METODYKA OCENY SPRZĘTU GEODEZYJNEGO ZA POMOCĄ TESTÓW STATYSTYKI MATEMATYCZNEJ
|
|
- Karol Krzysztof Nowak
- 8 lat temu
- Przeglądów:
Transkrypt
1 Metoyka ocey sprzętu geoezyjego... INFRASTRUKTURA I EKOLOGIA TERENÓW WIEJSKICH INFRASTRUCTURE AND ECOLOGY OF RURAL AREAS Nr 6/00, POLSKA AKADEMIA NAUK, Ozał w Krakowe, s Komsja Techczej Ifrastruktury Ws Klemes Goek, Walemar Krupńsk METODYKA OCENY SPRZĘTU GEODEZYJNEGO ZA POMOCĄ TESTÓW STATYSTYKI MATEMATYCZNEJ METHODOLOGY OF THE CV ALUATION OF GEODETIC EQUIPMENT USING TESTS OF MATHEMATICAL STATISTICS Streszczee W pracy przestawoo problem zwązay z ustalaem okłaośc użytkowej strumetów geoezyjych. Wyk pomarów testowych zostaą poae ocee za pomocą testów statystyk matematyczej tz. za pomocą statystyczego testu Abbe`go oraz testu Shapro-Wlka. Omówoe zostały postawy teoretycze testów zgoośc oraz poae zostały sposoby ch praktyczego zastosowaa. Z przeprowazoych baań wyka wosek, że baae strumety spełają waruk obu testów statystyczych, a węc aają sę o wykoywaa pomarów w geoezj żyeryjej. Słowa kluczowe: okłaość użytkowa, baaa testowe, statystyka matematycza, testy zgoośc, rozkła empryczy, hpoteza statystycza Summary The paper presets the problem of etermg the accuracy usable of geoetc Istrumets. The results of test measuremets wll be evaluate usg tests of mathematcal statstcs by the statstcal Abeb's test a the Shapro - Wlk test. Wll scuss the theoretcal bass for coformace testg a arę gve ways of ther practcal applcato. The stuy coclues that the teste strumets meet the cotos of both statstcal tests a thus arę sutable for makg measuremets egeerg geoesy. Key wors: accuracy usable, test vestgato, mathematcal statstcs, coformace tests, emprcal strbuto, statstcal hypothess 67
2 Klemes Goek, Walemar Krupńsk WPROWADZENIE Każy skostruoway wyproukoway strumet geoezyjy ma poae parametry okłaoścowe w prospektach frmowych w strukcjach obsług. Na przykła teoolt T000 jak poaje [Lzończyk 000] ma omalą okłaość szacowaą a 3 cc. Jest to okłaość pomaru keruku pozomego w jeej ser jaką moża osągąć przy staraym wykoywau czyośc pomarowych w obrych warukach atmosferyczych. Jeak opero praktycze użyce strumetu w tereowych pracach geoezyjych umożlwa faktycze oceee jego okłaośc oraz pozae jego zalet, a także wa eoskoałośc. Na postawe wykoaych pomarów testowych określmy okłaość użytkową aego strumetu, jak poaje [Lzończyk 000] jest to okłaość jaką moża uzyskać, stosując określoy strumet pomarowy jego wyposażee pomoccze w określoych warukach tereowych atmosferyczych. Przy wyzaczau szacowau okłaośc użytkowej strumetów pomarowych ależy stosować metoy testowe określoe przez Normę Męzyaroową ISO 83 Obekty buowlae strumety pomarowe metoy ustalaa okłaośc użytkowej [Pawłowsk 997]. Norma ta [Pawłowsk997] przyjmuje, że: poszczególe proceury są tak zaprojektowae, aby w zaczym stopu elmować błęy systemowe; w każej proceurze wykouje sę we sere pomarowe w różych ach warukach; okłaość użytkowa jest wyrażoa za pomocą ochylea staarowego. Tematem opracowaa bęą polowe baaa sprawzające przyatość teooltów precyzyjych THEO 00 Zessa Wl T 00 o prac żyerskch,za pomocą testów Abbe`go oraz Shapro-Wlka. Celem ocey przyatośc teooltów o wykoywaa precyzyjych pomarów kątowych wykoao pomary baawcze, które polegały a 0-krotym pomarze tego samego kąta, a wyk zestawoo w tabel tabel. PODSTAWY TEORETYCZNE TESTU ABBE`GO Za pomocą testu moża ustalć wpływ czyków systematyczych a wartość przecętą (śreą) w szeregu pomarów. W celu stwerzea zma śreej w szeregu ezależych pomarów: x, x, x3, L, x, ależy utworzyć - kolejych różc: = x + x =,, 3, L, () 68
3 Metoyka ocey sprzętu geoezyjego... Jeżel baae pomary staową próbkę z populacj ormalej X o parametrach: E ( X ) = a = σ ( ) E to: ( ) ( ) ( ) V X = E x x = V X = σ () + Neobcążoym estymatorem waracjσ jest kwarat śreego błęu określoego wzorem: m = (3) ( ) = gze wskaźk ozacza, że wartość m oblczoa jest a postawe kolejych różc (). Wartość ta jest opowekem kwaratu zwykłego błęu śreego m, oblczoego weług wzoru: m = ( x x) = v (4) = = Praktycze zastosowae metoy Abbe`go o testowaa błęów systematyczych wygląa astępująco:. oblczamy charakterystykę m wg wzoru (3),. oblczamy ochylee staarowe m wg wzoru (4), m oz 3. oblczamy loraz = τ, m 4. oczytujemy z tablc Abbe`go wartość τ oz α = τq. Jeśl τ τ, ozacza to baae pomary e zawerają błęów systematyczych. q W przypaku gy τ τ pomary są obarczoe błęam testoway q sprzęt ależy poać rektyfkacj. Oblczea o testu Abbe`go poae są:. la teooltu optyczego Theo 00 Zessa w tabel,. la teooltu elektroczego T00 Wla w tabel. 69
4 Klemes Goek, Walemar Krupńsk x g c cc Tabela. Oblczea wyków pomarów Theo 00 Zess = x x + cc v = x x v Oblczea g c cc , 50,4 x = , , 8,8 = , 4,4 m = 4, ,9 47,6 v = 07, ,9 0,8 m = 54, , 76,6 τ = 0, , 6,0 τ = 0, / τ = 0, , 6498 = τ ,9 79, , 9, ,9 4, , 46, ,9 0, , 4, ,9 8, ,9 8, ,9 98, ,9 4, ,9 79, ,9 0, , 50, ,0 07,80 70
5 x g c cc Metoyka ocey sprzętu geoezyjego... Tabela. Oblczea wyków pomarów T00 Wla = x x + cc v = x x v Oblczea g c cc x = = m = 9, v = m = 36, τ = 0, τ = 0, / τ = 0, 8 0, 6498 = τq ,
6 Klemes Goek, Walemar Krupńsk W obu przypakach, a węc la Theo 00 la T00 Wla moża stwerzć brak występowaa błęów systematyczych w pomarach, co pozwala woskować o przyatośc baaego sprzętu o wykoywaa pomarów geoezyjych. Aby upewć sę, że rozkłay błęów empryczych ww. teooltam są zgoe z rozkłaem ormalym co potwerzłoby wosk z testu Abbe`go pomary wykoae baaym sprzętem poao testowau metoą Shapro- Wlka. PODSTAWY TEORETYCZNE TESTU SHAPIRO-WILKA W teśce tym, jako statystykę testową W Shapro-Wlka la weryfkacj hpotezy o ormalośc rozkłau błęów pomarowych przyjmuje sę zmeą losową: W = a ( ) ( X X ) + ( X X ) j j ; (5) gze: X j wartośc elemetów próbk, a () stałe zależe o lczebośc próbk oraz o wartośc (zestawoe w tablcach Shapro-Wlka). Jeżel wartość W statystyk W leży poza przezałem W α ; ; W α ;, hpotezę o ormalośc rozkłau orzuca sę a pozome stotośc α. Wówczas moża baać, czy rozkła empryczy róż sę o rozkłau ormalego współczykem asymetr S lub spłaszczea e, określoych wzoram: ( x x) S = 3 x 3 (6) ( x x) e = 4 x 4 (7) 7
7 Metoyka ocey sprzętu geoezyjego... W przypaku, gy statystyka W, ależy o opsaego wyżej przezału brak postaw o orzucea baaej hpotezy, stą wosek o ormalośc rozkłau błęów, czyl o poprawośc załaa baaego sprzętu lub metoy pomarowej. Oblczea o testu Shapro-Wlka poae są:. la teooltu optyczego Theo 00 Zessa w tabel 3,. la teooltu elektroczego T00 Wla w tabel 4. Tabela 3. Test Shapro-Wlka la Theo 00 Zessa Nr X -+ -X a () a () X -+ -X 4 0,55,604 0,338 7, ,460 4, ,80, ,40, ,077 0, ,040 0,070 8,600 (8,600) = 88,07 ( X X ) = 07, 8000 j 88,07 W = = 07,8000 0,7959 Z tablc Shapro-Wlka, la α = 0,05 oczytujemy: ) W α ; = 0, 760 oraz ) W α ; = 0, 985 Statystyka W = 0,7959 ależy o przezału 0, 760 ; 0, 985. Tabela 4. Test Shapro-Wlka la T00 Wla Nr X -+ -X a () a () X -+ -X 0 0,5359 0, ,335 5, ,4 3, ,707, ,099 0, ,0539 0,67,996 (,996) = 55,308 73
8 Klemes Goek, Walemar Krupńsk ( X X ) = 690, 0000 j 55,308 W = = 0, ,0000 Z tablc Shapro-Wlka, la α = 0,05 oczytujemy : ) W α ; = 0, 760 oraz ) W α ; = 0, 985 Statystyka W = 0,763 ależy o przezału 0, 760 ; 0, 985. WNIOSKI Z przeprowazoych baań mających a celu oceę uzyskaych wyków pomaru za pomocą testów statystyczych moża sformułować astępujące wosk:. Z testu Abbe`go la The00 Zessa: statystyka τ τ q, śwaczy to o braku występowaa błęów systematyczych w pomarach wykoywaych tym teooltem.. Z testu Abbe`go la T00 Wla: jak wyżej. 3. Z testu Shapro-Wlka la The00 Zessa: poeważ statystyka W statystyk W ależy o przezału W α ; ; W α ;, śwaczy to o ormalośc rozkłau błęów pomarów wykoywaych tym teooltem. 4. Z testu Shapro-Wlka la T00 Wla: jak wyżej. 5. Z przeprowazoych baań wyka wosek ogóly, że obywa strumety spełają waruk obu testów statystyczych, a węc aają sę o wykoywaa pomarów geoezyjych. Wykoae baaa w ejszej pracy mające a celu oceę przyatośc teooltów precyzyjych o prac żyerskch za pomocą testów matematyczych staową przyczyek o wypracowaa metoolog baań ośwaczalych w geoezj żyeryjej. 74
9 BIBLIOGRAFIA Metoyka ocey sprzętu geoezyjego... Greń J. Moele zaaa statystyk matematyczej. PWN, Warszawa 970. Kamńsk W. Wybrae sposoby wykrywaa obserwacj geoezyjych obcążoych błęam grubym. Przeglą Geoezyjy Nr 4, Warszawa 00. Krupńsk W. Sposoby baaa zgoośc rozkłaów błęów ektórych pomarów geoezyjych z rozkłaam teoretyczym. Zesz. Nauk. AR w Krakowe, ser. Geoezja, 3, 83, 973. Krysck W., Bartos J., Dyczka W., Królkowska., Waslewsk M. Rachuek prawopoobeństwa statystyka matematycza w zaaach. Cz. II Statystyka matematycza. PWN Warszawa 986. Lzończyk M. Nomala okłaość strumetów pomarowych a ch okłaość użytkowa, rozważaa zwązae z lekturą ormy PN/ISO 83. Przeglą Geoezyjy Nr 3, Warszawa 000. Pawłowsk W. Proceury ustalaa okłaośc użytkowej strumetów pomarowych weług owej Polskej Normy PN/ISO 83. Przeglą Geoezyjy Nr. Warszawa 997. Pasek. Z. Wybrae przykłay zastosowań matematyczego opsu powerzch Zem. Czasopsmo Techcze 3B/995. PWN, Kraków Warszawa 995. Dr ż. Klemes Goek Dr hab. ż. Walemar Krupńsk Katera Geoezj, Uwersytet Rolczy w Krakowe ul. Balcka 53 a, Kraków telefo: () , () e-mal: rmgoek@cyf-kr.eu.pl Recezet: Prof. r hab. Zbgew Pasek 75
BADANIE POPRAWNOŚCI POMIARÓW WYKONYWANYCH PRECYZYJNYM NIWELATOREM CYFROWYM
Badae poprawośc pomarów... INFRASTRUKTURA I EKOLOGIA TERENÓW WIEJSKICH INFRASTRUCTURE AND ECOLOGY OF RURAL AREAS Nr /00, POLSKA AKADEMIA NAUK, Oddzał w Krakowe, s. 5 4 Komsja Techczej Ifrastruktury Ws
TESTY NORMALNOŚCI. ( Cecha X populacji ma rozkład normalny). Hipoteza alternatywna H1( Cecha X populacji nie ma rozkładu normalnego).
TESTY NORMALNOŚCI Test zgodośc Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład ormaly). Hpoteza alteratywa H1( Cecha X populacj e ma rozkładu ormalego). Weryfkacja powyższych hpotez za pomocą tzw. testu
Tablica Galtona. Mechaniczny model rozkładu normalnego (M10)
Tablca Galtoa. Mechaczy model rozkładu ormalego (M) I. Zestaw przyrządów: Tablca Galtoa, komplet kulek sztuk. II. Wykoae pomarów.. Wykoać 8 pomarów, wrzucając kulk pojedyczo.. Uporządkować wyk pomarów,
mgr Anna Matysiak PODSTAWOWE POJĘCIA STATYSTYCZNE
mgr Aa Matysak PODSTAWOWE POJĘCIA STATYSTYCZNE POPULACJA (ZBIOROWOŚĆ GENERALNA) zbór logcze powązaych jeostek, obektów, wyków wszystkch pomarów, p meszkańcy Polsk, stuec SGH, gospoarstwa omowe w Polsce
Planowanie eksperymentu pomiarowego I
POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak
O testowaniu jednorodności współczynników zmienności
NR 6/7/ BIULETYN INSTYTUTU HODOWLI I AKLIMATYZACJI ROŚLIN 003 STANISŁAW CZAJKA ZYGMUNT KACZMAREK Katedra Metod Matematyczych Statystyczych Akadem Rolczej, Pozań Istytut Geetyk Rośl PAN, Pozań O testowau
Prawdopodobieństwo i statystyka r.
Zadae. W ure zajduje sę 5 kul, z których 5 jest bałych czarych. Losujemy bez zwracaa kolejo po jedej kul. Kończymy losowae w momece, kedy wycągęte zostaą wszystke czare kule. Oblcz wartość oczekwaą lczby
ANALIZA DOK ADNO CI POMIARÓW WYKONYWANYCH PRECYZYJNYM TACHIMETREM ELEKTRONICZNYM W UJ CIU STATYSTYKI MATEMATYCZNEJ
INFRASTRUKTURA I EKOLOGIA TERENÓW WIEJSKICH INFRASTRUCTURE AND ECOLOGY OF RURAL AREAS Nr 3/011, POLSKA AKADEMIA NAUK, Odda w Krakowe, s. 4151 Komsja Techcej Ifrastruktury Ws ANALIZA DOK ADNO CI POMIARÓW
Niezawodność. systemów nienaprawialnych. 1. Analiza systemów w nienaprawialnych. 2. System nienaprawialny przykładowe
Nezawoość sysemów eaprawalych. Aalza sysemów w eaprawalych. Sysemy eaprawale - przykłaowe srukury ezawooścowe 3. Sysemy eaprawale - przykłay aalzy. Aalza sysemów w eaprawalych Sysem eaprawaly jes o sysem
Wyrażanie niepewności pomiaru
Wyrażae epewośc pomaru Adrzej Kubaczyk Wydzał Fzyk, Poltechka Warszawska Warszawa, 05 Iformacje wstępe Każdy pomar welkośc fzyczej dokoyway jest ze skończoą dokładoścą, co ozacza, że wyk tego pomaru dokoyway
Pomiary bezpośrednie i pośrednie obarczone błędem przypadkowym
Pomary bezpośrede pośrede obarczoe błędem przypadkowym I. Szacowae wartośc przyblŝoej graczego błędu przypadkowego a przykładze bezpośredego pomaru apęca elem ćwczea jest oszacowae wartośc przyblŝoej graczego
Badania Maszyn CNC. Nr 2
Poltechka Pozańska Istytut Techolog Mechaczej Laboratorum Badaa Maszy CNC Nr 2 Badae dokładośc pozycjoowaa os obrotowych sterowaych umerycze Opracował: Dr. Wojcech Ptaszy sk Mgr. Krzysztof Netter Pozań,
Statystyka Matematyczna Anna Janicka
Statystyka Matematycza Aa Jacka wykład II, 3.05.016 PORÓWNANIE WIĘCEJ NIŻ DWÓCH POPULACJI TESTY NIEPARAMETRYCZNE Pla a dzsaj 1. Porówywae węcej ż dwóch populacj test jedoczykowej aalzy waracj (ANOVA).
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. dr Michał Silarski
PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH dr Mchał larsk I Pracowa Fzycza IF UJ, 9.0.06 Pomar Pomar zacowae wartośc prawdzwej Bezpośred (welkość fzycza merzoa jest
Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki
tatystycza terpretacja wyków eksperymetu Małgorzata Jakubowska Katedra Chem Aaltyczej Wydzał IŜyer Materałowej Ceramk AGH Podstawowe zadae statystyk tatystyka to uwersale łatwo dostępe arzędze, które pomaga
POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1
POPULACJA I PRÓBA POPULACJĄ w statystyce matematyczej azywamy zbór wszystkch elemetów (zdarzeń elemetarych charakteryzujących sę badaą cechą opsywaą zmeą losową. Zbadae całej populacj (przeprowadzee tzw.
( X, Y ) będzie dwuwymiarową zmienną losową o funkcji gęstości
Zadae. Nech Nech (, Y będze dwuwymarową zmeą losową o fukcj gęstośc 4 x + xy gdy x ( 0, y ( 0, f ( x, y = 0 w przecwym przypadku. S = + Y V Y E V S =. =. Wyzacz ( (A 0 (B (C (D (E 8 8 7 7 Zadae. Załóżmy,
OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B
OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość
Wykład 13: Zbieżność według rozkładu. Centralne twierdzenie graniczne.
Rachuek prawopoobieństwa MA064 Wyział Elektroiki, rok aka 2008/09, sem leti Wykłaowca: r hab A Jurlewicz Wykła 3: Zbieżość weług rozkłau Cetrale twierzeie graicze Zbieżości ciągu zmieych losowych weług
W loterii bierze udział 10 osób. Regulamin loterii faworyzuje te osoby, które w eliminacjach osiągnęły lepsze wyniki:
Zadae W loter berze udzał 0 osób. Regulam loter faworyzuje te osoby, które w elmacjach osągęły lepsze wyk: Zwycęzca elmacj, azyway graczem r. otrzymuje 0 losów, Osoba, która zajęła druge mejsce w elmacjach,
Centralna Izba Pomiarów Telekomunikacyjnych (P-12) Komputerowe stanowisko do wzorcowania generatorów podstawy czasu w częstościomierzach cyfrowych
Cetrala Izba Pomarów Telekomukacyjych (P-1) Komputerowe staowsko do wzorcowaa geeratorów podstawy czasu w częstoścomerzach cyrowych Praca r 1300045 Warszawa, grudzeń 005 Komputerowe staowsko do wzorcowaa
ZASTOSOWANIE STATYSTYCZNYCH TESTÓW ZGODNO CI DO OCENY JAKO CI POMIARÓW GEODEZYJNYCH
Zastosowae statystycych testów... INFRASTRUKTURA I EKOLOGIA TERENÓW WIEJSKICH INFRASTRUCTURE AND ECOLOGY OF RURAL AREAS Nr 3/011, POLSKA AKADEMIA NAUK, Odda w Krakowe, s. 940 Komsja Techcej Ifrastruktury
RACHUNEK NIEPEWNOŚCI POMIARU
Męzaroowa Norma Oce Nepewośc Pomaru (Gue to Epresso of Ucertat Measuremets Męzaroowa Orgazacja Normalzacja ISO RACHUNEK NIEPEWNOŚCI http://phscs.st.gov/ucertat POMIARU Wrażae Nepewośc Pomaru. Przewok.
. Wtedy E V U jest równa
Prawdopodobeństwo statystyka 7.0.0r. Zadae Dwuwymarowa zmea losowa Y ma rozkład cągły o gęstośc gdy ( ) 0 y f ( y) 0 w przecwym przypadku. Nech U Y V Y. Wtedy E V U jest rówa 8 7 5 7 8 8 5 Prawdopodobeństwo
Wykład 8: Zbieżność według rozkładu. Centralne twierdzenie graniczne.
Rachuek prawopoobieństwa MA5 Wyział Elektroiki, rok aka 20/2, sem leti Wykłaowca: r hab A Jurlewicz Wykła 8: Zbieżość weług rozkłau Cetrale twierzeie graicze Zbieżości ciągu zmieych losowych weług rozkłau
ZJAZD 1. STATYSTYKA OPISOWA wstępna analiza danych
ZJAZD Przedmotem statystyk jest zberae, prezetacja oraz aalza daych opsujących zjawska losowe. Badau statystyczemu podlega próbka losowa pobraa z populacj, aczej populacj geeralej. Na podstawe uzyskaych
Zadanie 1. ), gdzie 1. Zmienna losowa X ma rozkład logarytmiczno-normalny LN (, . EX (A) 0,91 (B) 0,86 (C) 1,82 (D) 1,95 (E) 0,84
Zadae. Zmea losowa X ma rozkład logarytmczo-ormaly LN (, ), gdze E ( X e X e) 4. Wyzacz. EX (A) 0,9 (B) 0,86 (C),8 (D),95 (E) 0,84 Zadae. Nech X, X,, X0, Y, Y,, Y0 będą ezależym zmeym losowym. Zmee X,
( ) L 1. θ θ = M. Przybycień Rachunek prawdopodobieństwa i statystyka. = θ. min
Fukca warogodośc Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x;. Fukcą warogodośc dla próby x azywamy welkość: ( x; f ( x ; L Twerdzee (Cramera-Rao: Mmala wartość warac m dowolego eobcążoego
Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej
Podstawy Mary położea wskazują mejsce wartośc ajlepej reprezetującej wszystke welkośc daej zmeej. Mówą o przecętym pozome aalzowaej cechy. Średa arytmetycza suma wartośc zmeej wszystkch jedostek badaej
wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i=
ESTYMATOR WARIANCJI I DYSPERSJI Ozaczmy: µ wartość oczekwaa rozkładu gauowkego wyków pomarów (wartość prawdzwa merzoej welkośc σ dyperja rozkładu wyków pomarów wyk er pomarów (,..., Stoując metodę ajwękzej
Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki)
Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?
Prawdopodobieństwo i statystyka r.
Prawdopodobeństwo statystyka 0.06.0 r. Zadae. Ura zawera kul o umerach: 0,,,,. Z ury cągemy kulę, zapsujemy umer kulę wrzucamy z powrotem do ury. Czyość tę powtarzamy, aż kula z każdym umerem zostae wycągęta
Przykłady 8.1 : zbieżności ciągów zmiennych losowych
Rachuek rawopoobieństwa MA8 Wyział Matematyki, Matematyka Stosowaa rzykłay 8. Róże rozaje zbieżości ciągów zmieych losowych. rawa wielkich liczb. Twierzeia graicze. rzykłay 8. : zbieżości ciągów zmieych
Funkcja wiarogodności
Fukca warogodośc Defca: Nech będze daa próba losowa prosta o lczebośc z rozkładu f (x; θ. Fukcą warogodośc dla próby x azywamy welkość: ( x; θ f ( x ; θ L Uwaga: Fukca warogodośc to e to samo co łącza
Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację.
Wrażlwość oblgacj Jedym z czyków ryzyka westowaa w oblgacje jest zmeość rykowych stóp procetowych. Iżyera fasowa dyspouje metodam pozwalającym zabezpeczyć portfel przed egatywym skutkam zma stóp procetowych.
ma rozkład normalny z nieznaną wartością oczekiwaną m
Zadae Każda ze zmeych losowych,, 9 ma rozkład ormaly z ezaą wartoścą oczekwaą m waracją, a każda ze zmeych losowych Y, Y,, Y9 rozkład ormaly z ezaą wartoścą oczekwaą m waracją 4 Założoo, że wszystke zmee
będą niezależnymi zmiennymi losowymi o tym samym 2 x
Prawdopodobeństwo statystyka 8.0.007 r. Zadae. Nech,,, rozkładze z gęstoścą Oblczyć m E max będą ezależym zmeym losowym o tym samym { },,, { },,, gdy x > f ( x) = x. 0 gdy x 8 8 Prawdopodobeństwo statystyka
WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ
9 Cel ćwczea Ćwczee 9 WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANE PODCZAS ZDERZENIA CIAŁ Celem ćwczea jest wyzaczee wartośc eerg rozpraszaej podczas zderzea cał oraz współczyka restytucj charakteryzującego
STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH
STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj
STATYSTYKA MATEMATYCZNA WYKŁAD 2 ESTYMACJA PUNKTOWA
STATYSTYKA MATEMATYCZNA WYKŁAD ESTYMACJA PUNKTOWA Nech - ezay parametr rozkładu cechy X. Wartość parametru będzemy estymować (przyblżać) a podstawe elemetowej próby. - wyberamy statystykę U o rozkładze
Średnia harmoniczna (cechy o charakterze ilorazu np. Prędkość, gęstość zaludnienia)
Mary przecęte Średa arytmetycza Dla szeregu rozdzelczego cechy skokowej x k x k Średa harmocza (cechy o charakterze lorazu p. Prędkość, gęstość zaludea) x H k x Średa geometrycza x x x... G x średa arytmetycza
BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ
Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB WYKŁAD 2 BADANIE WSPÓŁZALEśNOŚCI DWÓCH CECH - ANALIZA KORELACJI PROSTEJ Matematka statstka matematcza dla rolków w SGGW Aa Rajfura, KDB Przkład.
Podstawy opracowania wyników pomiarowych, analiza błędów
Podstawy opracowaa wyków pomarowych, aalza błędów I Pracowa Fzycza IF UJ Grzegorz Zuzel Lteratura I Pracowa fzycza Pod redakcją Adrzeja Magery Istytut Fzyk UJ Kraków 2006 Wstęp do aalzy błędu pomarowego
WYZNACZANIE PRZERWY ENERGETYCZNEJ GERMANU
Fzyka cała stałeo WYZNACZANIE PRZERWY ENERGETYCZNEJ GERMANU 1. Ops teoretyczy do ćwczea zameszczoy jest a stroe www.wtc.wat.edu.pl w dzale DYDAKTYKA FIZYKA ĆWICZENIA LABORATORYJNE.. Ops układu pomaroweo
TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA
Ćwczee 8 TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA 8.. Cel ćwczea Celem ćwczea jest wyzaczee statyczego współczyka tarca pomędzy walcową powerzchą cała a opasującą je lą. Poadto a drodze eksperymetalej
Laboratorium Metod Statystycznych ĆWICZENIE 2 WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI
Laboatoum Metod tatystyczych ĆWICZENIE WERYFIKACJA HIPOTEZ I ANALIZA WARIANCJI Oacowała: Katazya tąo Weyfkaca hotez Hoteza statystycza to dowole zyuszczee dotyczące ozkładu oulac. Wyóżamy hotezy: aametycze
będą niezależnymi zmiennymi losowymi z rozkładu o gęstości
Prawdopodobeństwo statystyka 4.0.00 r. Zadae Nech... będą ezależym zmeym losowym z rozkładu o gęstośc θ f ( x) = θ xe gdy x > 0. Estymujemy dodat parametr θ wykorzystując estymator ajwększej warogodośc
L.Kowalski PODSTAWOWE TESTY STATYSTYCZNE WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH
L.Kowalsk PODSTAWOWE TESTY STATYSTYCZNE TESTY STATYSTYCZNE poteza statystycza to dowole przypuszczee dotyczące rozkładu cechy X. potezy statystycze: -parametrycze dotyczą ezaego parametru, -parametrycze
RACHUNEK NIEPEWNOŚCI POMIARU
Męzaroowa Norma Oce Nepewośc Pomaru (Gue to Epresso of Ucertat Measuremets Męzaroowa Orgazacja Normalzacja ISO) RACHUNEK NIEPEWNOŚCI http://phscs.st.gov/ucertat POMIARU Wrażae Nepewośc Pomaru. Przewok.
Weryfikacja hipotez dla wielu populacji
Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w
Wzory do wyznaczania linii na kartach Shewharta [1]
Karta Shewharta śreej śr (aalzy welokrote, > ) LC: GLO: GLK: gze: - wartość prawzwa populaj wyków - oh. staarowe la populaj wyków Typ ser : I) śr oraz LC: (śrea ogóla) GLO: GLK: Typ ser : II) śr oraz LC:
Nieparametryczne Testy Istotności
Neparametryczne Testy Istotnośc Wzory Neparametryczne testy stotnośc schemat postępowana punkt po punkce Formułujemy hpotezę główną odnoszącą sę do: zgodnośc populacj generalnej z jakmś rozkładem, lub:
Matematyczny opis ryzyka
Aalza ryzyka kosztowego robót remotowo-budowlaych w warukach epełe formac Mgr ż Mchał Bętkowsk dr ż Adrze Powuk Wydzał Budowctwa Poltechka Śląska w Glwcach MchalBetkowsk@polslpl AdrzePowuk@polslpl Streszczee
W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =
4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,
Wnioskowanie statystyczne dla korelacji i regresji.
STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...
SPRZEDAŻ PONIŻEJ KOSZTU WŁASNEGO W PRZEDSIĘBIORSTWIE WIELOASORTYMENTOWYM
ACTA UNIVERSITATIS WRATISLAVIENSIS No 37 PRZEGLĄD PRAWA I ADMINISTRACJI LXXX WROCŁAW 009 ANNA ĆWIĄKAŁA-MAŁYS WIOLETTA NOWAK Uwersytet Wrocławsk SPRZEDAŻ PONIŻEJ KOSZTU WŁASNEGO W PRZEDSIĘBIORSTWIE WIELOASORTYMENTOWYM
Średnia arytmetyczna Klasyczne Średnia harmoniczna Średnia geometryczna Miary położenia inne
Mary położea Średa arytmetycza Klasycze Średa harmocza Średa geometrycza Mary położea e Modala Kwartyl perwszy Pozycyje Medaa (kwartyl drug) Kwatyle Kwartyl trzec Decyle Średa arytmetycza = + +... + 2
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Automatyki
Poltechka Gańska Wyzał Elektrotechk Automatyk Katera Automatyk Wybrae zagaea aalzy bezpeczeństwa fukcjoalego programowalych systemów sterowaa zabezpeczeń stalacj procesowych Tomasz Barert, Kazmerz Kosmowsk,
opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn
ROZKŁAD PRAWDOPODBIEŃSTWA WIELU ZMIENNYCH LOSOWYCH W przpadku gd mam do czea z zmem losowm możem prawdopodobeństwo, ż przjmą oe wartośc,,, opsać welowmarową fukcją rozkładu gęstośc prawdopodobeństwa f(,,,.
Badania sondażowe. Estymacja parametrów Minimalna liczebność próby. Agnieszka Zięba
Baaia soażowe Estymacja parametrów Miimala liczebość próby Agieszka Zięba Zakła Baań Marketigowyc Istytut Statystyki i Demografii Szkoła Główa Halowa Estymacja parametrów Cel baaia soażowego to określeie
OKREŚLANIE NIEPEWNOŚCI POMIARÓW (poradnik do Laboratorium Fizyki)
Adrzej Kubaczyk Laboratorum Fzyk I Wydzał Fzyk Poltechka Warszawska OKREŚLANIE NIEPEWNOŚCI POMIARÓW (poradk do Laboratorum Fzyk) ROZDZIAŁ Wstęp W roku 995 z cjatywy Mędzyarodowego Komtetu Mar (CIPM) zostały
Metody statystyczne w naukach biologicznych
Metoy statystycze w aukach biologiczych 006-04-11 Wykła: Weryfikacja hipotez statystyczych. Zaaiem statystyki matematyczej jest wioskowaie o populacji geeralej a postawie populacji próbej. Wioskowaie to
Projekt ze statystyki
Projekt ze statystyki Opracowaie: - - Spis treści Treść zaia... Problem I. Obliczeia i wioski... 4 Samochó I... 4 Miary położeia... 4 Miary zmieości... 5 Miary asymetrii... 6 Samochó II... 8 Miary położeia:...
Metoda Monte-Carlo i inne zagadnienia 1
Metoda Mote-Carlo e zagadea Metoda Mote-Carlo Są przypadk kedy zamast wykoać jakś eksperymet chcelbyśmy symulować jego wyk używając komputera geeratora lczb (pseudolosowych. Wększość bblotek programów
STATYSTYKA OPISOWA WYKŁAD 3,4
STATYSTYKA OPISOWA WYKŁAD 3,4 5 Szereg rozdzelczy przedzałowy (dae pogrupowae) (stosujemy w przypadku dużej lczby epowtarzających sę daych) Przedzał (w ; w + ) Środek x& Lczebość Lczebość skumulowaa s
GEODEZJA INŻYNIERYJNA SEMESTR 6 STUDIA NIESTACJONARNE
GEODEZJ INŻNIERJN SEMESTR 6 STUDI NIESTCJONRNE CZNNIKI WPŁWJĄCE N GEOMETRIĘ UDNKU/OIEKTU Zmaę geometr budyku mogą powodować m.: czyk atmosferycze, erówomere osadae płyty fudametowej mogące skutkować wychyleem
N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.
3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy
IV. ZMIENNE LOSOWE DWUWYMIAROWE
IV. ZMIENNE LOSOWE DWUWYMIAROWE 4.. Rozkład zmeej losowej dwuwymarowej Defcja 4.. Uporządkowaą parę (X, Y) azywamy zmeą losową dwuwymarową, jeśl każda ze zmeych X Y jest zmeą losową. Defcja 4.. Fukcję
PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I PRACOWNIA FIZYCZNA INSTYTUT FIZYKI UJ BIOLOGIA 2016
PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I PRACOWNIA FIZYCZNA INTYTUT FIZYKI UJ BIOLOGIA 06 CEL ĆWICZEŃ. Obserwacja zjawsk efektów fzyczych. Doskoalee umejętośc
ANALIZA DANYCH DYSKRETNYCH
ZJAZD ESTYMACJA Jest to metoda wioskowaia statystyczego. Umożliwia oa oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej estymatorem,
WSTĘP METODY OPRACOWANIA I ANALIZY WYNIKÓW POMIARÓW
WSTĘP METODY OPRACOWANIA I ANALIZY WYNIKÓW POMIARÓW U podstaw wszystkch auk przyrodczych leży zasada: sprawdzaem wszelkej wedzy jest eksperymet, tz jedyą marą prawdy aukowej jest dośwadczee Fzyka, to auka
Statystyka i Opracowanie Danych. W7. Estymacja i estymatory. Dr Anna ADRIAN Paw B5, pok407
Statystyka i Opracowaie Daych W7. Estymacja i estymatory Dr Aa ADRIAN Paw B5, pok407 ada@agh.edu.pl Estymacja parametrycza Podstawowym arzędziem szacowaia iezaego parametru jest estymator obliczoy a podstawie
METODY ANALIZY DANYCH DOŚWIADCZALNYCH
POLITECHNIKA Ł ÓDZKA TOMASZ W. WOJTATOWICZ METODY ANALIZY DANYCH DOŚWIADCZALNYCH Wybrae zagadea ŁÓDŹ 998 Przedsłowe Specyfką teor pomarów jest jej wtóry charakter w stosuku do metod badawczych stosowaych
Pomiary parametrów napięć i prądów przemiennych
Ćwczee r 3 Pomary parametrów apęć prądów przemeych Cel ćwczea: zapozae z pomaram wartośc uteczej, średej, współczyków kształtu, szczytu, zekształceń oraz mocy czyej, berej, pozorej współczyka cosϕ w obwodach
AKADEMIA MORSKA W SZCZECINIE
AKADEMIA MORSKA W SZCZECINIE Istytut Iżyer Ruchu Morskego Zakład Urządzeń Nawgacyjych Istrukcja r 0 Wzory do oblczeń statystyczych w ćwczeach z radoawgacj Szczec 006 Istrukcja r 0: Wzory do oblczeń statystyczych
X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.
Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,
4/2. Wnioskowanie statystyczne: hipotezy 2 Statystyka w zadaniach. Małgorzata Podogrodzka
Małgorzata Podogrodzka Woskowae statystycze: hpotezy Statystyka w zadaach / Woskowae statystycze zajduje bardzo szeroke zastosowae prawe we wszystkch dzedzach auk. Osoby zgłębające wedzę z tego przedmotu
Wymiarowanie przekrojów stalowych
Wmarowae przekrojów stalowch Program służ o prostch, poręczch oblczeń ośośc przekrojów stalowch. Pozwala o a oblczea przekrojów obcążoch: mometem zgającm [km], mometem zgającm [km], słą połużą [k]. Przekroje
W praktyce często zdarza się, że wyniki obu prób możemy traktować jako. wyniki pomiarów na tym samym elemencie populacji np.
Wykład 7 Uwaga: W praktyce często zdarza sę, że wynk obu prób możemy traktować jako wynk pomarów na tym samym elemence populacj np. wynk x przed wynk y po operacj dla tego samego osobnka. Należy wówczas
Rachunek prawdopodobieństwa i statystyka matematyczna. Estymacja przedziałowa parametrów strukturalnych zbiorowości generalnej
Rachek prawdopodobeńswa saysyka maemaycza Esymacja przedzałowa paramerów srkralych zborowośc geeralej Częso zachodz syacja, że koecze jes zbadae ogół poplacj pod pewym kąem p. średa oce z pewego przedmo.
Statystyka matematyczna. Wykład II. Estymacja punktowa
Statystyka matematycza. Wykład II. e-mail:e.kozlovski@pollub.pl Spis treści 1 dyskretych Rozkłady zmieeych losowych ciągłych 2 3 4 Rozkład zmieej losowej dyskretej dyskretych Rozkłady zmieeych losowych
PDF created with FinePrint pdffactory Pro trial version WIII/1
Statystyka opsowa Statystyka zajmuje sę zasadam metodam uogólaa wyków otrzymaych z próby losowej a całą populację (czyl zborowość, z której została pobraa próba). Take postępowae azywamy woskowaem statystyczym.
INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe.
INSTRUKCJA LABORATORIUM Metrologa techcza sstem pomarowe. MTSP pomar MTSP 00 Autor: dr ż. Potr Wcślok Stroa / 5 Cel Celem ćwczea jest wkorzstae w praktce pojęć: mezurad, estmata, błąd pomaru, wk pomaru,
ZAGADNIENIE TRANSPORTOWE
ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w
Analiza danych pomiarowych
Materały pomoccze dla studetów Wydzału Chem UW Opracowała Ageszka Korgul. Aalza daych pomarowych wersja trzeca, uzupełoa Lteratura, Wstęp 3 R OZDZIAŁ SPRAWOZDANIE Z DOŚWIADCZENIA FIZYCZNEGO 4 Stałe elemety
Statystyka. Analiza zależności. Rodzaje zależności między zmiennymi występujące w praktyce: Funkcyjna
Aalza zależośc Rodzaje zależośc mędzy zmeym występujące w praktyce: Fukcyja wraz ze zmaą wartośc jedej zmeej astępuje ścśle określoa zmaa wartośc drugej zmeej (p. w fzyce: spadek swobody gt s ) tochastycza
1. WSKAŹNIKI ZDOLNOŚCI PROCESU
Opracowae to z robym zmaam zostało opublkowae pt. Współczyk zolośc procesu jeo zwązk z rozkłaem ormalym w Problemach Jakośc 2001 r 9 s. 26 1. WSKAŹNIKI ZDOLNOŚCI PROCESU Baaa procesu ze wzlęu a poatość
Estymacja przedziałowa
Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze
Słupskie Prace Geograficzne
Słupske Prace Geografcze 23 Iva Krvel Akaema Pomorska Słupsk Dara Shveovskaya Potr Shveowsk Aleksaer Volchak Brzesk Uwersytet Techczy Brześć OEA EKOLOGIZA OPTYMALEGO FUKJOOWAIA SYSTEMÓW ATURALYH I ATROPOGEIZYH
UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie
B A D A N I A O P E R A C Y J N E I D E C Y J E Nr 2 2007 Aa ĆWIĄKAŁA-MAŁYS*, Woletta NOWAK* UOGÓLNIONA ANALIA WRAŻLIWOŚCI YSKU W PREDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW Przedstawoo ajważejsze elemety
Ćwiczenie 2 ESTYMACJA STATYSTYCZNA
Ćwiczeie ETYMACJA TATYTYCZNA Jest to metoda wioskowaia statystyczego. Umożliwia oszacowaie wartości iteresującego as parametru a podstawie badaia próbki. Estymacja puktowa polega a określeiu fukcji zwaej
TESTY LOSOWOŚCI. Badanie losowości próby - test serii.
TESTY LOSOWOŚCI Badaie losowości próby - test serii. W wielu zagadieiach wioskowaia statystyczego istotym założeiem jest losowość próby. Prostym testem do weryfikacji tej własości jest test serii. 1 Dla
Modelowanie i Analiza Danych Przestrzennych
Moelowanie i Analiza anych Przestrzennych Wykła Anrzej Leśniak Katera Geoinformatyki i Informatyki Stosowanej Akaemia Górniczo-utnicza w Krakowie Prawopoobieństwo i błą pomiarowy Jak zastosować rachunek
Laboratorium z Biomechatroniki Ćwiczenie 3 Wyznaczanie położenia środka masy ciała człowieka za pomocą dźwigni jednostronnej
Wydzał: Mechaczy Techologczy Keruek: Grupa dzekańska: Semestr: perwszy Dzeń laboratorum: Godza: Laboratorum z Bomechatrok Ćwczee 3 Wyzaczae położea środka masy cała człoweka za pomocą dźwg jedostroej 1.
POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4
POZECHNE KRAJOE ZAADY YCENY (PKZ) KRAJOY TANDARD YCENY PECJALITYCZNY NR 4 K 4 YCENA ŁUŻEBNOŚCI PRZEYŁU I OKREŚLANIE KOTY YNAGRODZENIA ZA BEZUMONE KORZYTANIE Z NIERUCHOMOŚCI PRZY INETYCJACH LINIOYCH 1.
Przybliżone zapytania do baz danych z akceleracją obliczeń rozkładów prawdopodobieństwa
Przyblżoe zapytaa o baz aych z akceleracą oblczeń rozkłaów prawopoobeństwa Wtol Arzeewsk Poltechka Pozańska e mal: Wtol.Arzeewsk@cs.put.poza.pl Artur Gramack, Jarosław Gramack Uwersytet Zeloogórsk e mal:
Wykład 1. Andrzej Leśniak KGIS, GGiOŚ AGH. Cele. Zaprezentowanie praktycznego podejścia do analizy danych (szczególnie danych środowiskowych)
Analiza anych śroowiskowych III rok OŚ Wykła 1 Anrzej Leśniak KGIS, GGiOŚ AGH Cele Zaprezentowanie praktycznego poejścia o analizy anych (szczególnie anych śroowiskowych) Zaznajomienie z postawowymi (!!!)
65120/ / / /200
. W celu zbadana zależnośc pomędzy płcą klentów ch preferencjam, wylosowano kobet mężczyzn zadano m pytane: uważasz za lepszy produkt frmy A czy B? Wynk były następujące: Odpowedź Kobety Mężczyźn Wolę
[, ] [, ] [, ] ~ [23, 2;163,3] 19,023 2,7
6. Przez 0 losowo wybrayh d merzoo zas dojazdu do pray paa A uzyskują próbkę x,..., x 0. Wyk przedstawały sę astępująo: jest to próbka losowa z rozkładu 0 0 x 300, 944. x Zakładamy, że N ( µ, z ezaym parametram