzbiorów liczb naturalnych będziemy oznaczali przez ω. Najmniejszą topologię na zbiorze ω, w której zbiory {A ω : x A ω \ y}, gdzie x oraz y są zbiorami skończonymi,

Bardziej szczegółowo

domykanie relacji, relacja równoważności, rozkłady zbiorów

domykanie relacji, relacja równoważności, rozkłady zbiorów 1 of 8 2012-03-28 17:45 Logika i teoria mnogości/wykład 5: Para uporządkowana iloczyn kartezjański relacje domykanie relacji relacja równoważności rozkłady zbiorów From Studia Informatyczne < Logika i

Bardziej szczegółowo

Notatki z Analizy Matematycznej 1. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 1. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 1 Jacek M. Jędrzejewski Wstęp W naszym konspekcie będziemy stosowali następujące oznaczenia: N zbiór liczb naturalnych dodatnich, N 0 zbiór liczb naturalnych (z zerem),

Bardziej szczegółowo

1,5 1,5. WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Analiza matematyczna M1 2. Wstęp do logiki i teorii mnogości

1,5 1,5. WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Analiza matematyczna M1 2. Wstęp do logiki i teorii mnogości WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim TOPOLOGIA Nazwa w języku angielskim TOPOLOGY Kierunek studiów (jeśli dotyczy): Matematyka Specjalność (jeśli dotyczy): Matematyka

Bardziej szczegółowo

F t+ := s>t. F s = F t.

F t+ := s>t. F s = F t. M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną

Bardziej szczegółowo

Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim TOPOLOGIA OGÓLNA Nazwa w języku angielskim GENERAL TOPOLOGY Kierunek studiów (jeśli dotyczy): Matematyka

Bardziej szczegółowo

(b) Suma skończonej ilości oraz przekrój przeliczalnej ilości zbiorów typu G α

(b) Suma skończonej ilości oraz przekrój przeliczalnej ilości zbiorów typu G α FUNKCJE BORELOWSKIE Rodzinę F podzbiorów zbioru X (tzn. F X) będziemy nazywali ciałem gdy spełnione są warunki: (1) Jeśli zbiór Y F, to dopełnienie X \ Y też należy do rodziny F. (2) Jeśli S F jest skończoną

Bardziej szczegółowo

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości.

Temperatura w atmosferze (czy innym ośrodku) jako funkcja dł. i szer. geogr. oraz wysokości. Własności Odległości i normy w Będziemy się teraz zajmować funkcjami od zmiennych, tzn. określonymi na (iloczyn kartezja/nski egzemplarzy ). Punkt należący do będziemy oznaczać jako Przykł. Wysokość terenu

Bardziej szczegółowo

Przestrzenie metryczne. Elementy Topologii. Zjazd 2. Elementy Topologii

Przestrzenie metryczne. Elementy Topologii. Zjazd 2. Elementy Topologii Zjazd 2 Przestrzenia metryczna (X, d) nazywamy parę złożona ze zbioru X i funkcji d : X X R, taka, że 1 d(x, y) 0 oraz d(x, y) = 0 wtedy i tylko wtedy, gdy x = y, 2 d(x, y) = d(y, x), 3 d(x, z) d(x, y)

Bardziej szczegółowo

Stanisław Betley, Józef Chaber, Elżbieta Pol i Roman Pol TOPOLOGIA I. wykłady i zadania. luty 2013

Stanisław Betley, Józef Chaber, Elżbieta Pol i Roman Pol TOPOLOGIA I. wykłady i zadania. luty 2013 Stanisław Betley, Józef Chaber, Elżbieta Pol i Roman Pol TOPOLOGIA I wykłady i zadania luty 2013 WSTĘP. Materiał w skrypcie odpowiada programowi zajęć z Topologii I w trzecim semestrze studiów na Wydziale

Bardziej szczegółowo

Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój.

Wykład 10. Stwierdzenie 1. X spełnia warunek Borela wtedy i tylko wtedy, gdy każda scentrowana rodzina zbiorów domkniętych ma niepusty przekrój. Wykład 10 Twierdzenie 1 (Borel-Lebesgue) Niech X będzie przestrzenią zwartą Z każdego pokrycia X zbiorami otwartymi można wybrać podpokrycie skończone Dowód Lemat 1 Dla każdego pokrycia U przestrzeni ośrodkowej

Bardziej szczegółowo

7. Miara, zbiory mierzalne oraz funkcje mierzalne.

7. Miara, zbiory mierzalne oraz funkcje mierzalne. 7. Miara, zbiory mierzalne oraz funkcje mierzalne. Funkcję rzeczywistą µ nieujemną określoną na ciele zbiorów S będziemy nazywali miarą, gdy dla dowolnego ciągu A 0, A 1,... zbiorów rozłącznych należących

Bardziej szczegółowo

Zbiory mocy alef zero

Zbiory mocy alef zero Uniwersytet Rzeszowski Wydział Matematyczno-Przyrodniczy Monika Łokaj Zbiory mocy alef zero Praca licencjacka wykonana w Instytucie Matematyki pod kierunkiem dra Michała Lorensa Praca została przyjęta

Bardziej szczegółowo

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi

Korzystając z własności metryki łatwo wykazać, że dla dowolnych x, y, z X zachodzi M. Beśka, Wstęp do teorii miary, Dodatek 158 10 Dodatek 10.1 Przestrzenie metryczne Niech X będzie niepustym zbiorem. Funkcję d : X X [0, ) spełniającą dla x, y, z X warunki (i) d(x, y) = 0 x = y, (ii)

Bardziej szczegółowo

Algebra zbiorów. Materiały pomocnicze do wykładu. przedmiot: Matematyka Dyskretna 1 wykładowca: dr Magdalena Kacprzak

Algebra zbiorów. Materiały pomocnicze do wykładu. przedmiot: Matematyka Dyskretna 1 wykładowca: dr Magdalena Kacprzak Algebra zbiorów Materiały pomocnicze do wykładu uczelnia: PJWSTK przedmiot: Matematyka Dyskretna 1 wykładowca: dr Magdalena Kacprzak Teoria mnogości Teoria mnogości jest działem matematyki zajmującym się

Bardziej szczegółowo

Informacja o przestrzeniach Hilberta

Informacja o przestrzeniach Hilberta Temat 10 Informacja o przestrzeniach Hilberta 10.1 Przestrzenie unitarne, iloczyn skalarny Niech dana będzie przestrzeń liniowa X. Załóżmy, że każdej parze elementów x, y X została przyporządkowana liczba

Bardziej szczegółowo

Wstęp do topologii Ćwiczenia

Wstęp do topologii Ćwiczenia Wstęp do topologii Ćwiczenia Spis treści Przestrzeń metryczna, metryka 2 Kule w przestrzeni metrycznej 2 3 Zbieżność w przestrzeniach metrycznych 4 4 Domknięcie, wnętrze i brzeg 6 5 Zbiory gęste, brzegowe

Bardziej szczegółowo

1. Funkcje monotoniczne, wahanie funkcji.

1. Funkcje monotoniczne, wahanie funkcji. 1. Funkcje monotoniczne, wahanie funkcji. Zbiór X będziemy nazywali uporządkowanym, jeśli określona jest relacja zawarta w produkcie kartezjańskim X X, która jest spójna, antysymetryczna i przechodnia.

Bardziej szczegółowo

Zadania zadane jako prace domowe i niektóre spośród omawianych na ćwiczeniach.

Zadania zadane jako prace domowe i niektóre spośród omawianych na ćwiczeniach. Topologia I*, jesień 2013 (prowadzący H. Toruńczyk). Zadania zadane jako prace domowe i niektóre spośród omawianych na ćwiczeniach. Zadania w dużej mierze pochodzą z zestawu zadań w rozdziale 8 skryptu

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Teoria mnogości Set theory Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia Liczba godzin/tydzień:

Bardziej szczegółowo

Rozdział 6. Ciągłość. 6.1 Granica funkcji

Rozdział 6. Ciągłość. 6.1 Granica funkcji Rozdział 6 Ciągłość 6.1 Granica funkcji Podamy najpierw dwie definicje granicy funkcji w punkcie i pokażemy ich równoważność. Definicja Cauchy ego granicy funkcji w punkcie. Niech f : X R, gdzie X R oraz

Bardziej szczegółowo

Definicja odwzorowania ciągłego i niektóre przykłady

Definicja odwzorowania ciągłego i niektóre przykłady Odwzorowania Pojęcie odwzorowania pomiędzy dwoma zbiorami było już definiowane, ale dawno, więc nie od rzeczy będzie przypomnieć, że odwzorowaniem nazywamy sposób przyporządkowania (niekoniecznie każdemu)

Bardziej szczegółowo

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11

2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11 M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X

Bardziej szczegółowo

Weronika Siwek, Metryki i topologie 1. (ρ(x, y) = 0 x = y) (ρ(x, y) = ρ(y, x))

Weronika Siwek, Metryki i topologie 1. (ρ(x, y) = 0 x = y) (ρ(x, y) = ρ(y, x)) Weronika Siwek, Metryki i topologie 1 Definicja 1. Załóżmy, że X, ρ: X X [0, ). Funkcja ρ spełnia następujące warunki: 1. x,y X (ρ(x, y) = 0 x = y) 2. 3. (ρ(x, y) = ρ(y, x)) x,y X (ρ(x, y) ρ(x, z) + ρ(z,

Bardziej szczegółowo

Teoria miary i całki

Teoria miary i całki Teoria miary i całki Spis treści 1 Wstęp 3 2 lgebra zbiorów 5 3 Pierścienie, ciała, σ ciała zbiorów. 7 3.1 Definicja pierścienia ciała i σ ciała............... 7 3.2 Pierścień, ciało i σ ciało generowane

Bardziej szczegółowo

Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011).

Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011). Uzupełnienia dotyczące zbiorów uporządkowanych (3 lutego 2011). Poprzedniczka tej notatki zawierała błędy! Ta pewnie zresztą też ; ). Ćwiczenie 3 zostało zmienione, bo żądałem, byście dowodzili czegoś,

Bardziej szczegółowo

Zadania z forcingu. Marcin Kysiak. Semestr zimowy r. ak. 2002/2003

Zadania z forcingu. Marcin Kysiak. Semestr zimowy r. ak. 2002/2003 Zadania z forcingu Marcin Kysiak Semestr zimowy r. ak. 2002/2003 Dokument ten zawiera zadania omówione przeze mnie na ćwiczeniach do wykładu monograficznego dr. A. Krawczyka "Zdania nierozstrzygalne w

Bardziej szczegółowo

Języki i operacje na językach. Teoria automatów i języków formalnych. Definicja języka

Języki i operacje na językach. Teoria automatów i języków formalnych. Definicja języka Języki i operacje na językach Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Definicja języka Definicja języka Niech Σ będzie alfabetem, Σ* - zbiorem wszystkich łańcuchów

Bardziej szczegółowo

Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń

Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń Kombinowanie o nieskończoności. 3. Jak policzyć nieskończone materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 22 marzec 2018 Szybkie przypomnienie z wykładu Prezentacja

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

Rodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X.

Rodzinę spełniającą trzeci warunek tylko dla sumy skończonej nazywamy ciałem (algebrą) w zbiorze X. 1 σ-ciała Definicja 1.1 (σ - ciało) σ - ciałem (σ - algebrą) w danym zbiorze X (zwanym przestrzenią) nazywamy rodzinę M pewnych podzbiorów zbioru X, spełniającą trzy warunki: 1 o M; 2 o jeśli A M, to X

Bardziej szczegółowo

Matematyka dyskretna. 1. Relacje

Matematyka dyskretna. 1. Relacje Matematyka dyskretna 1. Relacje Definicja 1.1 Relacją dwuargumentową nazywamy podzbiór produktu kartezjańskiego X Y, którego elementami są pary uporządkowane (x, y), takie, że x X i y Y. Uwaga 1.1 Jeśli

Bardziej szczegółowo

KARTA PRZEDMIOTU. w języku polskim Analiza Matematyczna 1 w języku angielskim Mathematical Analysis 1 USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW

KARTA PRZEDMIOTU. w języku polskim Analiza Matematyczna 1 w języku angielskim Mathematical Analysis 1 USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW Kod przedmiotu Nazwa przedmiotu KARTA PRZEDMIOTU AM1_M w języku polskim Analiza Matematyczna 1 w języku angielskim Mathematical Analysis 1 USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW Kierunek studiów Forma

Bardziej szczegółowo

Kierunek i poziom studiów: Matematyka, studia I stopnia, rok 1 Sylabus modułu: Wstęp do matematyki (Kod modułu: 03-MO1N-12-WMat)

Kierunek i poziom studiów: Matematyka, studia I stopnia, rok 1 Sylabus modułu: Wstęp do matematyki (Kod modułu: 03-MO1N-12-WMat) Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia I stopnia, rok 1 Sylabus modułu: Wstęp do matematyki (Kod modułu: 03-MO1N-12-WMat) 1. Informacje ogólne koordynator

Bardziej szczegółowo

Logika I. Wykład 1. Wprowadzenie do rachunku zbiorów

Logika I. Wykład 1. Wprowadzenie do rachunku zbiorów Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 1. Wprowadzenie do rachunku zbiorów 1 Podstawowe pojęcia rachunku zbiorów Uwaga 1.1. W teorii mnogości mówimy o zbiorach

Bardziej szczegółowo

Dekompozycje prostej rzeczywistej

Dekompozycje prostej rzeczywistej Dekompozycje prostej rzeczywistej Michał Czapek michal@czapek.pl www.czapek.pl 26 X AD MMXV Streszczenie Celem pracy jest zwrócenie uwagi na ciekawą różnicę pomiędzy klasami zbiorów pierwszej kategorii

Bardziej szczegółowo

1 Przestrzenie Hilberta

1 Przestrzenie Hilberta M. Beśka, Wykład monograficzny, Dodatek 1 1 Przestrzenie Hilberta 1.1 Podstawowe fakty o przestrzeniach Hilberta Niech H będzie przestrzenią liniową nad ciałem liczb rzeczywistych. Określmy odwzorowanie,

Bardziej szczegółowo

Informatyka, I stopień

Informatyka, I stopień Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Informatyka, I stopień Sylabus modułu: Podstawy logiki i teorii mnogości (LTM200.2) wariantu modułu (opcjonalnie): 1. Informacje ogólne

Bardziej szczegółowo

Teoria automatów i języków formalnych. Określenie relacji

Teoria automatów i języków formalnych. Określenie relacji Relacje Teoria automatów i języków formalnych Dr inŝ. Janusz ajewski Katedra Informatyki Określenie relacji: Określenie relacji Relacja R jest zbiorem par uporządkowanych, czyli podzbiorem iloczynu kartezjańskiego

Bardziej szczegółowo

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami. M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A

Bardziej szczegółowo

TOPOLOGIA I Pomocnik studenta Zintegrowane notatki do wykładu na Wydziale MIM UW Semestr zimowy r. akad. 2012/13.

TOPOLOGIA I Pomocnik studenta Zintegrowane notatki do wykładu na Wydziale MIM UW Semestr zimowy r. akad. 2012/13. TOPOLOGIA I Pomocnik studenta Zintegrowane notatki do wykładu na Wydziale MIM UW Semestr zimowy r. akad. 2012/13 Stefan.Jackowski@mimuw.edu.pl 3 lutego 2013 2 Spis treści Wstęp i 1 Ciągłość i topologia

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy

Bardziej szczegółowo

Teoria miary. WPPT/Matematyka, rok II. Wykład 5

Teoria miary. WPPT/Matematyka, rok II. Wykład 5 Teoria miary WPPT/Matematyka, rok II Wykład 5 Funkcje mierzalne Niech (X, F) będzie przestrzenią mierzalną i niech f : X R. Twierdzenie 1. NWSR 1. {x X : f(x) > a} F dla każdego a R 2. {x X : f(x) a} F

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

Relacje. opracował Maciej Grzesiak. 17 października 2011

Relacje. opracował Maciej Grzesiak. 17 października 2011 Relacje opracował Maciej Grzesiak 17 października 2011 1 Podstawowe definicje Niech dany będzie zbiór X. X n oznacza n-tą potęgę kartezjańską zbioru X, tzn zbiór X X X = {(x 1, x 2,..., x n ) : x k X dla

Bardziej szczegółowo

Metoda kategorii Baire a w przestrzeniach metrycznych zupełnych

Metoda kategorii Baire a w przestrzeniach metrycznych zupełnych Metoda kategorii Baire a w przestrzeniach metrycznych zupełnych Michał Czapek michal@czapek.pl www.czapek.pl 8 IX AD MMXIII Streszczenie Celem pracy jest zaprezentowanie jednej z metod dowodzenia istnienia

Bardziej szczegółowo

Filtry i nety w przestrzeniach topologicznych

Filtry i nety w przestrzeniach topologicznych Filtry i nety w przestrzeniach topologicznych Magdalena Ziębowicz Streszczenie W referacie zostaną przedstawione i scharakteryzowane pojęcia związane z filtrami i ultrafiltrami, ciągami uogólnionymi oraz

Bardziej szczegółowo

Wykłady ostatnie. Rodzinę P podzbiorów przestrzeni X nazywamy σ - algebrą, jeżeli dla A, B P (2) A B P, (3) A \ B P,

Wykłady ostatnie. Rodzinę P podzbiorów przestrzeni X nazywamy σ - algebrą, jeżeli dla A, B P (2) A B P, (3) A \ B P, Wykłady ostatnie CAŁKA LBSGU A Zasadnicza różnica koncepcyjna między całką Riemanna i całką Lebesgue a polega na zamianie ról przestrzeni wartości i przestrzeni argumentów przy konstrukcji sum górnych

Bardziej szczegółowo

Egzamin z logiki i teorii mnogości, rozwiązania zadań

Egzamin z logiki i teorii mnogości, rozwiązania zadań Egzamin z logiki i teorii mnogości, 08.02.2016 - rozwiązania zadań 1. Niech φ oraz ψ będą formami zdaniowymi. Czy formuła [( x : φ(x)) ( x : ψ(x))] [ x : (φ(x) ψ(x))] jest prawem rachunku kwantyfikatorów?

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna 1 Zasada indukcji Rozpatrzmy najpierw następujący przykład. Przykład 1 Oblicz sumę 1 + + 5 +... + (n 1). Dyskusja. Widzimy że dla n = 1 ostatnim składnikiem powyższej sumy jest n

Bardziej szczegółowo

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ. 8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą

Bardziej szczegółowo

Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013

Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013 Zdzisław Dzedzej Politechnika Gdańska Gdańsk, 2013 1 PODSTAWY 2 3 Definicja. Przestrzeń metryczna (X, d) jest zwarta, jeśli z każdego ciągu {x n } w X można wybrać podciąg zbieżny {x nk } w X. Ogólniej

Bardziej szczegółowo

Wstęp do Matematyki (2)

Wstęp do Matematyki (2) Wstęp do Matematyki (2) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Własności relacji Jerzy Pogonowski (MEG) Wstęp do Matematyki (2) Własności relacji 1 / 24 Wprowadzenie

Bardziej szczegółowo

KARTA KURSU. Kod Punktacja ECTS* 7

KARTA KURSU. Kod Punktacja ECTS* 7 KARTA KURSU Nazwa Nazwa w j. ang. Wstęp do logiki i teorii mnogości Introduction to Logic and Set Theory Kod Punktacja ECTS* 7 Koordynator Dr hab. prof. UP Piotr Błaszczyk Zespół dydaktyczny: Dr hab. prof.

Bardziej szczegółowo

sa dzie metryka z euklidesowa, to znaczy wyznaczaja ca cki, Wojciech Suwiński)

sa dzie metryka z euklidesowa, to znaczy wyznaczaja ca cki, Wojciech Suwiński) Zadanie 1 Pokazać, że dowolne dwie kule w R z metryka sa homeomorficzne Niech ρ be dzie metryka równoważna z, to znaczy wyznaczaja ca topologie na R Czy wynika z tego, że dowolne dwie kule w metryce ρ

Bardziej szczegółowo

Matematyka dyskretna Literatura Podstawowa: 1. K.A. Ross, C.R.B. Wright: Matematyka Dyskretna, PWN, 1996 (2006) 2. J. Jaworski, Z. Palka, J.

Matematyka dyskretna Literatura Podstawowa: 1. K.A. Ross, C.R.B. Wright: Matematyka Dyskretna, PWN, 1996 (2006) 2. J. Jaworski, Z. Palka, J. Matematyka dyskretna Literatura Podstawowa: 1. K.A. Ross, C.R.B. Wright: Matematyka Dyskretna, PWN, 1996 (2006) 2. J. Jaworski, Z. Palka, J. Szmański: Matematyka dyskretna dla informatyków, UAM, 2008 Uzupełniająca:

Bardziej szczegółowo

Ultrafiltry. Dominik KWIETNIAK, Kraków. 1. Ultrafiltry

Ultrafiltry. Dominik KWIETNIAK, Kraków. 1. Ultrafiltry W niniejszym artykule zero nie jest liczbą naturalną! Ultrafiltry Dominik KWIETNIAK, Kraków Artykuł ten stanowi zapis referatu jaki został wygłoszony na XLVII Szkole Matematyki Poglądowej Ekstrema. Przedstawiono

Bardziej szczegółowo

Zbiory, relacje i funkcje

Zbiory, relacje i funkcje Zbiory, relacje i funkcje Zbiory będziemy zazwyczaj oznaczać dużymi literami A, B, C, X, Y, Z, natomiast elementy zbiorów zazwyczaj małymi. Podstawą zależność między elementem zbioru a zbiorem, czyli relację

Bardziej szczegółowo

Analiza matematyczna / Witold Kołodziej. wyd Warszawa, Spis treści

Analiza matematyczna / Witold Kołodziej. wyd Warszawa, Spis treści Analiza matematyczna / Witold Kołodziej. wyd. 5. - Warszawa, 2010 Spis treści Wstęp 1. Podstawowe pojęcia mnogościowe 13 1. Zbiory 13 2. Działania na zbiorach 14 3. Produkty kartezjańskie 15 4. Relacje

Bardziej szczegółowo

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów.

5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. 5. Algebra działania, grupy, grupy permutacji, pierścienie, ciała, pierścień wielomianów. Algebra jest jednym z najstarszych działów matematyki dotyczącym początkowo tworzenia metod rozwiązywania równań

Bardziej szczegółowo

Wstęp do Matematyki (1)

Wstęp do Matematyki (1) Wstęp do Matematyki (1) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Wprowadzenie Jerzy Pogonowski (MEG) Wstęp do Matematyki (1) Wprowadzenie 1 / 41 Wprowadzenie

Bardziej szczegółowo

KARTA KURSU. Wstęp do logiki i teorii mnogości Introduction to Logic and Set Theory

KARTA KURSU. Wstęp do logiki i teorii mnogości Introduction to Logic and Set Theory KARTA KURSU Nazwa Nazwa w j. ang. Wstęp do logiki i teorii mnogości Introduction to Logic and Set Theory Kod Punktacja ECTS* 6 Koordynator Dr hab. prof. UP Piotr Błaszczyk Zespół dydaktyczny dr Antoni

Bardziej szczegółowo

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Indukcja. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Indukcja Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Charakteryzacja zbioru liczb naturalnych Arytmetyka liczb naturalnych Jedną z najważniejszych teorii matematycznych jest arytmetyka

Bardziej szczegółowo

Ciągłość funkcji f : R R

Ciągłość funkcji f : R R Ciągłość funkcji f : R R Definicja 1. Otoczeniem o promieniu δ > 0 punktu x 0 R nazywamy zbiór O(x 0, δ) := (x 0 δ, x 0 + δ). Otoczeniem prawostronnym o promieniu δ > 0 punktu x 0 R nazywamy zbiór O +

Bardziej szczegółowo

ZBIORY BORELOWSKIE I ANALITYCZNE ORAZ ICH ZASTOSOWANIA.

ZBIORY BORELOWSKIE I ANALITYCZNE ORAZ ICH ZASTOSOWANIA. ZBIORY BORELOWSKIE I ANALITYCZNE ORAZ ICH ZASTOSOWANIA. PIOTR ZAKRZEWSKI 1. Wykłady 1/2 Definicja 1.1. Przestrzeń polska to przestrzeń topologiczna ośrodkowa, metryzowalna w sposób zupełny. Przykład 1.2.

Bardziej szczegółowo

Schemat sprawdzianu. 25 maja 2010

Schemat sprawdzianu. 25 maja 2010 Schemat sprawdzianu 25 maja 2010 5 definicji i twierdzeń z listy 12(po 10 punktów) np. 1. Proszę sformułować twierdzenie Brouwera o punkcie stałym. 2. Niech X będzie przestrzenią topologiczną. Proszę określić,

Bardziej szczegółowo

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi?

Zadania z Analizy Funkcjonalnej I Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? Zadania z Analizy Funkcjonalnej I - 1 1. Które z poniższych przestrzeni metrycznych są przestrzeniami unormowanymi? a) X = R, d(x, y) = arctg x y ; b) X = R n, d(x, y) = x 1 y 1 + x 2 y 2 + max i 3 x i

Bardziej szczegółowo

W pewnym mieście jeden z jej mieszkańców goli wszystkich tych i tylko tych jej mieszkańców, którzy nie golą się

W pewnym mieście jeden z jej mieszkańców goli wszystkich tych i tylko tych jej mieszkańców, którzy nie golą się 1 Logika Zdanie w sensie logicznym, to zdanie oznajmujące, o którym da się jednoznacznie powiedzieć, czy jest fałszywe, czy prawdziwe. Zmienna zdaniowa- to symbol, którym zastępujemy dowolne zdanie. Zdania

Bardziej szczegółowo

jest ciągiem elementów z przestrzeni B(R, R)

jest ciągiem elementów z przestrzeni B(R, R) Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)

Bardziej szczegółowo

Krzywa uniwersalna Sierpińskiego

Krzywa uniwersalna Sierpińskiego Krzywa uniwersalna Sierpińskiego Małgorzata Blaszke Karol Grzyb Streszczenie W niniejszej pracy omówimy krzywą uniwersalną Sierpińskiego, zwaną również dywanem Sierpińskiego. Pokażemy klasyczną metodę

Bardziej szczegółowo

Liczby Rzeczywiste. Ciągi. Szeregi. Rachunek Różniczkowy i Całkowy Funkcji Jednej Zmiennej.

Liczby Rzeczywiste. Ciągi. Szeregi. Rachunek Różniczkowy i Całkowy Funkcji Jednej Zmiennej. Pytania na egzaminie magisterskim dotyczą głównie zagadnień związanych z tematem pracy magisterskiej. Należy być przygotowanym również na pytania sprawdzające podstawową wiedzę ze wszystkich zaliczonych

Bardziej szczegółowo

Analiza Funkcjonalna - Zadania

Analiza Funkcjonalna - Zadania Analiza Funkcjonalna - Zadania 1 Wprowadzamy następujące oznaczenia. K oznacza ciało liczb rzeczywistych lub zespolonych. Jeżeli T jest dowolnym zbiorem niepustym, to l (T ) = {x : E K : x funkcja ograniczona}.

Bardziej szczegółowo

Elementy Teorii Miary i Całki

Elementy Teorii Miary i Całki Elementy Teorii Miary i Całki c Lech Drewnowski Wydział Matematyki i Informatyki Uniwersytet im. dama Mickiewicza w Poznaniu Poznań 2008 http://main2.amu.edu.pl/ drewlech/dydaktyka.html http://main2.amu.edu.pl/

Bardziej szczegółowo

Ośrodkowość procesów, proces Wienera. Ośrodkowość procesów, proces Wienera Procesy Stochastyczne, wykład, T. Byczkowski,

Ośrodkowość procesów, proces Wienera. Ośrodkowość procesów, proces Wienera Procesy Stochastyczne, wykład, T. Byczkowski, Procesy Stochastyczne, wykład, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 27 luty, 2012 Ośrodkowość procesów Dalej zakładamy, że (Ω, Σ, P) jest zupełną przestrzenią miarową. Definicja.

Bardziej szczegółowo

1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór.

1.1 Definicja. 1.2 Przykład. 1.3 Definicja. Niech G oznacza dowolny, niepusty zbiór. 20. Definicje i przykłady podstawowych struktur algebraicznych (grupy, pierścienie, ciała, przestrzenie liniowe). Pojęcia dotyczące przestrzeni liniowych (liniowa zależność i niezależność układu wektorów,

Bardziej szczegółowo

Analiza funkcjonalna 1.

Analiza funkcjonalna 1. Analiza funkcjonalna 1. Wioletta Karpińska Semestr letni 2015/2016 0 Bibliografia [1] Banaszczyk W., Analiza matematyczna 3. Wykłady. (http://math.uni.lodz.pl/ wbanasz/am3/) [2] Birkholc A., Analiza matematyczna.

Bardziej szczegółowo

Grzegorz Bobiński. Wykład monograficzny Programowanie Liniowe i Całkowitoliczbowe

Grzegorz Bobiński. Wykład monograficzny Programowanie Liniowe i Całkowitoliczbowe Grzegorz Bobiński Wykład monograficzny Programowanie Liniowe i Całkowitoliczbowe Wydział Matematyki i Informatyki Uniwersytet Mikołaja Kopernika w Toruniu 2012 Spis treści Notacja 1 1 Podstawowe pojęcia

Bardziej szczegółowo

TOPOLOGIA I* Pomocnik studenta Notatki do wykładu na Wydziale MIM UW Semestr zimowy r. akad. 2016/17.

TOPOLOGIA I* Pomocnik studenta Notatki do wykładu na Wydziale MIM UW Semestr zimowy r. akad. 2016/17. TOPOLOGIA I* Pomocnik studenta Notatki do wykładu na Wydziale MIM UW Semestr zimowy r. akad. 2016/17 Stefan.Jackowski@mimuw.edu.pl 23 kwietnia 2018 2 Spis treści Wstęp i 1 Ciągłość i topologia 1 1.1 Ciągłość

Bardziej szczegółowo