1. WSKAŹNIKI ZDOLNOŚCI PROCESU

Wielkość: px
Rozpocząć pokaz od strony:

Download "1. WSKAŹNIKI ZDOLNOŚCI PROCESU"

Transkrypt

1 Opracowae to z robym zmaam zostało opublkowae pt. Współczyk zolośc procesu jeo zwązk z rozkłaem ormalym w Problemach Jakośc 2001 r 9 s WSKAŹNIKI ZDOLNOŚCI PROCESU Baaa procesu ze wzlęu a poatość o wytwarzaa wyrobów poza przyjętą toleracją określa sę weloma róworzęym wskaźkam ajczęścej stosowae to C p C pk określające: perwszy, a le baay proces potraf sprostać wymaaom szerokośc pasa toleracj co azywae jest precyzją procesu oraz ru a le śroek pasa toleracj pokrywa sę ze śreą wartoścą baaeo parametru (p. rubość taśmy proukowaych wyrobów co azywae jest okłaoścą procesu. Wskaźk C p jest szerokoścą pasa toleracj oesoą o sześcokrotej waracj baaeo parametru czyl zakresu w którym powo wystąpć 99,5% wyków pomarów. C p jest welkoścą bezwymarową wyos. USL LSL C p 6 Wskaźk C pk jest stosukem mejszej olełoścą pomęzy wartoścą śreą a brzeem toleracj oesoą o jeej stroy zakresu występowaa 99,5% wyków. C pk jest welkoścą bezwymarową wyos m( USL X, X LSL C pk 3 ze: USL = órej racy toleracj ( p. rubośc taśmy LSL= olej racy toleracj ( p. rubośc taśmy = ochyleu staarowemu czyl merze rozrzutu wyków baaeo parametru,który oblcza sę jak pożej 2 ( x x 1 1 x śrea arytmetycza wyków pomaru baaeo parametru, lczoa jak pożej X x 1 Wymaaa procesu powoują że la zwększea precyzj ążymy by wartość C p była jak ajwększa oraz la zwększea okłaośc by C pk = C p. Zastępczo zamast powyższych wskaźków są stosowae wskaźk: k określające okłaość k p określające precyzje, wyzaczae w astępujący, może barzej czytely sposób. Wskaźk precyzj procesu k p jest to szerokość pasa toleracj w jeostkach waracj. Welkość bezwymarowa, la procesów okłaych jest ystrybuatą rozkłau ormaleo. USL LSL k p Wskaźk okłaośc procesu k jest olełoścą śroka pasa toleracj o wartośc śreej baaeo parametru proukowaych wyrobów. Poaway jest w jeostkach mary

2 baaeo parametru określa o le ależy zmeć ustawee maszyy lub procesu by proces był okłay. Wskaźk okłaośc jest lczoy jak pożej. USL LSL k X 2 Poobe jak poprzeo la zwększea precyzj procesu ążymy by wskaźk k p osąał wartośc maksymale atomast la zwększea okłaośc ążymy by k było jak ajblższe zeru. 2. Wartośc wskaźków Wartość opsywaych wskaźków la różych prouktów e jest stała zależy o wymaań stawaych proukowaym wyrobom tak a oół C p jest rówe 1 lub maksymale1,33 a C pk możlwe blske C p. Opowee wymaaa la wskaźków k są: k p = 6 lub 8 k możlwe blske zeru. Wskaźk zolośc procesu są merkam pośreczącym pomęzy statystyczym oszacowaem rozrzutu wyków z tych procesów a wymoam w postac toleracj arzucoym a proces przez oborcę.buowa tych wskaźków zwązaa jest z rozkłaem ormalym zakres ch stosowaa wyka z zakresu rozrzutu wyków zoeo z rozkłaem ormalym. Isteją ścsłe zależośc łączące rozkła ormaly z przytoczoym wskaźkam Tab. 9. W warukach proukcyjych ajwyoej wązać ejsze wskaźkam z loścą lub prawopoobeństwem przekroczea toleracj o óry α o ołu α. Całkowte prawopoobeństwo przekroczea toleracj α jest rówe ch sume. α = α + α Tab.9 Zależość wskaźków precyzj o prawopoobeństwa wystąpea wybraków α Pozom wybraków% α C p k p 5 0, ,92 2 0,02 0,78 4,66 1 0,01 0,86 5,16 0,5 0,005 0,94 5,62 0,2 0,002 1,03 6,18 0,1 0,001 1,10 6,58 0,05 0,0005 1,14 6,86 0,01 0,0001 1,30 7,78 0,001 0, ,47 8,84 Powązae wartośc wskaźków wsau z jakoścą wyrobów końcowych w zależośc o ch stopa skomplkowaa la okłaeo procesu C pk = C p, lub k = 0 przestawoo przykłaowo w tab. 10. Sprawzamy usterkowość skomplkowaeo urzązea p. samochou proukowaeo z elemetów o wymaaej la proukcj każeo z elemetów teo samochou precyzj C p okłaośc C pk = C p oraz poobe oblczea wykoajmy a przykła la. roweru o 100 elemetach wykoaych w tych samych wymaań.wyk oblczeń przestawoo w tablcy pożej. Tab.10 Prawopoobeństwo braku usterek w wyrobe w zależośc o lośc elemetów wskaźka C p

3 C p % wybraków wsau % samochoów bez wa % rowerów bez wa 1, ,000 81,9 1,10 0,1 0,000 90,5 1,14 0,05 0,003 95,1 1,30 0,01 20,2 99,0 1,47 0,001 85,2 99,9 Jak wać z aych w tablcy praktycze e steje możlwość wykoaa samochou bez wa przy C p < 1,14.Gy przyjmemy reżm proukcj określoy przez C p = 1,30 lość samochoów bez wa wyos zalewe około 20. Natomast urzązea mej skomplkowae buowae ze 100 tak samo wykoaych elemetów a przykła rowery są w efekce w 99% bez usterek. Wyka zatem potrzeba stosowaa różych wymaań oośe opuszczalej walwośc elemetów skłaowych. Czykam o tym ecyującym są zarówo wymaay pozom ezawoośc wyrobu,stopeń skomplkowaa a także koszty stosowaa opoweo zawyżoych wymaań. 3. Wskaźk la operacj, proukcj wyrobu Wskaźk zolośc ooszą sę zarówo o pojeyczych operacj wybraej własośc wyrobu lub półwyrobu jak też la, rup operacj, procesu czy całej techolo. Oosć sę moą także o zestawu własośc wyrobu. Wskaźk te la rozkłau ormaleo zwązae są z pozomem walwośc wyrobu tak węc w marę postępowaa procesu aawaa wyrobow wymaaych własośc pozom wa bęze wzrastał. Np. 1% proukowaej taśmy e ma wymaaej rubośc to sprawzając po cęcu szerokość taśmy możemy lczyć sę z tym że pozom wybraków wzrośe o taśmę e spełającą wymaań szerokośc p. o 2%. Stą w marę wzrostu lośc oceaych parametrów a co za tym ze lośc operacj wpływających a te własośc baae wskaźk bęą uleały poorszeu. Czyoścą poprawającą te wskaźk jest atomast kotrola usuwająca walwe wyroby. Rozróżć zatem ależy wskaźk użytecze la kleta a opsujące proukt wskaźk użytecze la kotrol procesu opsujące poszczeóle operacje proces czy całą proukcję. 4. Zwązk wskaźków z rozkłaem ormalym Wykres rozkłau ormaleo prezetoway a rys. 1 przestawa rozrzut wyków baań prouktów poaych kotrol z zazaczeem pasa toleracj określoeo śrokem oraz órą olą racą. Całka z krzywej opsującej ęstość prawopoobeństwa prezetująca pole po krzywą jest prawopoobeństwem wystąpea wyku w przezale o racach rówych racom całk. Tak węc całka lczoa o olej o órej racy pasa toleracj jest prawopoobeństwem otrzymaa wyrobu obreo. Całka lczoa o - o olej racy toleracj = α jest prawopoobeństwem otrzymaa wyrobu o własoścach mejszych o opuszczalych, a całka lczoa o órej racy toleracj o + = α jest prawopoobeństwem otrzymaa wyrobu o własoścach wększych o opuszczalych. Prawopoobeństwo wystąpea wybraku jest zatem sumą wyos: α = α + α x x Zmea z jest tzw. zmeą staaryzowaą oblczaa jest z zależośc z ze x jest wartoścą pomarową. Zając zmeą staaryzowaą z la brzeów przezału z z możemy poprzez całkowae F(z w tym przezale wylczyć wartośc prawopoobeństwa α la baaeo

4 przezału. Operacje tą możemy wykoywać także owrote czyl la założoeo prawopoobeństwa α jeeo z brzeów przezału wylczyć ru brze. Rys. 1 Rozkła ormaly z aesoym racam toleracj Zmee staaryzowae la rac toleracj Z = (LSL- x / σ oraz Z = (USL- x / σ Wskaźk precyzj C p = (Z Z /6 lub k Z Z Wskaźk okłaośc m( Z, Z C pk lub k X ( Z Z 3 α = α + α = 1-F(z + F(z p 5. Wskaźk la procesów rówolełych W przypaku y wyroby są wykoywae a klku rówolele pracujących urzązeach a wskaźk precyzj tych urzązeń e są jeakowe wtey strumeń wyrobów pochozący z tych urzązeń e jest jeoroy. Występuje zatem potrzeba ocey całośc strumea wyrobów przyjęca wypakoweo wskaźka precyzj. Rozwązae take wykouje sę poprzez oceę walwośc wyrobów z poszczeólych urzązeń a suma tych wa oesoa o całkowtej proukcj jest pozomem walwośc strumea wszystkch wyrobów. Ozaczając przez : α pozom wa proukcj z urzązea lość wyproukowaych wyrobów przez urzązee w lość walwych wyrobów z urzązea u lość proukujących urzązeń α c pozom wa la całej proukcj Otrzymamy la strumea wyrobów astępujący zależość opsującą pozom wa c u 1 Całka z ęstośc prawopoobeństwa wystąpea prouktów poza racą toleracj wyos :

5 F(z = 1- α c Z tablc ystrybuaty rozkłau ormaleo wyzaczamy zmeą staaryzowaą z Następe przyjmując rozkła wa p. symetryczy wzlęem założoej toleracj otrzymamy z = -z = z Przy takch założeach wskaźk precyzj la całośc proukowaych wyrobów wyos : C p = z/3 lub k p =2z 6. Wskaźk la prouktów o welu kotrolowaych parametrach Wększość wyrobów ocea sę w e jeej a klku welkośc p. szerokość, rubość, jakość powerzch tp. Co wymaa kłopotlweo stosowaa klku wskaźków precyzj. Stą steje potrzeba zastąpea welu wskaźków zolośc procesu proukcyjeo jeym. Empryczy rozkła wyków typu wyrób obry,wyrób zły jest zasaczo rozkłaem wumaowym. Zacza lość wyków tworząca te rozkła powouje że jest możlwym zastąpee o rozkłaem ormalym co zezwala otrzymać zależość a wskaźk precyzj C p la wyrobów o welu parametrach kotrolowaych. Przyjmując ozaczea: α pozom wa proukcj la parametru k lość kotrolowaych urzązeń α k pozom wa po uwzlęeu wszystkch kotrolowaych parametrów otrzymamy 1 (1 k Przelczea wartość α k a C p wykouje sę poprzez wyzaczee wartośc z a astępe użyca zależośc opsaych w poprzem rozzale Zwązk wskaźków z rozkłaem ormalym. Poższe wzory prezetują te zależośc α =2(1-F(3Cp Cp=(F -1 (1-alfa/2/3 la Cp =Cpk ; F(x ystrybuata ; F -1 (x fukcja owrota Cp alfa % alfa 0,5 0, , ,6 0, , ,7 0, , ,8 0, , ,9 0, , ,0027 0, ,1 0, , ,2 0, , ,3 9,62E-05 0, ,4 2,67E-05 0, ,5 6,8E-06 0, ,6 1,59E-06 0, ,7 3,4E-07 3,4E-05

mgr Anna Matysiak PODSTAWOWE POJĘCIA STATYSTYCZNE

mgr Anna Matysiak PODSTAWOWE POJĘCIA STATYSTYCZNE mgr Aa Matysak PODSTAWOWE POJĘCIA STATYSTYCZNE POPULACJA (ZBIOROWOŚĆ GENERALNA) zbór logcze powązaych jeostek, obektów, wyków wszystkch pomarów, p meszkańcy Polsk, stuec SGH, gospoarstwa omowe w Polsce

Bardziej szczegółowo

Tablica Galtona. Mechaniczny model rozkładu normalnego (M10)

Tablica Galtona. Mechaniczny model rozkładu normalnego (M10) Tablca Galtoa. Mechaczy model rozkładu ormalego (M) I. Zestaw przyrządów: Tablca Galtoa, komplet kulek sztuk. II. Wykoae pomarów.. Wykoać 8 pomarów, wrzucając kulk pojedyczo.. Uporządkować wyk pomarów,

Bardziej szczegółowo

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej

Miary położenia wskazują miejsce wartości najlepiej reprezentującej wszystkie wielkości danej zmiennej. Mówią o przeciętnym poziomie analizowanej Podstawy Mary położea wskazują mejsce wartośc ajlepej reprezetującej wszystke welkośc daej zmeej. Mówą o przecętym pozome aalzowaej cechy. Średa arytmetycza suma wartośc zmeej wszystkch jedostek badaej

Bardziej szczegółowo

METODYKA OCENY SPRZĘTU GEODEZYJNEGO ZA POMOCĄ TESTÓW STATYSTYKI MATEMATYCZNEJ

METODYKA OCENY SPRZĘTU GEODEZYJNEGO ZA POMOCĄ TESTÓW STATYSTYKI MATEMATYCZNEJ Metoyka ocey sprzętu geoezyjego... INFRASTRUKTURA I EKOLOGIA TERENÓW WIEJSKICH INFRASTRUCTURE AND ECOLOGY OF RURAL AREAS Nr 6/00, POLSKA AKADEMIA NAUK, Ozał w Krakowe, s. 67 75 Komsja Techczej Ifrastruktury

Bardziej szczegółowo

Badanie własności sygnałów akustycznych w dziedzinie czasu zastosowanie poziomów LEQ i SEL w badaniach hałasu drogowego.

Badanie własności sygnałów akustycznych w dziedzinie czasu zastosowanie poziomów LEQ i SEL w badaniach hałasu drogowego. MW Ćwczee Nr /5 Dr ż.taeusz Wszołek taeusz.wszolek@ah.eu.pl, \\alaxy.uc.ah.eu.pl\~twszolek twszolek@mal.com ares o wysyłaa sprawozań! Iżyera akustycza, Merctwo wbroakustycze Ćwczee r. Baae własośc syałów

Bardziej szczegółowo

Planowanie eksperymentu pomiarowego I

Planowanie eksperymentu pomiarowego I POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA ENERGETYKI INSTYTUT MASZYN URZĄDZEŃ ENERGETYCZNYCH Plaowae eksperymetu pomarowego I Laboratorum merctwa (M 0) Opracował: dr ż. Grzegorz Wcak

Bardziej szczegółowo

TESTY NORMALNOŚCI. ( Cecha X populacji ma rozkład normalny). Hipoteza alternatywna H1( Cecha X populacji nie ma rozkładu normalnego).

TESTY NORMALNOŚCI. ( Cecha X populacji ma rozkład normalny). Hipoteza alternatywna H1( Cecha X populacji nie ma rozkładu normalnego). TESTY NORMALNOŚCI Test zgodośc Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład ormaly). Hpoteza alteratywa H1( Cecha X populacj e ma rozkładu ormalego). Weryfkacja powyższych hpotez za pomocą tzw. testu

Bardziej szczegółowo

5. OPTYMALIZACJA NIELINIOWA

5. OPTYMALIZACJA NIELINIOWA 5. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często, że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też, oprócz lowych zadań decyzyjych, formułujemy także elowe

Bardziej szczegółowo

Niezawodność. systemów nienaprawialnych. 1. Analiza systemów w nienaprawialnych. 2. System nienaprawialny przykładowe

Niezawodność. systemów nienaprawialnych. 1. Analiza systemów w nienaprawialnych. 2. System nienaprawialny przykładowe Nezawoość sysemów eaprawalych. Aalza sysemów w eaprawalych. Sysemy eaprawale - przykłaowe srukury ezawooścowe 3. Sysemy eaprawale - przykłay aalzy. Aalza sysemów w eaprawalych Sysem eaprawaly jes o sysem

Bardziej szczegółowo

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość

Bardziej szczegółowo

Centralna Izba Pomiarów Telekomunikacyjnych (P-12) Komputerowe stanowisko do wzorcowania generatorów podstawy czasu w częstościomierzach cyfrowych

Centralna Izba Pomiarów Telekomunikacyjnych (P-12) Komputerowe stanowisko do wzorcowania generatorów podstawy czasu w częstościomierzach cyfrowych Cetrala Izba Pomarów Telekomukacyjych (P-1) Komputerowe staowsko do wzorcowaa geeratorów podstawy czasu w częstoścomerzach cyrowych Praca r 1300045 Warszawa, grudzeń 005 Komputerowe staowsko do wzorcowaa

Bardziej szczegółowo

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki)

Podstawy analizy niepewności pomiarowych (I Pracownia Fizyki) Podstawy aalzy epewośc pomarowych (I Pracowa Fzyk) Potr Cygak Zakład Fzyk Naostruktur Naotecholog Istytut Fzyk UJ Pok. 47 Tel. 0-663-5838 e-mal: potr.cygak@uj.edu.pl Potr Cygak 008 Co to jest błąd pomarowy?

Bardziej szczegółowo

Podstawy opracowania wyników pomiarowych, analiza błędów

Podstawy opracowania wyników pomiarowych, analiza błędów Podstawy opracowaa wyków pomarowych, aalza błędów I Pracowa Fzycza IF UJ Grzegorz Zuzel Lteratura I Pracowa fzycza Pod redakcją Adrzeja Magery Istytut Fzyk UJ Kraków 2006 Wstęp do aalzy błędu pomarowego

Bardziej szczegółowo

3. OPTYMALIZACJA NIELINIOWA

3. OPTYMALIZACJA NIELINIOWA Wybrae zaadea badań operacyjych dr ż. Zbew Tarapata 3. OPTYMALIZACJA NIELINIOWA Zdarza sę dość często że zależośc występujące w aalzowaych procesach (p. ospodarczych) mają charakter elowy. Dlateo też oprócz

Bardziej szczegółowo

Średnia arytmetyczna Klasyczne Średnia harmoniczna Średnia geometryczna Miary położenia inne

Średnia arytmetyczna Klasyczne Średnia harmoniczna Średnia geometryczna Miary położenia inne Mary położea Średa arytmetycza Klasycze Średa harmocza Średa geometrycza Mary położea e Modala Kwartyl perwszy Pozycyje Medaa (kwartyl drug) Kwatyle Kwartyl trzec Decyle Średa arytmetycza = + +... + 2

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 7-8 Stasław Cchock Natala Nehreecka Zajęca 7-8 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartość oczekwaa eocążoość estymatora Waracja

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska Statystyka Iżyerska dr hab. ż. Jacek Tarasuk AGH, WFIS 013 Wykład 3 DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE, PODSTAWY ESTYMACJI Dwuwymarowa, dyskreta fukcja rozkładu rawdoodobeństwa, Rozkłady brzegowe

Bardziej szczegółowo

Wyrażanie niepewności pomiaru

Wyrażanie niepewności pomiaru Wyrażae epewośc pomaru Adrzej Kubaczyk Wydzał Fzyk, Poltechka Warszawska Warszawa, 05 Iformacje wstępe Każdy pomar welkośc fzyczej dokoyway jest ze skończoą dokładoścą, co ozacza, że wyk tego pomaru dokoyway

Bardziej szczegółowo

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację.

Jego zależy od wysokości i częstotliwości wypłat kuponów odsetkowych, ceny wykupu, oczekiwanej stopy zwrotu oraz zapłaconej ceny za obligację. Wrażlwość oblgacj Jedym z czyków ryzyka westowaa w oblgacje jest zmeość rykowych stóp procetowych. Iżyera fasowa dyspouje metodam pozwalającym zabezpeczyć portfel przed egatywym skutkam zma stóp procetowych.

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1

POPULACJA I PRÓBA. Próba reprezentatywna. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH 5 1 POPULACJA I PRÓBA POPULACJĄ w statystyce matematyczej azywamy zbór wszystkch elemetów (zdarzeń elemetarych charakteryzujących sę badaą cechą opsywaą zmeą losową. Zbadae całej populacj (przeprowadzee tzw.

Bardziej szczegółowo

INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe.

INSTRUKCJA LABORATORIUM Metrologia techniczna i systemy pomiarowe. INSTRUKCJA LABORATORIUM Metrologa techcza sstem pomarowe. MTSP pomar MTSP 00 Autor: dr ż. Potr Wcślok Stroa / 5 Cel Celem ćwczea jest wkorzstae w praktce pojęć: mezurad, estmata, błąd pomaru, wk pomaru,

Bardziej szczegółowo

Materiały do wykładu 7 ze Statystyki

Materiały do wykładu 7 ze Statystyki Materał do wkładu 7 ze Statstk Aalza ZALEŻNOŚCI pomędz CECHAMI (Aalza KORELACJI REGRESJI) korelacj wkres rozrzutu (korelogram) rodzaje zależośc (brak, elowa, lowa) pomar sł zależośc lowej (współczk korelacj

Bardziej szczegółowo

wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i=

wyniki serii n pomiarów ( i = 1,..., n) Stosując metodę największej wiarygodności możemy wykazać, że estymator wariancji 2 i= ESTYMATOR WARIANCJI I DYSPERSJI Ozaczmy: µ wartość oczekwaa rozkładu gauowkego wyków pomarów (wartość prawdzwa merzoej welkośc σ dyperja rozkładu wyków pomarów wyk er pomarów (,..., Stoując metodę ajwękzej

Bardziej szczegółowo

AKADEMIA MORSKA W SZCZECINIE

AKADEMIA MORSKA W SZCZECINIE AKADEMIA MORSKA W SZCZECINIE Istytut Iżyer Ruchu Morskego Zakład Urządzeń Nawgacyjych Istrukcja r 0 Wzory do oblczeń statystyczych w ćwczeach z radoawgacj Szczec 006 Istrukcja r 0: Wzory do oblczeń statystyczych

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 7 Krzywa retowośc, zadaa (mat. f.), marża w hadlu, NPV IRR, Ustawa o kredyce kosumeckm, fukcje fasowe Excela Krzywa retowośc (dochodowośc) Yeld Curve Krzywa ta jest grafczym

Bardziej szczegółowo

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych

Statystyczna analiza miesięcznych zmian współczynnika szkodowości kredytów hipotecznych dr Ewa Wycka Wyższa Szkoła Bakowa w Gdańsku Wtold Komorowsk, Rafał Gatowsk TZ SKOK S.A. Statystycza aalza mesęczych zma współczyka szkodowośc kredytów hpoteczych Wskaźk szkodowośc jest marą obcążea kwoty/lczby

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ ). W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

... MATHCAD - PRACA 1/A

... MATHCAD - PRACA 1/A Nazwsko Imę (drukowaym) KOD: Dzeń+godz. (p. Śr) MATHCAD - PRACA /A. Stablcuj fukcję: f() = s() + /6. w przedzale od a do b z podzałem a rówych odcków. Sporządź wykres f() sprawdź, le ma mejsc zerowych.

Bardziej szczegółowo

ZMIENNA LOSOWA JEDNOWYMIAROWA POJĘCIE ZMIENNEJ LOSOWEJ

ZMIENNA LOSOWA JEDNOWYMIAROWA POJĘCIE ZMIENNEJ LOSOWEJ ZMIENNA LOSOWA JEDNOWYMIAROWA POJĘCIE ZMIENNEJ LOSOWEJ Podstawowe pojęca rachuu prawdopodobeństwa: zdarzee losowe, zdarzee elemetare, prawdopodobeństwo, zbór zdarzeń elemetarych. Def. Nech E będze zborem

Bardziej szczegółowo

Przykłady 8.1 : zbieżności ciągów zmiennych losowych

Przykłady 8.1 : zbieżności ciągów zmiennych losowych Rachuek rawopoobieństwa MA8 Wyział Matematyki, Matematyka Stosowaa rzykłay 8. Róże rozaje zbieżości ciągów zmieych losowych. rawa wielkich liczb. Twierzeia graicze. rzykłay 8. : zbieżości ciągów zmieych

Bardziej szczegółowo

dev = y y Miary położenia rozkładu Wykład 9 Przykład: Przyrost wagi owiec Odchylenia Mediana próbkowa: Przykłady Statystyki opisowe Σ dev i =?

dev = y y Miary położenia rozkładu Wykład 9 Przykład: Przyrost wagi owiec Odchylenia Mediana próbkowa: Przykłady Statystyki opisowe Σ dev i =? Mary położea rozkładu Wykład 9 Statystyk opsowe Średa z próby, mea(y) : symbol y ozacza lczbę; arytmetyczą średą z obserwacj Symbol Y ozacza pojęce średej z próby Średa jest środkem cężkośc zboru daych

Bardziej szczegółowo

Wymiarowanie przekrojów stalowych

Wymiarowanie przekrojów stalowych Wmarowae przekrojów stalowch Program służ o prostch, poręczch oblczeń ośośc przekrojów stalowch. Pozwala o a oblczea przekrojów obcążoch: mometem zgającm [km], mometem zgającm [km], słą połużą [k]. Przekroje

Bardziej szczegółowo

KALIBRACJA NIE ZAWSZE PROSTA

KALIBRACJA NIE ZAWSZE PROSTA KALIBRACJA NIE ZAWSZE PROSTA Potr Koeczka Katedra Chem Aaltyczej Wydzał Chemczy Poltechka Gdańska S w S C -? C w Sygał - astępstwo kosekwecja przeprowadzoego pomaru główy obekt zateresowań aaltyka. Cel

Bardziej szczegółowo

Statystyczne charakterystyki liczbowe szeregu

Statystyczne charakterystyki liczbowe szeregu Statystycze charakterystyk lczbowe szeregu Aalzę badaej zmeej moża uzyskać posługując sę parametram opsowym aczej azywaym statystyczym charakterystykam lczbowym szeregu. Sytetycza charakterystyka zborowośc

Bardziej szczegółowo

Wyznaczanie oporu naczyniowego kapilary w przepływie laminarnym.

Wyznaczanie oporu naczyniowego kapilary w przepływie laminarnym. Wyzaczae oporu aczyowego kaplary w przepływe lamarym. I. Przebeg ćwczea. 1. Zamkąć zawór odcający przewody elastycze a astępe otworzyć zawór otwerający dopływ wody do przewodu kaplarego. 2. Ustawć zawór

Bardziej szczegółowo

Pozostałe wielkości (wskaźnik wytrzymałości, moment statyczny, promień bezwładności) są wielkościami które można wyznaczyć z podstawowych. = 2.

Pozostałe wielkości (wskaźnik wytrzymałości, moment statyczny, promień bezwładności) są wielkościami które można wyznaczyć z podstawowych. = 2. OBLICZNIE CHRKTERYSTYK GEOMETRYCZNYCH PRZEKROÓW Do potawowc welkośc tworzącc paket ac zwa caraktertką geometrczą przekroju ależ: - pole przekroju - położee śroka cężkośc (lub x w płazczźe protopałej) -

Bardziej szczegółowo

Arytmetyka finansowa Wykład z dnia 30.04.2013

Arytmetyka finansowa Wykład z dnia 30.04.2013 Arytmetyka fnansowa Wykła z na 30042013 Wesław Krakowak W tym rozzale bęzemy baać wartość aktualną rent pewnych, W szczególnośc, wartość obecną renty, a równeż wartość końcową Do wartośc końcowej renty

Bardziej szczegółowo

O nauczaniu oceny niepewności standardowej

O nauczaniu oceny niepewności standardowej 8 O nauczaniu oceny niepewności stanarowej Henryk Szyłowski Wyział Fizyki UAM, Poznań PROBLEM O lat 90. ubiegłego wieku istnieją mięzynaroowe normy oceny niepewności pomiarowych [, ], zawierające jenolitą

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadae. W ure zajduje sę 5 kul, z których 5 jest bałych czarych. Losujemy bez zwracaa kolejo po jedej kul. Kończymy losowae w momece, kedy wycągęte zostaą wszystke czare kule. Oblcz wartość oczekwaą lczby

Bardziej szczegółowo

Portfel złożony z wielu papierów wartościowych

Portfel złożony z wielu papierów wartościowych Portfel westycyy ćwczea Na odst. Wtold Jurek: Kostrukca aalza, rozdzał 4 dr Mchał Kooczyńsk Portfel złożoy z welu aerów wartoścowych. Zwrot ryzyko Ozaczea: w kwota ulokowaa rzez westora w aery wartoścowe

Bardziej szczegółowo

Analiza wyniku finansowego - analiza wstępna

Analiza wyniku finansowego - analiza wstępna Aalza wyku fasowego - aalza wstępa dr Potr Ls Welkość wyku fasowego determuje: etowość przedsęborstwa Welkość podatku dochodowego Welkość kaptałów własych Welkość dywded 1 Aalza wyku fasowego ma szczególe

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5

Stanisław Cichocki. Natalia Nehrebecka. Zajęcia 5 Stasław Cchock Natala Nehreecka Zajęca 5 . Testowae łączej stotośc wyraych regresorów. Założea klasyczego modelu regresj lowej 3. Własośc estymatora MNK w KMRL Wartośd oczekwaa eocążoośd estymatora Waracja

Bardziej szczegółowo

Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki

Podstawowe zadanie statystyki. Statystyczna interpretacja wyników eksperymentu. Zalety statystyki II. Zalety statystyki tatystycza terpretacja wyków eksperymetu Małgorzata Jakubowska Katedra Chem Aaltyczej Wydzał IŜyer Materałowej Ceramk AGH Podstawowe zadae statystyk tatystyka to uwersale łatwo dostępe arzędze, które pomaga

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I PRACOWNIA FIZYCZNA INSTYTUT FIZYKI UJ BIOLOGIA 2016

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I PRACOWNIA FIZYCZNA INSTYTUT FIZYKI UJ BIOLOGIA 2016 PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I PRACOWNIA FIZYCZNA INTYTUT FIZYKI UJ BIOLOGIA 06 CEL ĆWICZEŃ. Obserwacja zjawsk efektów fzyczych. Doskoalee umejętośc

Bardziej szczegółowo

WSTĘP METODY OPRACOWANIA I ANALIZY WYNIKÓW POMIARÓW

WSTĘP METODY OPRACOWANIA I ANALIZY WYNIKÓW POMIARÓW WSTĘP METODY OPRACOWANIA I ANALIZY WYNIKÓW POMIARÓW U podstaw wszystkch auk przyrodczych leży zasada: sprawdzaem wszelkej wedzy jest eksperymet, tz jedyą marą prawdy aukowej jest dośwadczee Fzyka, to auka

Bardziej szczegółowo

1. Relacja preferencji

1. Relacja preferencji dr Mchał Koopczyńsk EKONOMIA MATEMATYCZNA Wykłady, 2, 3 (a podstawe skryptu r 65) Relaca preferec koszyk towarów: przestrzeń towarów: R + = { x R x 0} x = ( x,, x ) X X R+ x 0 x 0 =, 2,, x~y xf y x y x

Bardziej szczegółowo

Monika Jeziorska - Pąpka Uniwersytet Mikołaja Kopernika w Toruniu

Monika Jeziorska - Pąpka Uniwersytet Mikołaja Kopernika w Toruniu DYNAMICZNE MODELE EKONOMERYCZNE X Ogólopolske Semarum Naukowe, 4 6 wrześa 2007 w oruu Katedra Ekoometr Statystyk, Uwersytet Mkołaja Koperka w oruu Moka Jezorska - Pąpka Uwersytet Mkołaja Koperka w oruu

Bardziej szczegółowo

METODY KOMPUTEROWE 1

METODY KOMPUTEROWE 1 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN MTODA ULRA Mcał PŁOTKOWIAK Adam ŁODYGOWSKI Kosultacje aukowe dr z. Wtold Kąkol Pozań 00/00 MTODY KOMPUTROW WIADOMOŚCI WSTĘPN Metod umercze MN pozwalają a ormułowae matematczc

Bardziej szczegółowo

UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie

UOGÓLNIONA ANALIZA WRAŻLIWOŚCI ZYSKU W PRZEDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW. 1. Wprowadzenie B A D A N I A O P E R A C Y J N E I D E C Y J E Nr 2 2007 Aa ĆWIĄKAŁA-MAŁYS*, Woletta NOWAK* UOGÓLNIONA ANALIA WRAŻLIWOŚCI YSKU W PREDSIĘBIORSTWIE PRODUKUJĄCYM N-ASORTYMENTÓW Przedstawoo ajważejsze elemety

Bardziej szczegółowo

GEODEZJA INŻYNIERYJNA SEMESTR 6 STUDIA NIESTACJONARNE

GEODEZJA INŻYNIERYJNA SEMESTR 6 STUDIA NIESTACJONARNE GEODEZJ INŻNIERJN SEMESTR 6 STUDI NIESTCJONRNE CZNNIKI WPŁWJĄCE N GEOMETRIĘ UDNKU/OIEKTU Zmaę geometr budyku mogą powodować m.: czyk atmosferycze, erówomere osadae płyty fudametowej mogące skutkować wychyleem

Bardziej szczegółowo

STATYKA. Cel statyki. Prof. Edmund Wittbrodt

STATYKA. Cel statyki. Prof. Edmund Wittbrodt STATYKA Cel statyk Celem statyk jest zastąpee dowolego układu sł ym, rówoważym układem sł, w tym układem złożoym z jedej tylko sły jedej pary sł (redukcja do sły mometu główego) lub zbadae waruków, jake

Bardziej szczegółowo

POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4

POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4 POZECHNE KRAJOE ZAADY YCENY (PKZ) KRAJOY TANDARD YCENY PECJALITYCZNY NR 4 K 4 YCENA ŁUŻEBNOŚCI PRZEYŁU I OKREŚLANIE KOTY YNAGRODZENIA ZA BEZUMONE KORZYTANIE Z NIERUCHOMOŚCI PRZY INETYCJACH LINIOYCH 1.

Bardziej szczegółowo

Przybliżone zapytania do baz danych z akceleracją obliczeń rozkładów prawdopodobieństwa

Przybliżone zapytania do baz danych z akceleracją obliczeń rozkładów prawdopodobieństwa Przyblżoe zapytaa o baz aych z akceleracą oblczeń rozkłaów prawopoobeństwa Wtol Arzeewsk Poltechka Pozańska e mal: Wtol.Arzeewsk@cs.put.poza.pl Artur Gramack, Jarosław Gramack Uwersytet Zeloogórsk e mal:

Bardziej szczegółowo

FUNKCJE DWÓCH ZMIENNYCH

FUNKCJE DWÓCH ZMIENNYCH FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam

Bardziej szczegółowo

WALIDACJA METOD BADAŃ STOSOWANYCH W LOTOS LAB

WALIDACJA METOD BADAŃ STOSOWANYCH W LOTOS LAB Data 3//03 Nr wyd troa z Nr egz Nr wydaa troa Data wprowadzea zmay Zmaa Opracował Podps prawdzł Podps Zatwerdzł Podps Kamńsk Cudowsk Marjańsk Data 3//03 Nr wyd troa z Nr egz. Cel Celem ejszej strukcj jest

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. dr Michał Silarski

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. dr Michał Silarski PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH dr Mchał larsk I Pracowa Fzycza IF UJ, 9.0.06 Pomar Pomar zacowae wartośc prawdzwej Bezpośred (welkość fzycza merzoa jest

Bardziej szczegółowo

Wykład 13: Zbieżność według rozkładu. Centralne twierdzenie graniczne.

Wykład 13: Zbieżność według rozkładu. Centralne twierdzenie graniczne. Rachuek prawopoobieństwa MA064 Wyział Elektroiki, rok aka 2008/09, sem leti Wykłaowca: r hab A Jurlewicz Wykła 3: Zbieżość weług rozkłau Cetrale twierzeie graicze Zbieżości ciągu zmieych losowych weług

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. I Pracownia IF UJ Marzec 2017

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH. I Pracownia IF UJ Marzec 2017 PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I Pracowa IF UJ Marzec 07 PODRĘCZNIKI Wstęp do aalzy błędu pomarowego Joh R. Taylor Wydawctwo Naukowe PWN Warszawa 999

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH I Pracowa IF UJ Luy 03 PODRĘCZNIKI Wsęp do aalzy błędu pomarowego Joh R. Taylor Wydawcwo Naukowe PWN Warszawa 999 I Pracowa

Bardziej szczegółowo

Wymiana Ciepła- Materiały do ćwiczeń

Wymiana Ciepła- Materiały do ćwiczeń Wymaa Ceła- Maerały o ćwczeń. 3 4 5 6 7 Tema zajęć zewozee ceła rzez ścaę łasą zewozee ceła rzez ścaę cylryczą Kowecja wymuszoa: rzejmowae ceła rzy wzłużym orzeczym rzeływe łyu Kowecja wymuszoa (c..) Kowecja

Bardziej szczegółowo

Pomiary parametrów napięć i prądów przemiennych

Pomiary parametrów napięć i prądów przemiennych Ćwczee r 3 Pomary parametrów apęć prądów przemeych Cel ćwczea: zapozae z pomaram wartośc uteczej, średej, współczyków kształtu, szczytu, zekształceń oraz mocy czyej, berej, pozorej współczyka cosϕ w obwodach

Bardziej szczegółowo

Statystyka. Analiza zależności. Rodzaje zależności między zmiennymi występujące w praktyce: Funkcyjna

Statystyka. Analiza zależności. Rodzaje zależności między zmiennymi występujące w praktyce: Funkcyjna Aalza zależośc Rodzaje zależośc mędzy zmeym występujące w praktyce: Fukcyja wraz ze zmaą wartośc jedej zmeej astępuje ścśle określoa zmaa wartośc drugej zmeej (p. w fzyce: spadek swobody gt s ) tochastycza

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania MODELOWANIE I PODSTAWY IDENTYFIKACJI

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania MODELOWANIE I PODSTAWY IDENTYFIKACJI Poltechka Gdańska Wydzał Elektrotechk Automatyk Katedra Iżyer Systemów Sterowaa MODELOWANIE I PODSAWY IDENYFIKACI Wybrae zagadea z optymalzacj. Materały pomoccze do zajęć ćwczeowych 5 Opracowae: Kazmerz

Bardziej szczegółowo

L.Kowalski PODSTAWOWE TESTY STATYSTYCZNE WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH

L.Kowalski PODSTAWOWE TESTY STATYSTYCZNE WERYFIKACJA HIPOTEZ PARAMETRYCZNYCH L.Kowalsk PODSTAWOWE TESTY STATYSTYCZNE TESTY STATYSTYCZNE poteza statystycza to dowole przypuszczee dotyczące rozkładu cechy X. potezy statystycze: -parametrycze dotyczą ezaego parametru, -parametrycze

Bardziej szczegółowo

Analiza niepewności pomiarów Definicje

Analiza niepewności pomiarów Definicje Teora pomarów Aalza epewośc pomarów Defce Dr hab. ż. Paweł Mada www.pmada.zt.ed.pl Podstawowa defca Nepewość pomar to parametr zwązay z wykem pomar, charakteryzący rozrzt wartośc, który w zasadoy sposób

Bardziej szczegółowo

Badania Maszyn CNC. Nr 2

Badania Maszyn CNC. Nr 2 Poltechka Pozańska Istytut Techolog Mechaczej Laboratorum Badaa Maszy CNC Nr 2 Badae dokładośc pozycjoowaa os obrotowych sterowaych umerycze Opracował: Dr. Wojcech Ptaszy sk Mgr. Krzysztof Netter Pozań,

Bardziej szczegółowo

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ 9 Cel ćwczea Ćwczee 9 WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANE PODCZAS ZDERZENIA CIAŁ Celem ćwczea jest wyzaczee wartośc eerg rozpraszaej podczas zderzea cał oraz współczyka restytucj charakteryzującego

Bardziej szczegółowo

WYZNACZANIE PRZERWY ENERGETYCZNEJ GERMANU

WYZNACZANIE PRZERWY ENERGETYCZNEJ GERMANU Fzyka cała stałeo WYZNACZANIE PRZERWY ENERGETYCZNEJ GERMANU 1. Ops teoretyczy do ćwczea zameszczoy jest a stroe www.wtc.wat.edu.pl w dzale DYDAKTYKA FIZYKA ĆWICZENIA LABORATORYJNE.. Ops układu pomaroweo

Bardziej szczegółowo

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA

TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA Ćwczee 8 TARCIE CIĘGIEN O POWIERZCHNIĘ WALCOWĄ WZÓR EULERA 8.. Cel ćwczea Celem ćwczea jest wyzaczee statyczego współczyka tarca pomędzy walcową powerzchą cała a opasującą je lą. Poadto a drodze eksperymetalej

Bardziej szczegółowo

ELEMENTY TEORII MOŻLIWOŚCI

ELEMENTY TEORII MOŻLIWOŚCI ELEMENTY TEORII MOŻLIWOŚCI Opracował: M. Kweselewcz Zadeh (978) wprowadzł pojęce rozkładu możlwośc jako rozmyte ograczee, kóre odzaływuje w sposób elastyczy a wartośc przypsae daej zmeej. Defcja. Nech

Bardziej szczegółowo

TMM-2 Analiza kinematyki manipulatora metodą analityczną

TMM-2 Analiza kinematyki manipulatora metodą analityczną Opracował: dr ż. Przemysław Szumńsk Laboratorum Teor Mechazmów Automatyka Robotyka, Mechatroka TMM- Aalza kematyk mapulatora metodą aaltyczą Celem ćwczea jest zapozae sę ze sposobem aalzy kematyk mechazmu

Bardziej szczegółowo

R j v tj, j=1. jest czynnikiem dyskontującym odpowiadającym efektywnej stopie oprocentowania i.

R j v tj, j=1. jest czynnikiem dyskontującym odpowiadającym efektywnej stopie oprocentowania i. c 27 Rafał Kucharsk Rety Wartość beżącą cągu kaptałów: {R t R 2 t 2 R t } gdze R jest kwotą omalą płacoą w chwl t = oblczamy jako sumę zdyskotowaych płatośc: przy czym = + R j tj j= jest czykem dyskotującym

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 3,4

STATYSTYKA OPISOWA WYKŁAD 3,4 STATYSTYKA OPISOWA WYKŁAD 3,4 5 Szereg rozdzelczy przedzałowy (dae pogrupowae) (stosujemy w przypadku dużej lczby epowtarzających sę daych) Przedzał (w ; w + ) Środek x& Lczebość Lczebość skumulowaa s

Bardziej szczegółowo

opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn

opisać wielowymiarową funkcją rozkładu gęstości prawdopodobieństwa f(x 1 , x xn ROZKŁAD PRAWDOPODBIEŃSTWA WIELU ZMIENNYCH LOSOWYCH W przpadku gd mam do czea z zmem losowm możem prawdopodobeństwo, ż przjmą oe wartośc,,, opsać welowmarową fukcją rozkładu gęstośc prawdopodobeństwa f(,,,.

Bardziej szczegółowo

11/22/2014. Jeśli stała c jest równa zero to takie gry nazywamy grami o sumie zerowej.

11/22/2014. Jeśli stała c jest równa zero to takie gry nazywamy grami o sumie zerowej. /22/24 Dwuosobowe gry o sume zero DO NAUCZENIA I ZAPAMIĘTANIA: Defnca zaps ger o sume zero, adaptaca ogólnych defnc. Punkt sodłowy Twerdzena o zwązkach punktu sodłowego z koncepcam rozwązań PRZYPOMNIENIE:

Bardziej szczegółowo

POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4

POLSKA FEDERACJA STOWARZYSZEŃ RZECZOZNAWCÓW MAJĄTKOWYCH POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY SPECJALISTYCZNY NR 4 KSWS 4 POZECHNE KRAJOE ZAADY YCENY (PKZ) KRAJOY TANDARD YCENY PECJALITYCZNY NR 4 K 4 INETYCJE LINIOE - ŁUŻEBNOŚĆ PRZEYŁU I BEZUMONE KORZYTANIE Z NIERUCHOMOŚCI 1. PROADZENIE 1.1. Nejszy stadard przedstawa reguły

Bardziej szczegółowo

ma rozkład normalny z nieznaną wartością oczekiwaną m

ma rozkład normalny z nieznaną wartością oczekiwaną m Zadae Każda ze zmeych losowych,, 9 ma rozkład ormaly z ezaą wartoścą oczekwaą m waracją, a każda ze zmeych losowych Y, Y,, Y9 rozkład ormaly z ezaą wartoścą oczekwaą m waracją 4 Założoo, że wszystke zmee

Bardziej szczegółowo

WYKŁAD IV. - gałąź opadajaca poniżej pkt. Kw (Q w > Q) dh dt gdzie: Q W zmienny odpływ wyrównany ze zbiornika Q zmienny dopływ do zbiornika

WYKŁAD IV. - gałąź opadajaca poniżej pkt. Kw (Q w > Q) dh dt gdzie: Q W zmienny odpływ wyrównany ze zbiornika Q zmienny dopływ do zbiornika WYKŁAD IV Aalza przejśca fal powodzowej Odpływ ze zborka może być: - kotroloway: regulacja wydatku urządzeń zrzutowych a stały przepływ sekudowy (Q odp =cost.) przy pomocy zamkęć ruchomych. - ekotroloway:

Bardziej szczegółowo

JEDNOWYMIAROWA ZMIENNA LOSOWA

JEDNOWYMIAROWA ZMIENNA LOSOWA JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E będze zborem zdarzeń elemetarych daego dośwadczea. Fucję X(e) przyporządowującą ażdemu zdarzeu elemetaremu e E jedą tylo jedą lczbę X(e)=x azywamy ZMIENNĄ LOSOWĄ. Przyład:

Bardziej szczegółowo

Zależność kosztów produkcji węgla w kopalni węgla brunatnego Konin od poziomu jego sprzedaży

Zależność kosztów produkcji węgla w kopalni węgla brunatnego Konin od poziomu jego sprzedaży Gawlk L., Kasztelewcz Z., 2005 Zależość kosztów produkcj węgla w kopal węgla bruatego Ko od pozomu jego sprzedaży. Prace aukowe Istytutu Górctwa Poltechk Wrocławskej r 2. Wyd. Ofcya Wydawcza Poltechk Wrocławskej,

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 1. Wiadomości wstępne

STATYSTYKA MATEMATYCZNA WYKŁAD 1. Wiadomości wstępne TATYTYKA MATEMATYCZNA WYKŁAD Wadomośc wstępe tatystyka to dyscypla aukowa, której zadaem jest wykrywae, aalza ops prawdłowośc występujących w procesach masowych. Populacja to zborowość podlegająca badau

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 2 ESTYMACJA PUNKTOWA

STATYSTYKA MATEMATYCZNA WYKŁAD 2 ESTYMACJA PUNKTOWA STATYSTYKA MATEMATYCZNA WYKŁAD ESTYMACJA PUNKTOWA Nech - ezay parametr rozkładu cechy X. Wartość parametru będzemy estymować (przyblżać) a podstawe elemetowej próby. - wyberamy statystykę U o rozkładze

Bardziej szczegółowo

Miary statystyczne. Katowice 2014

Miary statystyczne. Katowice 2014 Mary statystycze Katowce 04 Podstawowe pojęca Statystyka Populacja próba Cechy zmee Szereg statystycze Wykresy Statystyka Statystyka to auka zajmująca sę loścowym metodam aalzy zjawsk masowych (występujących

Bardziej szczegółowo

SYSTEM OCENY STANU NAWIERZCHNI SOSN

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZAŁĄCZNIK D GENERALNA DYREKCJA DRÓG PUBLICZNYCH Buro Studów Sec Drogowej SYSTEM OCENY STANU NAWIERZCHNI SOSN WYTYCZNE STOSOWANIA - ZAŁĄCZNIK D ZASADY POMIARU I OCENY STANU WŁAŚCIWOŚCI PRZECIWPOŚLIZGOWYCH

Bardziej szczegółowo

RACHUNEK NIEPEWNOŚCI POMIARU

RACHUNEK NIEPEWNOŚCI POMIARU Męzaroowa Norma Oce Nepewośc Pomaru (Gue to Epresso of Ucertat Measuremets Męzaroowa Orgazacja Normalzacja ISO RACHUNEK NIEPEWNOŚCI http://phscs.st.gov/ucertat POMIARU Wrażae Nepewośc Pomaru. Przewok.

Bardziej szczegółowo

O testowaniu jednorodności współczynników zmienności

O testowaniu jednorodności współczynników zmienności NR 6/7/ BIULETYN INSTYTUTU HODOWLI I AKLIMATYZACJI ROŚLIN 003 STANISŁAW CZAJKA ZYGMUNT KACZMAREK Katedra Metod Matematyczych Statystyczych Akadem Rolczej, Pozań Istytut Geetyk Rośl PAN, Pozań O testowau

Bardziej szczegółowo

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = =

W zadaniu nie ma polecenia wyznaczania estymatora nieobciążonego o minimalnej wariancji. σ σ σ σ σ = = 4. Na podstawe erówośc Cramera Rao wyzacz dole ograczee dla waracj eobcążoego estymatora waracj σ w rozkładze ormalym N(0, σ. W zadau e ma polecea wyzaczaa estymatora eobcążoego o mmalej waracj dla σ,

Bardziej szczegółowo

Analiza danych pomiarowych

Analiza danych pomiarowych Materały pomoccze dla studetów Wydzału Chem UW Opracowała Ageszka Korgul. Aalza daych pomarowych wersja trzeca, uzupełoa Lteratura, Wstęp 3 R OZDZIAŁ SPRAWOZDANIE Z DOŚWIADCZENIA FIZYCZNEGO 4 Stałe elemety

Bardziej szczegółowo

Pracownia fizyczna dla szkół

Pracownia fizyczna dla szkół Natężeie światła Pracowia fizycza Imię i Nazwisko yfrakcja i iterferecja a świetle laserowym opracowaie: Aeta rabińska Fotoy, jak zresztą i ie obiekty, mają barzo specyficzą cechę w pewych sytuacjach zachowują

Bardziej szczegółowo

Procedura normalizacji

Procedura normalizacji Metody Badań w Geograf Społeczno Ekonomcznej Procedura normalzacj Budowane macerzy danych geografcznych mgr Marcn Semczuk Zakład Przedsęborczośc Gospodark Przestrzennej Instytut Geograf Unwersytet Pedagogczny

Bardziej szczegółowo

Fizyka, technologia oraz modelowanie wzrostu kryształów

Fizyka, technologia oraz modelowanie wzrostu kryształów Fzyka, techologa oaz modelowae wzostu kyształów Stasław Kukowsk Mchał Leszczyńsk Istytut Wysokch Cśeń PA 0-4 Waszawa, ul Sokołowska 9/37 tel: 88 80 44 e-mal: stach@upess.waw.pl, mke@upess.waw.pl Zbgew

Bardziej szczegółowo

SPRZEDAŻ PONIŻEJ KOSZTU WŁASNEGO W PRZEDSIĘBIORSTWIE WIELOASORTYMENTOWYM

SPRZEDAŻ PONIŻEJ KOSZTU WŁASNEGO W PRZEDSIĘBIORSTWIE WIELOASORTYMENTOWYM ACTA UNIVERSITATIS WRATISLAVIENSIS No 37 PRZEGLĄD PRAWA I ADMINISTRACJI LXXX WROCŁAW 009 ANNA ĆWIĄKAŁA-MAŁYS WIOLETTA NOWAK Uwersytet Wrocławsk SPRZEDAŻ PONIŻEJ KOSZTU WŁASNEGO W PRZEDSIĘBIORSTWIE WIELOASORTYMENTOWYM

Bardziej szczegółowo

System finansowy gospodarki

System finansowy gospodarki System fasowy gospodark Zajęca r 6 Matematyka fasowa c.d. Rachuek retowy (autetowy) Maem rachuku retowego określa sę regulare płatośc w stałych odstępach czasu przy założeu stałej stopy procetowej. Przykłady

Bardziej szczegółowo

Matematyka dyskretna. 10. Funkcja Möbiusa

Matematyka dyskretna. 10. Funkcja Möbiusa Matematyka dyskreta 10. Fukcja Möbusa Defcja 10.1 Nech (P, ) będze zborem uporządkowaym. Mówmy, że zbór uporządkoway P jest lokale skończoy, jeśl każdy podzał [a, b] P jest skończoy, a, b P Uwaga 10.1

Bardziej szczegółowo

BQR FMECA/FMEA. czujnik DI CPU DO zawór. Rys. 1. Schemat rozpatrywanego systemu zabezpieczeniowego PE

BQR FMECA/FMEA. czujnik DI CPU DO zawór. Rys. 1. Schemat rozpatrywanego systemu zabezpieczeniowego PE BQR FMECA/FMEA Przed rozpoczęcem aalzy ależy przeprowadzć dekompozycję systemu a podsystemy elemety. W efekce dekompozycj uzyskuje sę klka pozomów: pozom systemu, pozomy podsystemów oraz pozom elemetów.

Bardziej szczegółowo

Ze względu na sposób zapisu wielkości błędu rozróżnia się błędy bezwzględne i względne.

Ze względu na sposób zapisu wielkości błędu rozróżnia się błędy bezwzględne i względne. Katedra Podsta Systemó Techczych - Podstay metrolog - Ćczee 3. Dokładość pomaró, yzaczae błędó pomaroych Stroa:. BŁĘDY POMIAROWE, PODSTAWOWE DEFINICJE Każdy yk pomaru bez określea dokładośc pomaru jest

Bardziej szczegółowo

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE

PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE Marek Cecura, Jausz Zacharsk PODSTAWY PROBABILISTYKI Z PRZYKŁADAMI ZASTOSOWAŃ W INFORMATYCE CZĘŚĆ II STATYSTYKA OPISOWA Na prawach rękopsu Warszawa, wrzeseń 0 Data ostatej aktualzacj: czwartek, 0 paźdzerka

Bardziej szczegółowo