Rola kadzi pośredniej w procesie ciągłego odlewania stali

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rola kadzi pośredniej w procesie ciągłego odlewania stali"

Transkrypt

1 Badane przepływu kąpel metalowej przez kadź pośredną urządzena COS na modelu zmnym. Wyznaczene wpływu zróżncowanej szybkośc wycągana pasm na przepływ kąpel w kadz pośrednej I. Część teoretyczna Cągłe odlewane stal jest procesem, który w cągu produkcyjnym wyznacza rytm synchronzację wszystkch pozostałych węzłów produkcyjnych. W chwl obecnej odlewa sę w sposób cągły bardzo szerok asortyment gatunków stal. Wraz z poszerzanem sę tego spektrum rosną równeż wymagana odnośne jakośc odlewanych wlewków. Wymagana dotyczą przede wszystkm czystośc stal, główne lośc rozmeszczena tlenkowych wtrąceń nemetalcznych. Wymagana stawane cekłej stal, która może być odlewana na maszyne COS są sformułowane jednoznaczne. Obok właścwe ustalonej temperatury kąpel kluczową rolę odgrywa zawartość tlenu. Z tego względu cąg technologczny produkcj stal wnen zapewnć ochronę metalu przed dostępem powetrza. Nedocągnęca w tym zakrese mogą powodować poważne problemy produkcyjne objawające sę zarastanem wylewów czy w skrajnym wypadku wycekam metalu pod krystalzatorem. Skutk ekonomczne tego typu zdarzeń odbjają sę bardzo negatywne na wynkach pracy stalown. Regulacja zawartośc tlenu w kąpel przy braku urządzena do próżnowego odgazowana kąpel metalowej jest zadanem nezwykle trudnym. W zwązku z powyższym w warunkach m. n. Stalown Konwertorowej HTS należy wykorzystać wszystke stnejące możlwośc technczne do obnżana zawartośc tlenu w kąpel. Jednym z takch rozwązań jest uznane kadz pośrednej urządzena COS za reaktor metalurgczny, który pownen umożlwać maksymalne usuwane wtrąceń nemetalcznych. Spełnene tak postawonego zadana wymaga dokonana zman konstrukcyjnych kadz pośrednej. Kerunk tych zman pownny zostać wyznaczone w oparcu o badana na fzycznym modelu kadz pośrednej. Metoda oparta o badana modelowe jest powszechne stosowaną metodą przy badanu przepływów w metalurg żelaza. Rola kadz pośrednej w procese cągłego odlewana stal Podstawowa funkcja kadz pośrednej w urządzenu do cągłego odlewana stal polega na obnżenu cśnena ferrostatycznego metalu oraz rozdzelenu kąpel na wymaganą lczbę odlewanych pasm. Jej obecność umożlwa ponadto sekwencyjne odlewane pozwalając na wymanę kadz głównych bez przerywana procesu. Realzacja wszystkch wymenonych czynnków brana jest pod uwagę przy optymalzacj jej konstrukcj. Głównym parametram 1

2 są tu całkowta objętość robocza kadz pośrednej oraz jej wysokość. Wraz ze zdobywanem dośwadczeń eksploatacyjnych zwrócono uwagę na kadź pośredną jako na reaktor metalurgczny, w którym możlwe jest przeprowadzene końcowej korekty składu chemcznego kąpel polegającej na asymlacj wtrąceń nemetalcznych. Równocześne stwerdzono, ż neprawdłowośc w eksploatacj kadz pośrednej mogą prowadzć do stotnego pogorszena parametrów odlewanej stal w skrajnym przypadku powodować koneczność przerwana procesu cągłego odlewana. Analza lcznych opracowań [1 4] zajmujących sę problemem kadz pośrednej urządzena COS pozwala wysunąć wnosk, ż zarówno zjawska fzyczne czyl przepływ metalu przez kadź jak reakcje chemczne na grancy metal - żużel pownny być w pełn kontrolowane. Tylko w takm przypadku możlwe jest odlane kęssk o wymaganej jakośc. Parametrem pozwalającym w przyblżenu ocenć przepływ kąpel przez kadź pośredną jest średn czas przebywana elementarnej objętośc metalu w kadz. Przy założenu całkowtego braku meszana kąpel czyl występowanu tzw. przepływu tłokowego (ang. plug flow), czas przebywana elementarnej objętośc kąpel można wylczyć w oparcu o parametry technologczne według wzoru: t = kp (1) R. t R - czas przebywana elementarnej objętośc w kadz pośrednej (ang. resdence tme), [mn], kp - objętość kąpel w kadz pośrednej, [m 3 ],. - objętoścowy przepływ kąpel przez kadź pośredną, [m 3 /mn]. Objętoścowy strumeń przepływu. wylcza sę z kole według wzoru:. = n p F (2) n p - lczba odlewanych pasm, [-], - szybkość wycągana pasma, [m/mn], F - pole przekroju pojedynczego pasma, [m 2 ]. Wylczony według wzoru (1) czas t R jest teoretyczne najdłuższym z możlwych 2

3 średnm czasem przebywana elementarnej objętośc metalu w kadz pośrednej. W praktyce osąga on wartośc o wele mnejsze. Spowodowane jest to charakterem rzeczywstego przepływu kąpel przez kadź, w której tworzą sę tzw. strefy martwe zmnejszające efektywną objętość kadz. Prowadz to w konsekwencj do występowana przepływu, który można określć jako tunelowy. Kąpel metalowa po wypłynęcu z króćca wylewowego kadz głównej przemeszcza sę natychmast do strefy otworów wylewowych nad krystalzatoram. Zjawsko to powoduje, ż efektywny czas przebywana w strefe oddzaływana żużla kadzowego jest dużo krótszy nż wynka to ze wzoru (1). Powodem dla którego należy dążyć do maksymalzacj czasu t R jest występujące w kadz pośrednej zjawsko asymlacj wtrąceń nemetalcznych, główne wtrąceń tlenkowych typu Al 2 O 3. Warunkem prawdłowego przebegu asymlacj wtrąceń jest stworzene warunków umożlwających dotarce wtrąceń do strefy metal - żużel oraz utworzene żużla zdolnego do ch asymlacj. Teoretyczne oblczena czasu wypływana wtrąceń z kąpel prowadzą do wnosku, ż jest on dużo dłuższy nż możlwy do osągnęca czas t R. Z tego względu należy z góry założyć, ż transport wtrąceń mus częścowo odbywać sę na drodze transportu konwekcyjnego. Osągnęce tego celu możlwe jest poprzez skerowane strumena kąpel do grancy metal żużel przy pomocy odpowedno uformowanych przegród zanstalowanych w kadz. Korzystny wpływ przegród polega ne tylko na poprawe asymlacj wtrąceń ale równeż na zmnejszenu objętośc stref martwych w kadz. Praktyczna realzacja postawonego celu napotyka na trudnośc zwązane z knetyką układu. Ruch kąpel w strefe grancznej ne może prowadzć do zaburzeń w postac zjawska porywana żużla w głąb metalu czy przerywana warstwy żużla pokrywającej kąpel. Przeprowadzone rozważana prowadzą równeż do wnosku, ż jakość żużla odgrywa w procese asymlacj rolę kluczową. Parametry, które mają tu znaczene podstawowe to skład chemczny żużla, jego lepkość oraz napęce powerzchnowe metalu asymlowanych wtrąceń. Fzyczny model kadz pośrednej dla maszyny COS pracującej w Stalown Konwertorowej HTS Krytera podobeństwa reaktora rzeczywstego jego modelu fzycznego Stosowane do badań wykonanych w skal, fzycznych model reaktorów rzeczywstych znalazło w metalurg powszechne zastosowane. Dotyczy to przede wszystkm 3

4 badań meszana stal w kadz, w urządzenu do obegowego odgazowana metodą RH oraz do badana przepływu kąpel przez kadź pośredną urządzena COS [5, 6]. We wszystkch tych modelach stosuje sę wodę. Wytłumaczena tego faktu należy szukać ne w powszechnej jej dostępnośc lecz w zblżonej wartośc lepkośc knematycznej wody w 20 C wynoszącej 1 cs oraz lepkośc knematycznej kąpel metalowej w temperaturze 1600 C wynoszącej 0,9 cs. Lepkość knematyczna jest stosunkem lepkośc do gęstośc danej ceczy. Spośród welu możlwych do przyjęca kryterów podobeństwa przyjmuje sę, że obok podobeństwa geometrycznego najważnejszą rolę przy badanu procesu przepływu meszana kąpel odgrywa podobeństwo lczby Frouda Fr. Lczba Frouda defnowana jest jako stosunek sły bezwładnośc F b do sły grawtacj F g. 2 Fb Fr = = (3) F gl - prędkość, [m/s], g - przyspeszene grawtacyjne, [m/s 2 ], L - charakterystyczny wymar lnowy, [m]. Stąd podobeństwo oparte o kryterum lczby Frouda przyjmuje postać: g 2 gl 2 M = gl M - model, R - reaktor rzeczywsty. Dokonując prostego przekształcena otrzymuje sę wyrażene: R (4) 2 M L M 2 = R L (5) R Poneważ stosunek L M L kąpel w modelu pownna wynosć: R jest skalą w jakej wykonano model, szybkość przepływu λ - skala modelu. = λ (6) M R Z równana (6) wynka jednoznaczne, że m bardzej welkość modelu zblżona jest 4

5 do wymarów reaktora rzeczywstego tym bardzej zblżone są prędkośc przepływów w reaktorze modelu. W nektórych przypadkach wygodnejsze do kontrol jest badane strumena przepływu objętośc kąpel wyrażonego w m 3 /s. W takm przypadku proste przekształcene równana (6) prowadz do równana & = λ & (7) 2,5 M R & M - strumeń objętośc kąpel w modelu, [m 3 /s], & R - strumeń objętośc kąpel w reaktorze rzeczywstym, [m 3 /s]. Spośród nnych lczb kryteralnych, które znajdują zastosowane przy modelowanu przepływów wymenć należy lczbę Reynoldsa, Webera, Grashofa, Prandtla, Macha Archmedesa. Spełnene wszystkch wynkających z nch kryterów podobeństwa jest jednak w zaproponowanym sposobe przeprowadzena eksperymentów nemożlwe. Z tego względu w dalszych rozważanach uwzględnone zostane podobeństwo wynkające z kryterum określonym lczbą Frouda. II. Cel ćwczena Celem prowadzonego eksperymentu jest poprawa parametrów konstrukcyjnych kadz pośrednej poprzez wprowadzene do nej systemu przegród. Marą oceny każdego z testowanych warantów są trzy następujące krytera: a) wartość maksymalna sygnału rejestrowanego w krystalzatorze, b) procent udzału przepływu tłokowego, c) procent udzału strefy martwej. ad. a) Wartość maksymalna sygnału rejestrowanego w krystalzatorze Perwsze z kryterów odnoszące sę do wartośc maksymalnej merzonego sygnału charakteryzuje proces meszana kąpel. Im wartość tego parametru jest wększa tym lepsze są parametry przepływu. W celu ułatwena oceny różnych warantów według powyższego kryterum, wprowadzono normalzację sygnału maksymalnego, którą opsuje równane: max A = (8) max max bp 5

6 max - rzeczywsta maksymalna wartość przewodnctwa właścwego zarejestrowana dla warantu rozmeszczena przegród, [ms/cm], max bp - maksymalna wartość przewodnctwa zarejestrowana dla kadz bez zanstalowanych przegród, [ms/cm], max A - bezwymarowa wartość maksymalna sygnału rejestrowanego w krystalzatorze. ad. b) Procent udzału przepływu tłokowego Druge kryterum oceny przepływu kąpel przez kadź defnuje równane: topóznena PF = 100% (9) t R PF - udzał przepływu tłokowego, [%], t opóźnena - czas jak upływa od momentu wprowadzena znacznka do chwl zarejestrowana jego obecnośc w krystalzatorze, [s], t R - teoretyczny czas przebywana znacznka w kadz oblczany wg równana (1), [s]. Podobne jak w przypadku kryterum perwszego wartość udzału przepływu tłokowego pownna być jak najwększa. ad. c) Procent udzału strefy martwej Ostatne z przedstawonych kryterów pozwala ocenć kadź pod kątem występowana w nej tzw. strefy martwej czyl strefy słabego przepływu. Udzał strefy martwej określa sę jako procent znacznka pozostający w kadz po upływe czasu równego 2t R. S m - udzał strefy martwej, [%], S m kp c = m KOH 2tR 100% c 2 t R - stężene znacznka po upływe czasu 2t R, [kg/m 3 ], (10) m KOH - początkowa masa wprowadzonego znacznka, [kg], kp - objętość kadz pośrednej, [m 3 ]. Udzał procentowy strefy martwej pownen być ze zrozumałych względów jak najmnejszy. 6

7 III. Ops stanowska badawczego Stanowsko badawcze umożlwające symulację przepływu kąpel w urządzenu do cągłego odlewana przedstawono na rys. 3. Rys. 3. Schemat stanowska laboratoryjnego do badań przepływu kąpel przez kadź pośredną urządzena do cągłego odlewana stal. Główny element stanow w nm model kadz pośrednej wykonany w skal 1:8 w odnesenu do kadz pośrednej eksploatowanej w HTS. Model kadz wyposażony został podobne jak w kadz rzeczywstej w zamknęca zatyczkowe. Zarówno w modelu kadz głównej jak kadz pośrednej zastosowano wykonane w skal wylewy zanurzenowe. W celu kontrol natężena przepływu kąpel pod każdym z dwu krystalzatorów zanstalowano rotametry. Do oceny charakteru przepływu kąpel przez kadź pośredną zastosowano metodę znacznka. Wylew z kadz głównej wyposażono w dozownk, który umożlwa wprowadzene 7

8 do kadz ustalonej objętośc (10 ml) 5% roztworu KOH. Wprowadzone KOH zaburza przewodnctwo właścwe kąpel w kadz. Zmany przewodnctwa rejestrowane są nezależne w każdym z krystalzatorów. Pomar przewodnctwa właścwego wykonuje sę za pomocą konduktometrów CC3 17 z wyjścem cyfrowym, dzęk czemu wynk pomarów rejestrowane są w sposób automatyczny. Wynkem każdego z przeprowadzonych eksperymentów jest uzyskane krzywej typu RTD (ang. resdence tme dstrbuton), która stanow podstawę do oceny aktualnych warunków przepływu kąpel przez kadź pośredną. I. Przebeg ćwczena W ramach ćwczena należy przeprowadzć symulację przepływu kąpel przez kadź pośredną w dwu warantach - bez przegród oraz z przegrodam. Rodzaj stosowanych przegród oraz sposób ch rozmeszczena w kadz ustala każdorazowo prowadzący ćwczena. W oparcu o podobeństwo wynkające z lczby Frouda należy wylczyć natężene przepływu wody przyjmując, że szybkość odlewana na rzeczywstej maszyne dwupasmowej wynos 1,2 m/mn przy rozmarach pasma 1500x220 oraz skala modelu wynos 1:8 Właścwy pomar polega na ustalenu przepływu kąpel przez kadź zaburzenu składu poprzez wprowadzene do wylewu z kadz głównej 10 ml porcj 5% KOH. Rejestracja zman sygnału przewodnctwa właścwego wykonywana jest w krystalzatorach.. Opracowane wynków 1. Opracowane wynków przy użycu programu Tundsh.net Wynk należy opracować przy użycu programu tundsh.net na strone Przygotowane danych do oblczeń to bardzo ważna czynność. Należy zrobć to z dużą dokładnoścą, poneważ tylko poprawne przygotowane dane pozwolą na uzyskane poprawnych wynków! Dane, czyl wartośc przewodnctwa właścwego, umeszczone są w plku tekstowym. Wymagana stawane danym pomarowym: 1. Ilość danych dla każdego krystalzatora mus być taka sama (1000 pomarów) 2. Krok czasowy pomędzy kolejnym pomaram 1[s] 3. Separator lczb dzesętnych: kropka 4. Informacja o type kadz umeszczona na końcu plku z danym. Oblczena mogą wykonać tylko zarejestrowan użytkowncy. Aby sę zarejestrować 8

9 należy w okne logowana klknąć znajdujący sę u góry okenka naps " nowy użytkownk ". Na ekrane pojaw sę formularz rejestracyjny. Wszystke pola należy wypełnć. Pod podany adres emal zostane wysłana wadomość o danych, które zostaną dodane do bazy danych. Jeśl przebeg rejestracj był prawdłowy zostanemy ponformowan o tym stosownym komunkatem. Należy zapoznać sę z nformacjam jake zostaną wyśwetlone w formularzu. Najważnejsza z nch to ta mówąca o nazwe plku z danym. Plk przesyłany na serwer mus meć nazwę taką jak logn użytkownka np: admn.txt. Hasła użytkownków znajdujące sę w baze danych są zakodowane, należy węc zapamętać swoje hasło poneważ jego odzyskane ne będze możlwe. Szczegółowe nformacje dotyczące sposobu wykonana oblczeń przy użycu programu tundsh.net dostępne na strone 2. Oblczena dotyczące kryterów oceny pracy kadz Oblczena dotyczące kryterów oceny pracy kadz pośrednej należy przeprowadzć w oparcu o dane standaryzowane. Dzęk standaryzacj można wyelmnować wpływ błędów generowanych przez wahana lośc dodawanego znacznka, czy początkowego pozomu przewodnctwa właścwego użytej kąpel. Każda z rzeczywstych krzywych RTD pownna być standaryzowana według następujących równań: s rz rz rz ( ) 1 = 0 (11) F n rz rz F rz = ( 0 ) t rz - rzeczywsta wartość przewodnctwa w czase t [ms/cm], rz 0 - wartość początkowa przewodnctwa dla t = 0, [ms/cm], = 0 s - standaryzowana wartość sygnału, [-], t - odstęp czasowy pomędzy kolejnym odczytam wartośc przewodnctwa, [s], n - lczba zarejestrowanych odczytów równa 1000, [-], F rz - pole pod krzywą RTD. W opracowanu wynków ćwczena należy zameścć wykresy standaryzowanych sygnałów RTD dla obu warantów wykonanego eksperymentu wygenerowanych przez 9

10 program tundsh.net. Należy ocenć wpływ zróżncowanej szybkośc wycągana pasm na przepływ kąpel w kadz pośrednej w oparcu o porównane krzywych RTD z obu krystalzatorów. Wynk lczbowe uzyskane dla wszystkch zdefnowanych kryterów oceny kadz zestawć w forme tabel. Lteratura. [1] K. Saylor, D. Bolger - Preventng turbulence n the tundsh, Steel Technology Internatonal, 1995/96, s. 187/191 [2] U. Horbach, S. Ródl, H. Abrats, F. Hófer - Strómungsuntersuchungen n geregelten ertelerausgussen zur ermedung von Cloggng, Stah und Esen, 115, 1995, nr 11, s. 71/76 [3] J. E. Roush - Effect of an alternatve tundsh confguraton on product cleaness, Steelmakng Conference Proceedngs, ol.78, Nashvlle, Tennessee, USA, 2-5 Aprl, 1995, s. 559/561 [4] Y. He, Y. Saha - The Effect of Tundsh Wall Inclnaton on the Flud Flow and Mxng: A Modelng Study, Metallurgcal Transactons B, ol. 18B, 1987, nr 3, s. 81/92 [5] J. Chen, O. Gregory, A. Leggett, J. Matheson, G. Wllams - Study of a Tundsh Usng a 1/3-Scale Water Model, Steelmakng Conference Proceedngs, ol. 78, Nashvlle, Tennessee, USA, 2-5 Aprl, 1995, s. 593/598 [6] D. Mazumdar, G. Yamanoglu, R. Guthre - Hydrodynamc performance of steelmakng tundsh system: a comparatve study of three dfferent tundsh desgns, steel research, 68, 1997, nr 7, s. 293/300 10

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW

SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW SZACOWANIE NIEPEWNOŚCI POMIARU METODĄ PROPAGACJI ROZKŁADÓW Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskego 8, 04-703 Warszawa tel.

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne

XXX OLIMPIADA FIZYCZNA ETAP III Zadanie doświadczalne XXX OLIMPIADA FIZYCZNA ETAP III Zadane dośwadczalne ZADANIE D Nazwa zadana: Maszyna analogowa. Dane są:. doda półprzewodnkowa (krzemowa) 2. opornk dekadowy (- 5 Ω ), 3. woltomerz cyfrowy, 4. źródło napęca

Bardziej szczegółowo

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne ś POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr nż. Łukasz Amanowcz Systemy Ochrony Powetrza Ćwczena Laboratoryjne 2 TEMAT ĆWICZENIA: Oznaczane lczbowego rozkładu lnowych projekcyjnych

Bardziej szczegółowo

Modelowanie procesu mieszania kąpieli metalowej w oparciu o teorię reaktorów elementarnych

Modelowanie procesu mieszania kąpieli metalowej w oparciu o teorię reaktorów elementarnych Modelowane procesu meszana kąpel metalowej w oparcu o teorę reaktorów elementarnych I. Część teoretyczna Sposoby matematycznego opsu meszana kąpel metalowej Problem homogenzacj składu chemcznego temperatury

Bardziej szczegółowo

BADANIA CHARAKTERYSTYK HYDRAULICZNYCH KSZTAŁTEK WENTYLACYJNYCH

BADANIA CHARAKTERYSTYK HYDRAULICZNYCH KSZTAŁTEK WENTYLACYJNYCH INSTYTUT KLIMATYZACJI I OGRZEWNICTWA ĆWICZENIA LABORATORYJNE Z WENTYLACJI I KLIMATYZACJI: BADANIA CHARAKTERYSTYK HYDRAULICZNYCH KSZTAŁTEK WENTYLACYJNYCH 1. WSTĘP Stanowsko laboratoryjne pośwęcone badanu

Bardziej szczegółowo

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY. Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA

PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY. Zakład Budowy i Eksploatacji Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W PILE INSTYTUT POLITECHNICZNY Zakład Budowy Eksploatacj Maszyn PRACOWNIA TERMODYNAMIKI TECHNICZNEJ INSTRUKCJA Temat ćwczena: PRAKTYCZNA REALIZACJA PRZEMIANY ADIABATYCZNEJ.

Bardziej szczegółowo

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch

Za: Stanisław Latoś, Niwelacja trygonometryczna, [w:] Ćwiczenia z geodezji II [red.] J. Beluch Za: Stansław Latoś, Nwelacja trygonometryczna, [w:] Ćwczena z geodezj II [red.] J. eluch 6.1. Ogólne zasady nwelacj trygonometrycznej. Wprowadzene Nwelacja trygonometryczna, zwana równeż trygonometrycznym

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5

MATEMATYKA POZIOM ROZSZERZONY Kryteria oceniania odpowiedzi. Arkusz A II. Strona 1 z 5 MATEMATYKA POZIOM ROZSZERZONY Krytera ocenana odpowedz Arkusz A II Strona 1 z 5 Odpowedz Pytane 1 2 3 4 5 6 7 8 9 Odpowedź D C C A B 153 135 232 333 Zad. 10. (0-3) Dana jest funkcja postac. Korzystając

Bardziej szczegółowo

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja)

Analiza danych OGÓLNY SCHEMAT. http://zajecia.jakubw.pl/ Dane treningowe (znana decyzja) Klasyfikator. Dane testowe (znana decyzja) Analza danych Dane trenngowe testowe. Algorytm k najblższych sąsadów. Jakub Wróblewsk jakubw@pjwstk.edu.pl http://zajeca.jakubw.pl/ OGÓLNY SCHEMAT Mamy dany zbór danych podzelony na klasy decyzyjne, oraz

Bardziej szczegółowo

STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU

STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU Ewa Szymank Katedra Teor Ekonom Akadema Ekonomczna w Krakowe ul. Rakowcka 27, 31-510 Kraków STARE A NOWE KRAJE UE KONKURENCYJNOŚĆ POLSKIEGO EKSPORTU Abstrakt Artykuł przedstawa wynk badań konkurencyjnośc

Bardziej szczegółowo

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE

TRANZYSTOR BIPOLARNY CHARAKTERYSTYKI STATYCZNE POLITHNIKA RZSZOWSKA Katedra Podstaw lektronk Instrkcja Nr4 F 00/003 sem. letn TRANZYSTOR IPOLARNY HARAKTRYSTYKI STATYZN elem ćwczena jest pomar charakterystyk statycznych tranzystora bpolarnego npn lb

Bardziej szczegółowo

3. ŁUK ELEKTRYCZNY PRĄDU STAŁEGO I PRZEMIENNEGO

3. ŁUK ELEKTRYCZNY PRĄDU STAŁEGO I PRZEMIENNEGO 3. ŁUK ELEKTRYCZNY PRĄDU STŁEGO I PRZEMIENNEGO 3.1. Cel zakres ćwczena Celem ćwczena jest zapoznane sę z podstawowym właścwoścam łuku elektrycznego palącego sę swobodne, w powetrzu o cśnentmosferycznym.

Bardziej szczegółowo

Pomiary parametrów akustycznych wnętrz.

Pomiary parametrów akustycznych wnętrz. Pomary parametrów akustycznych wnętrz. Ocena obektywna wnętrz pod względem akustycznym dokonywana jest na podstawe wartośc następujących parametrów: czasu pogłosu, wczesnego czasu pogłosu ED, wskaźnków

Bardziej szczegółowo

WikiWS For Business Sharks

WikiWS For Business Sharks WkWS For Busness Sharks Ops zadana konkursowego Zadane Opracowane algorytmu automatyczne przetwarzającego zdjęce odręczne narysowanego dagramu na tablcy lub kartce do postac wektorowej zapsanej w formace

Bardziej szczegółowo

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru Pomary fzyczne - dokonywane tylko ze skończoną dokładnoścą. Powodem - nedoskonałość przyrządów pomarowych neprecyzyjność naszych zmysłów borących udzał w obserwacjach. Podawane samego tylko wynku pomaru

Bardziej szczegółowo

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L3 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE PD ORAZ PID

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L3 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE PD ORAZ PID ĆWICZENIE LABORAORYJNE AUOMAYKA I SEROWANIE W CHŁODNICWIE, KLIMAYZACJI I OGRZEWNICWIE L3 SEROWANIE INWEREROWYM URZĄDZENIEM CHŁODNICZYM W RYBIE PD ORAZ PID Wersja: 03-09-30 -- 3.. Cel ćwczena Celem ćwczena

Bardziej szczegółowo

Kwantowa natura promieniowania elektromagnetycznego

Kwantowa natura promieniowania elektromagnetycznego Efekt Comptona. Kwantowa natura promenowana elektromagnetycznego Zadane 1. Foton jest rozpraszany na swobodnym elektrone. Wyznaczyć zmanę długośc fal fotonu w wynku rozproszena. Poneważ układ foton swobodny

Bardziej szczegółowo

α i = n i /n β i = V i /V α i = β i γ i = m i /m

α i = n i /n β i = V i /V α i = β i γ i = m i /m Ćwczene nr 2 Stechometra reakcj zgazowana A. Część perwsza: powtórzene koncentracje stężena 1. Stężene Stężene jest stosunkem lośc substancj rozpuszczonej do całkowtej lośc rozpuszczalnka. Sposoby wyrażena

Bardziej szczegółowo

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ

POLITECHNIKA POZNAŃSKA ZAKŁAD CHEMII FIZYCZNEJ ĆWICZENIA PRACOWNI CHEMII FIZYCZNEJ WPŁYW SIŁY JONOWEJ ROZTWORU N STŁĄ SZYKOŚI REKJI WSTĘP Rozpatrzmy reakcję przebegającą w roztworze mędzy jonam oraz : k + D (1) Gdy reakcja ta zachodz przez równowagę wstępną, w układze występuje produkt

Bardziej szczegółowo

Grupa: Elektrotechnika, wersja z dn Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej

Grupa: Elektrotechnika, wersja z dn Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej ul.potrowo 3a http://lumen.ee.put.poznan.pl Grupa: Elektrotechnka, wersja z dn. 29.03.2016 Studa stacjonarne, stopeń, sem.1 Laboratorum Technk Śwetlnej Ćwczene nr 6 Temat: Badane parametrów fotometrycznych

Bardziej szczegółowo

5. OPTYMALIZACJA GRAFOWO-SIECIOWA

5. OPTYMALIZACJA GRAFOWO-SIECIOWA . OPTYMALIZACJA GRAFOWO-SIECIOWA Defncja grafu Pod pojęcem grafu G rozumemy następującą dwójkę uporządkowaną (defncja grafu Berge a): (.) G W,U gdze: W zbór werzchołków grafu, U zbór łuków grafu, U W W,

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY METODĄ STOKESA. Ops teoretyczny do ćwczena zameszczony jest na strone www.wtc.wat.edu.pl w dzale DYDAKTYKA FIZYKA ĆWICZENIA LABORATORYJNE.. Ops układu pomarowego

Bardziej szczegółowo

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie.

Zapis informacji, systemy pozycyjne 1. Literatura Jerzy Grębosz, Symfonia C++ standard. Harvey M. Deitl, Paul J. Deitl, Arkana C++. Programowanie. Zaps nformacj, systemy pozycyjne 1 Lteratura Jerzy Grębosz, Symfona C++ standard. Harvey M. Detl, Paul J. Detl, Arkana C++. Programowane. Zaps nformacj w komputerach Wszystke elementy danych przetwarzane

Bardziej szczegółowo

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych

Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 1. Układy równań liniowych Zaawansowane metody numeryczne Komputerowa analza zagadneń różnczkowych 1. Układy równań lnowych P. F. Góra http://th-www.f.uj.edu.pl/zfs/gora/ semestr letn 2006/07 Podstawowe fakty Równane Ax = b, x,

Bardziej szczegółowo

WSPOMAGANE KOMPUTEROWO POMIARY CZĘSTOTLIWOŚCI CHWILOWEJ SYGNAŁÓW IMPULSOWYCH

WSPOMAGANE KOMPUTEROWO POMIARY CZĘSTOTLIWOŚCI CHWILOWEJ SYGNAŁÓW IMPULSOWYCH Metrologa Wspomagana Komputerowo - Zegrze, 9-22 05.997 WSPOMAGANE KOMPUTEROWO POMIARY CZĘSTOTLIWOŚCI CHWILOWEJ SYGNAŁÓW IMPULSOWYCH dr nż. Jan Ryszard Jask, dr nż. Elgusz Pawłowsk POLITECHNIKA lubelska

Bardziej szczegółowo

Proces narodzin i śmierci

Proces narodzin i śmierci Proces narodzn śmerc Jeżel w ewnej oulacj nowe osobnk ojawają sę w sosób losowy, rzy czym gęstość zdarzeń na jednostkę czasu jest stała w czase wynos λ, oraz lczba osobnków n, które ojawły sę od chwl do

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1

KURS STATYSTYKA. Lekcja 6 Regresja i linie regresji ZADANIE DOMOWE. www.etrapez.pl Strona 1 KURS STATYSTYKA Lekcja 6 Regresja lne regresj ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowedź (tylko jedna jest prawdzwa). Pytane 1 Funkcja regresj I rodzaju cechy Y zależnej

Bardziej szczegółowo

Minister Edukacji Narodowej Pani Katarzyna HALL Ministerstwo Edukacji Narodowej al. J. Ch. Szucha 25 00-918 Warszawa Dnia 03 czerwca 2009 r.

Minister Edukacji Narodowej Pani Katarzyna HALL Ministerstwo Edukacji Narodowej al. J. Ch. Szucha 25 00-918 Warszawa Dnia 03 czerwca 2009 r. Mnster Edukacj arodowej Pan Katarzyna HALL Mnsterstwo Edukacj arodowej al. J. Ch. Szucha 25 00-918 arszawa Dna 03 czerwca 2009 r. TEMAT: Propozycja zmany art. 30a ustawy Karta auczycela w forme lstu otwartego

Bardziej szczegółowo

Zjawiska masowe takie, które mogą wystąpid nieograniczoną ilośd razy. Wyrazów Obcych)

Zjawiska masowe takie, które mogą wystąpid nieograniczoną ilośd razy. Wyrazów Obcych) Statystyka - nauka zajmująca sę metodam badana przedmotów zjawsk w ch masowych przejawach ch loścową lub jakoścową analzą z punktu wdzena nauk, do której zakresu należą.

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH

STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH STATYSTYKA MATEMATYCZNA WYKŁAD 5 WERYFIKACJA HIPOTEZ NIEPARAMETRYCZNYCH 1 Test zgodnośc χ 2 Hpoteza zerowa H 0 ( Cecha X populacj ma rozkład o dystrybuance F). Hpoteza alternatywna H1( Cecha X populacj

Bardziej szczegółowo

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4.

Modele wieloczynnikowe. Modele wieloczynnikowe. Modele wieloczynnikowe ogólne. α β β β ε. Analiza i Zarządzanie Portfelem cz. 4. Modele weloczynnkowe Analza Zarządzane Portfelem cz. 4 Ogólne model weloczynnkowy można zapsać jako: (,...,,..., ) P f F F F = n Dr Katarzyna Kuzak lub (,...,,..., ) f F F F = n Modele weloczynnkowe Można

Bardziej szczegółowo

Sprawozdanie powinno zawierać:

Sprawozdanie powinno zawierać: Sprawozdane pownno zawerać: 1. wypełnoną stronę tytułową (gotowa do ćw. nr 0 na strone drugej, do pozostałych ćwczeń zameszczona na strone 3), 2. krótk ops celu dośwadczena, 3. krótk ops metody pomaru,

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie obwodów prądu sinusoidalnie zmiennego

LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie obwodów prądu sinusoidalnie zmiennego Ćwczene 1 Wydzał Geonżyner, Górnctwa Geolog ABORATORUM PODSTAW EEKTROTECHNK Badane obwodów prądu snusodalne zmennego Opracował: Grzegorz Wśnewsk Zagadnena do przygotowana Ops elementów RC zaslanych prądem

Bardziej szczegółowo

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB

Rozwiązywanie zadań optymalizacji w środowisku programu MATLAB Rozwązywane zadań optymalzacj w środowsku programu MATLAB Zagadnene optymalzacj polega na znajdowanu najlepszego, względem ustalonego kryterum, rozwązana należącego do zboru rozwązań dopuszczalnych. Standardowe

Bardziej szczegółowo

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru

Teoria niepewności pomiaru (Rachunek niepewności pomiaru) Rodzaje błędów pomiaru Pomary fzyczne - dokonywane tylko ze skończoną dokładnoścą. Powodem - nedoskonałość przyrządów pomarowych neprecyzyjność naszych zmysłów borących udzał w obserwacjach. Podawane samego tylko wynku pomaru

Bardziej szczegółowo

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE

Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE Inormatyka Podstawy Programowana 06/07 Projekt 6 6. ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH CAŁKOWANIE NUMERYCZNE 6. Równana algebraczne. Poszukujemy rozwązana, czyl chcemy określć perwastk rzeczywste równana:

Bardziej szczegółowo

Jakość cieplna obudowy budynków - doświadczenia z ekspertyz

Jakość cieplna obudowy budynków - doświadczenia z ekspertyz dr nż. Robert Geryło Jakość ceplna obudowy budynków - dośwadczena z ekspertyz Wdocznym efektem występowana znaczących mostków ceplnych w obudowe budynku, występującym na ogół przy nedostosowanu ntensywnośc

Bardziej szczegółowo

D Archiwum Prac Dyplomowych - Instrukcja dla studentów

D Archiwum Prac Dyplomowych - Instrukcja dla studentów Kraków 01.10.2015 D Archwum Prac Dyplomowych - Instrukcja dla studentów Procedura Archwzacj Prac Dyplomowych jest realzowana zgodne z zarządzenem nr 71/2015 Rektora Unwersytetu Rolnczego m. H. Kołłątaja

Bardziej szczegółowo

SPRAWDZANIE PRAWA MALUSA

SPRAWDZANIE PRAWA MALUSA INSTYTUT ELEKTRONIKI I SYSTEMÓW STEROWANIA WYDZIAŁ ELEKTRYCZNY POLITECHNIKA CZĘSTOCHOWSKA LABORATORIUM FIZYKI ĆWICZENIE NR O- SPRAWDZANIE PRAWA MALUSA I. Zagadnena do przestudowana 1. Fala elektromagnetyczna,

Bardziej szczegółowo

METODY PLANOWANIA EKSPERYMENTÓW. dr hab. inż. Mariusz B. Bogacki

METODY PLANOWANIA EKSPERYMENTÓW. dr hab. inż. Mariusz B. Bogacki Metody Planowana Eksperymentów Rozdzał 1. Strona 1 z 14 METODY PLANOWANIA EKSPERYMENTÓW dr hab. nż. Marusz B. Bogack Marusz.Bogack@put.poznan.pl www.fct.put.poznan.pl/cv23.htm Marusz B. Bogack 1 Metody

Bardziej szczegółowo

Procedura normalizacji

Procedura normalizacji Metody Badań w Geograf Społeczno Ekonomcznej Procedura normalzacj Budowane macerzy danych geografcznych mgr Marcn Semczuk Zakład Przedsęborczośc Gospodark Przestrzennej Instytut Geograf Unwersytet Pedagogczny

Bardziej szczegółowo

Zadane 1: Wyznacz średne ruchome 3-okresowe z następujących danych obrazujących zużyce energ elektrycznej [kwh] w pewnym zakładze w mesącach styczeń - lpec 1998 r.: 400; 410; 430; 40; 400; 380; 370. Zadane

Bardziej szczegółowo

Oligopol dynamiczny. Rozpatrzmy model sekwencyjnej konkurencji ilościowej jako gra jednokrotna z pełną i doskonalej informacją

Oligopol dynamiczny. Rozpatrzmy model sekwencyjnej konkurencji ilościowej jako gra jednokrotna z pełną i doskonalej informacją Olgopol dynamczny Rozpatrzmy model sekwencyjnej konkurencj loścowej jako gra jednokrotna z pełną doskonalej nformacją (1934) Dwa okresy: t=0, 1 tzn. frma 2 podejmując decyzję zna decyzję frmy 1 Q=q 1 +q

Bardziej szczegółowo

I. Elementy analizy matematycznej

I. Elementy analizy matematycznej WSTAWKA MATEMATYCZNA I. Elementy analzy matematycznej Pochodna funkcj f(x) Pochodna funkcj podaje nam prędkość zman funkcj: df f (x + x) f (x) f '(x) = = lm x 0 (1) dx x Pochodna funkcj podaje nam zarazem

Bardziej szczegółowo

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ

1. SPRAWDZENIE WYSTEPOWANIA RYZYKA KONDENSACJI POWIERZCHNIOWEJ ORAZ KONDENSACJI MIĘDZYWARSTWOWEJ W ŚCIANIE ZEWNĘTRZNEJ Ćwczene nr 1 cz.3 Dyfuzja pary wodnej zachodz w kerunku od środowska o wyższej temperaturze do środowska chłodnejszego. Para wodna dyfundująca przez przegrody budowlane w okrese zmowym napotyka na coraz

Bardziej szczegółowo

Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej

Studia stacjonarne, II stopień, sem.1 Laboratorium Techniki Świetlnej 60-965 Poznań ul.potrowo 3a http://lumen.ee.put.poznan.pl Grupa: Elektrotechnka, Studa stacjonarne, II stopeń, sem.1 Laboratorum Technk Śwetlnej wersja z dn. 08.05.017 Ćwczene nr 6 Temat: Porównane parametrów

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych 1. Zastosowane

Bardziej szczegółowo

Opracowanie metody predykcji czasu życia baterii na obiekcie i oceny jej aktualnego stanu na podstawie analizy bieżących parametrów jej eksploatacji.

Opracowanie metody predykcji czasu życia baterii na obiekcie i oceny jej aktualnego stanu na podstawie analizy bieżących parametrów jej eksploatacji. Zakład Systemów Zaslana (Z-5) Opracowane nr 323/Z5 z pracy statutowej pt. Opracowane metody predykcj czasu życa bater na obekce oceny jej aktualnego stanu na podstawe analzy beżących parametrów jej eksploatacj.

Bardziej szczegółowo

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 3. Analiza obwodów RLC przy wymuszeniach sinusoidalnych w stanie ustalonym

Pracownia Automatyki i Elektrotechniki Katedry Tworzyw Drzewnych Ćwiczenie 3. Analiza obwodów RLC przy wymuszeniach sinusoidalnych w stanie ustalonym ĆWCZENE 3 Analza obwodów C przy wymszenach snsodalnych w stane stalonym 1. CE ĆWCZENA Celem ćwczena jest praktyczno-analtyczna ocena obwodów elektrycznych przy wymszenach snsodalne zmennych.. PODSAWY EOEYCZNE

Bardziej szczegółowo

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013

ZESZYTY NAUKOWE INSTYTUTU POJAZDÓW 5(96)/2013 ZESZYTY NAUKOWE NSTYTUTU POJAZDÓW 5(96)/2013 Hubert Sar, Potr Fundowcz 1 WYZNACZANE MASOWEGO MOMENTU BEZWŁADNOŚC WZGLĘDEM OS PODŁUŻNEJ DLA SAMOCHODU TYPU VAN NA PODSTAWE WZORÓW DOŚWADCZALNYCH 1. Wstęp

Bardziej szczegółowo

3.1. ODZIAŁYWANIE DŹWIĘKÓW NA CZŁOWIEKA I OTOCZENIE

3.1. ODZIAŁYWANIE DŹWIĘKÓW NA CZŁOWIEKA I OTOCZENIE 3. KRYTERIA OCENY HAŁASU I DRGAŃ Hałas to każdy dźwęk nepożądany, przeszkadzający, nezależne od jego natury, kontekstu znaczena. Podobne rzecz sę ma z drganam. Oba te zjawska oddzałują nekorzystne na człoweka

Bardziej szczegółowo

POMIAR WSPÓŁCZYNNIKÓW ODBICIA I PRZEPUSZCZANIA

POMIAR WSPÓŁCZYNNIKÓW ODBICIA I PRZEPUSZCZANIA Ćwczene O5 POMIAR WSPÓŁCZYNNIKÓW ODBICIA I PRZEPUSZCZANIA 1. Cel zakres ćwczena Celem ćwczena jest poznane metod pomaru współczynnków odbca przepuszczana próbek płaskch 2. Ops stanowska laboratoryjnego

Bardziej szczegółowo

Laboratorium ochrony danych

Laboratorium ochrony danych Laboratorum ochrony danych Ćwczene nr Temat ćwczena: Cała skończone rozszerzone Cel dydaktyczny: Opanowane programowej metody konstruowana cał skończonych rozszerzonych GF(pm), poznane ch własnośc oraz

Bardziej szczegółowo

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego

Katedra Chemii Fizycznej Uniwersytetu Łódzkiego Katedra Chem Fzycznej Unwersytetu Łódzkego Wyznaczane współczynnka podzału Nernsta w układze: woda aceton chloroform metodą refraktometryczną opracowała dr hab. Małgorzata Jóźwak ćwczene nr 0 Zakres zagadneń

Bardziej szczegółowo

ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH

ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH Grzegorz PRZEKOTA ZESZYTY NAUKOWE WYDZIAŁU NAUK EKONOMICZNYCH ZASTOSOWANIE ANALIZY HARMONICZNEJ DO OKREŚLENIA SIŁY I DŁUGOŚCI CYKLI GIEŁDOWYCH Zarys treśc: W pracy podjęto problem dentyfkacj cykl gełdowych.

Bardziej szczegółowo

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA

KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA KRZYWA BÉZIERA TWORZENIE I WIZUALIZACJA KRZYWYCH PARAMETRYCZNYCH NA PRZYKŁADZIE KRZYWEJ BÉZIERA Krzysztof Serżęga Wyższa Szkoła Informatyk Zarządzana w Rzeszowe Streszczene Artykuł porusza temat zwązany

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Optymalizacja

Modelowanie i obliczenia techniczne. Metody numeryczne w modelowaniu: Optymalizacja Modelowane oblczena technczne Metody numeryczne w modelowanu: Optymalzacja Zadane optymalzacj Optymalzacja to ulepszane lub poprawa jakośc danego rozwązana, projektu, opracowana. Celem optymalzacj jest

Bardziej szczegółowo

Laboratorium Pomiarów i Automatyki w Inżynierii Chemicznej Regulacja Ciągła

Laboratorium Pomiarów i Automatyki w Inżynierii Chemicznej Regulacja Ciągła Zakład Wydzałowy Inżyner Bomedycznej Pomarowej Laboratorum Pomarów Automatyk w Inżyner Chemcznej Regulacja Cągła Wrocław 2005 . Mary jakośc regulacj automatycznej. Regulacja automatyczna polega na oddzaływanu

Bardziej szczegółowo

Statystyka Inżynierska

Statystyka Inżynierska Statystyka Inżynerska dr hab. nż. Jacek Tarasuk AGH, WFIS 013 Wykład DYSKRETNE I CIĄGŁE ROZKŁADY JEDNOWYMIAROWE Zmenna losowa, Funkcja rozkładu, Funkcja gęstośc, Dystrybuanta, Charakterystyk zmennej, Funkcje

Bardziej szczegółowo

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A

Analiza rodzajów skutków i krytyczności uszkodzeń FMECA/FMEA według MIL STD - 1629A Analza rodzajów skutków krytycznośc uszkodzeń FMECA/FMEA według MIL STD - 629A Celem analzy krytycznośc jest szeregowane potencjalnych rodzajów uszkodzeń zdentyfkowanych zgodne z zasadam FMEA na podstawe

Bardziej szczegółowo

Zastosowanie symulatora ChemCad do modelowania złożonych układów reakcyjnych procesów petrochemicznych

Zastosowanie symulatora ChemCad do modelowania złożonych układów reakcyjnych procesów petrochemicznych NAFTA-GAZ styczeń 2011 ROK LXVII Anna Rembesa-Śmszek Instytut Nafty Gazu, Kraków Andrzej Wyczesany Poltechnka Krakowska, Kraków Zastosowane symulatora ChemCad do modelowana złożonych układów reakcyjnych

Bardziej szczegółowo

ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany

ELEKTROCHEMIA. ( i = i ) Wykład II b. Nadnapięcie Równanie Buttlera-Volmera Równania Tafela. Wykład II. Równowaga dynamiczna i prąd wymiany Wykład II ELEKTROCHEMIA Wykład II b Nadnapęce Równane Buttlera-Volmera Równana Tafela Równowaga dynamczna prąd wymany Jeśl układ jest rozwarty przez elektrolzer ne płyne prąd, to ne oznacza wcale, że na

Bardziej szczegółowo

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości

± Δ. Podstawowe pojęcia procesu pomiarowego. x rzeczywiste. Określenie jakości poznania rzeczywistości Podstawowe pojęca procesu pomarowego kreślene jakośc poznana rzeczywstośc Δ zmerzone rzeczywste 17 9 Zalety stosowana elektrycznych przyrządów 1/ 1. możlwość budowy czujnków zamenających werne każdą welkość

Bardziej szczegółowo

Płyny nienewtonowskie i zjawisko tiksotropii

Płyny nienewtonowskie i zjawisko tiksotropii Płyny nenewtonowske zjawsko tksotrop ) Krzywa newtonowska, lnowa proporcjonalność pomędzy szybkoścą ścnana a naprężenem 2) Płyny zagęszczane ścnanem, naprężene wzrasta bardzej nż proporcjonalne do wzrostu

Bardziej szczegółowo

Wykład Turbina parowa kondensacyjna

Wykład Turbina parowa kondensacyjna Wykład 9 Maszyny ceplne turbna parowa Entropa Równane Claususa-Clapeyrona granca równowag az Dośwadczena W. Domnk Wydzał Fzyk UW ermodynamka 08/09 /5 urbna parowa kondensacyjna W. Domnk Wydzał Fzyk UW

Bardziej szczegółowo

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ

LABORATORIUM TECHNIKI CIEPLNEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTYTUTU TECHNIKI CIEPLNEJ WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI POLITECHNIKI ŚLĄSKIEJ INSTRUKCJA LABORATORYJNA Temat ćwczena: BADANIE POPRAWNOŚCI OPISU STANU TERMICZNEGO POWIETRZA PRZEZ RÓWNANIE

Bardziej szczegółowo

EUROELEKTRA. Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej. Rok szkolny 2013/2014

EUROELEKTRA. Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej. Rok szkolny 2013/2014 EUROELEKTRA Ogólnopolska Olmpada Wedzy Elektrycznej Elektroncznej Rok szkolny 232 Zadana z elektronk na zawody III stopna (grupa elektronczna) Zadane. Oblczyć wzmocnene napęcowe, rezystancję wejścową rezystancję

Bardziej szczegółowo

Proste modele ze złożonym zachowaniem czyli o chaosie

Proste modele ze złożonym zachowaniem czyli o chaosie Proste modele ze złożonym zachowanem czyl o chaose 29 kwetna 2014 Komputer jest narzędzem coraz częścej stosowanym przez naukowców do ukazywana skrzętne ukrywanych przez naturę tajemnc. Symulacja, obok

Bardziej szczegółowo

Analiza ryzyka jako instrument zarządzania środowiskiem

Analiza ryzyka jako instrument zarządzania środowiskiem WARSZTATY 2003 z cyklu Zagrożena naturalne w górnctwe Mat. Symp. str. 461 466 Elżbeta PILECKA, Małgorzata SZCZEPAŃSKA Instytut Gospodark Surowcam Mneralnym Energą PAN, Kraków Analza ryzyka jako nstrument

Bardziej szczegółowo

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH

PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH PODSTAWA WYMIARU ORAZ WYSOKOŚĆ EMERYTURY USTALANEJ NA DOTYCHCZASOWYCH ZASADACH Z a k ł a d U b e z p e c z e ń S p o ł e c z n y c h Wprowadzene Nnejsza ulotka adresowana jest zarówno do osób dopero ubegających

Bardziej szczegółowo

Diagonalizacja macierzy kwadratowej

Diagonalizacja macierzy kwadratowej Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an

Bardziej szczegółowo

Praktyczne wykorzystanie zależności między twardością Brinella a wytrzymałością stali konstrukcyjnych

Praktyczne wykorzystanie zależności między twardością Brinella a wytrzymałością stali konstrukcyjnych Wydzał Budownctwa Lądowego Wodnego Katedra Konstrukcj Metalowych Praktyczne wykorzystane zależnośc mędzy twardoścą Brnella a wytrzymałoścą stal konstrukcyjnych - korzyśc realzacj projektu GRANT PLUS -

Bardziej szczegółowo

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr nż. Łukasz Amanowcz Systemy Ochrony Powetrza Ćwczena Laboratoryjne 5 TEAT ĆWICZENIA: Oznaczane wagowego składu zarnowego pyłu za pomocą

Bardziej szczegółowo

Prąd elektryczny U R I =

Prąd elektryczny U R I = Prąd elektryczny porządkowany ruch ładunków elektrycznych (nośnków prądu). Do scharakteryzowana welkośc prądu służy natężene prądu określające welkość ładunku przepływającego przez poprzeczny przekrój

Bardziej szczegółowo

INDUKCJA ELEKTROMAGNETYCZNA. - Prąd powstający w wyniku indukcji elektro-magnetycznej.

INDUKCJA ELEKTROMAGNETYCZNA. - Prąd powstający w wyniku indukcji elektro-magnetycznej. INDUKCJA ELEKTROMAGNETYCZNA Indukcja - elektromagnetyczna Powstawane prądu elektrycznego w zamknętym, przewodzącym obwodze na skutek zmany strumena ndukcj magnetycznej przez powerzchnę ogranczoną tym obwodem.

Bardziej szczegółowo

METODA ELEMENTU SKOŃCZONEGO. Termokinetyka

METODA ELEMENTU SKOŃCZONEGO. Termokinetyka METODA ELEMENTU SKOŃCZONEGO Termoknetyka Matematyczny ops ruchu cepła (1) Zasada zachowana energ W a Cepło akumulowane, [J] P we Moc wejścowa, [W] P wy Moc wyjścowa, [W] t przedzał czasu, [s] V q S(V)

Bardziej szczegółowo

PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE

PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE PROSTO O DOPASOWANIU PROSTYCH, CZYLI ANALIZA REGRESJI LINIOWEJ W PRAKTYCE Janusz Wątroba, StatSoft Polska Sp. z o.o. W nemal wszystkch dzedznach badań emprycznych mamy do czynena ze złożonoścą zjawsk procesów.

Bardziej szczegółowo

Urządzenia wejścia-wyjścia

Urządzenia wejścia-wyjścia Urządzena wejśca-wyjśca Klasyfkacja urządzeń wejśca-wyjśca. Struktura mechanzmu wejśca-wyjśca (sprzętu oprogramowana). Interakcja jednostk centralnej z urządzenam wejśca-wyjśca: odpytywane, sterowane przerwanam,

Bardziej szczegółowo

Rachunek niepewności pomiaru opracowanie danych pomiarowych

Rachunek niepewności pomiaru opracowanie danych pomiarowych Rachunek nepewnośc pomaru opracowane danych pomarowych Mędzynarodowa Norma Oceny Nepewnośc Pomaru (Gude to Epresson of Uncertanty n Measurements - Mędzynarodowa Organzacja Normalzacyjna ISO) http://physcs.nst./gov/uncertanty

Bardziej szczegółowo

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że

Twierdzenie Bezouta i liczby zespolone Javier de Lucas. Rozwi azanie 2. Z twierdzenia dzielenia wielomianów, mamy, że Twerdzene Bezouta lczby zespolone Javer de Lucas Ćwczene 1 Ustal dla których a, b R można podzelć f 1 X) = X 4 3X 2 + ax b przez f 2 X) = X 2 3X+2 Oblcz a b Z 5 jeżel zak ladamy, że f 1 f 2 s a welomanam

Bardziej szczegółowo

Metody analizy obwodów

Metody analizy obwodów Metody analzy obwodów Metoda praw Krchhoffa, która jest podstawą dla pozostałych metod Metoda transfguracj, oparte na przekształcenach analzowanego obwodu na obwód równoważny Metoda superpozycj Metoda

Bardziej szczegółowo

Propozycja modyfikacji klasycznego podejścia do analizy gospodarności

Propozycja modyfikacji klasycznego podejścia do analizy gospodarności Jacek Batóg Unwersytet Szczecńsk Propozycja modyfkacj klasycznego podejśca do analzy gospodarnośc Przedsęborstwa dysponujące dentycznym zasobam czynnków produkcj oraz dzałające w dentycznych warunkach

Bardziej szczegółowo

MINISTER EDUKACJI NARODOWEJ

MINISTER EDUKACJI NARODOWEJ 4 MINISTER EDUKACJI NARODOWEJ DWST WPZN 423189/BSZI13 Warszawa, 2013 -Q-4 Pan Marek Mchalak Rzecznk Praw Dzecka Szanowny Pane, w odpowedz na Pana wystąpene z dna 28 czerwca 2013 r. (znak: ZEW/500127-1/2013/MP),

Bardziej szczegółowo

Rozkład dwupunktowy. Rozkład dwupunktowy. Rozkład dwupunktowy x i p i 0 1-p 1 p suma 1

Rozkład dwupunktowy. Rozkład dwupunktowy. Rozkład dwupunktowy x i p i 0 1-p 1 p suma 1 Rozkład dwupunktowy Zmenna losowa przyjmuje tylko dwe wartośc: wartość 1 z prawdopodobeństwem p wartość 0 z prawdopodobeństwem 1- p x p 0 1-p 1 p suma 1 Rozkład dwupunktowy Funkcja rozkładu prawdopodobeństwa

Bardziej szczegółowo

Zapytanie ofertowe nr 4/2016/Młodzi (dotyczy zamówienia na usługę ochrony)

Zapytanie ofertowe nr 4/2016/Młodzi (dotyczy zamówienia na usługę ochrony) Fundacja na Rzecz Rozwoju Młodzeży Młodz Młodym ul. Katedralna 4 50-328 Wrocław tel. 882 021 007 mlodzmlodym@archdecezja.wroc.pl, www.sdm2016.wroclaw.pl Wrocław, 24 maja 2016 r. Zapytane ofertowe nr 4/2016/Młodz

Bardziej szczegółowo

mgr inż. Wojciech Artichowicz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁACH OTWARTYCH

mgr inż. Wojciech Artichowicz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁACH OTWARTYCH Poltechnka Gdańska Wydzał Inżyner Lądowej Środowska Katedra ydrotechnk mgr nż. Wojcech Artchowcz MODELOWANIE PRZEPŁYWU USTALONEGO NIEJEDNOSTAJNEGO W KANAŁAC OTWARTYC PRACA DOKTORSKA Promotor: prof. dr

Bardziej szczegółowo

Statystyka Opisowa 2014 część 1. Katarzyna Lubnauer

Statystyka Opisowa 2014 część 1. Katarzyna Lubnauer Statystyka Opsowa 2014 część 1 Katarzyna Lubnauer Lteratura: 1. Statystyka w Zarządzanu Admr D. Aczel 2. Statystyka Opsowa od Podstaw Ewa Waslewska 3. Statystyka, Lucjan Kowalsk. 4. Statystyka opsowa,

Bardziej szczegółowo

V. TERMODYNAMIKA KLASYCZNA

V. TERMODYNAMIKA KLASYCZNA 46. ERMODYNAMIKA KLASYCZNA. ERMODYNAMIKA KLASYCZNA ermodynamka jako nauka powstała w XIX w. Prawa termodynamk są wynkem obserwacj welu rzeczywstych procesów- są to prawa fenomenologczne modelu rzeczywstośc..

Bardziej szczegółowo

-Macierz gęstości: stany czyste i mieszane (przykłady) -równanie ruchu dla macierzy gęstości -granica klasyczna rozkładów kwantowych

-Macierz gęstości: stany czyste i mieszane (przykłady) -równanie ruchu dla macierzy gęstości -granica klasyczna rozkładów kwantowych WYKŁAD 4 dla zanteresowanych -Macerz gęstośc: stany czyste meszane (przykłady) -równane ruchu dla macerzy gęstośc -granca klasyczna rozkładów kwantowych Macerz gęstośc (przypomnene z poprzednch wykładów)

Bardziej szczegółowo

Weryfikacja hipotez dla wielu populacji

Weryfikacja hipotez dla wielu populacji Weryfkacja hpotez dla welu populacj Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Intelgencj Metod Matematycznych Wydzał Informatyk Poltechnk Szczecńskej 5. Parametryczne testy stotnośc w

Bardziej szczegółowo

Współczynniki aktywności w roztworach elektrolitów

Współczynniki aktywności w roztworach elektrolitów Współczynnk aktywnośc w roztworach elektroltów Ag(s) ½ 2 (s) = Ag (aq) (aq) Standardowa molowa entalpa takej reakcj jest dana wzorem: H r Przypomnene! = H tw, Ag ( aq) Jest ona merzalna ma sens fzyczny.

Bardziej szczegółowo

D Archiwum Prac Dyplomowych - Instrukcja dla opiekunów/promotorów/recenzentów

D Archiwum Prac Dyplomowych - Instrukcja dla opiekunów/promotorów/recenzentów D Archwum Prac Dyplomowych - Instrukcja dla opekunów/promotorów/recenzentów Kraków 13.01.2016 r. Procedura Archwzacj Prac Dyplomowych jest realzowana zgodne z zarządzenem nr 71/2015 Rektora Unwersytetu

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6

Stanisław Cichocki. Natalia Nehrebecka. Wykład 6 Stansław Cchock Natala Nehrebecka Wykład 6 1 1. Zastosowane modelu potęgowego Model potęgowy Przekształcene Boxa-Coxa 2. Zmenne cągłe za zmenne dyskretne 3. Interpretacja parametrów przy zmennych dyskretnych

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 4 Stansław Cchock Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0-1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających Interpretacja

Bardziej szczegółowo

Kierownik Katedry i Kliniki: prof. dr hab. Bernard Panaszek, prof. zw. UMW. Recenzja

Kierownik Katedry i Kliniki: prof. dr hab. Bernard Panaszek, prof. zw. UMW. Recenzja KATEDRA KLINIKA CHORÓB WEWNĘTRZNYCHYCH GERIATRII ALERGOLOGU Unwersytet Medyczny m. Pastów Śląskch we Wrocławu 50-367 Wrocław, ul. Cure-Skłodowskej 66 Tel. 71/7842521 Fax 71/7842529 E-mal: bernard.panaszek@umed.wroc.pl

Bardziej szczegółowo

Natalia Nehrebecka. Zajęcia 4

Natalia Nehrebecka. Zajęcia 4 St ł Cchock Stansław C h k Natala Nehrebecka Zajęca 4 1. Interpretacja parametrów przy zmennych zerojedynkowych Zmenne 0 1 Interpretacja przy zmennej 0 1 w modelu lnowym względem zmennych objaśnających

Bardziej szczegółowo

Refraktometria. sin β sin β

Refraktometria. sin β sin β efraktometra Prędkość rozchodzena sę promen śwetlnych zależy od gęstośc optycznej ośrodka oraz od długośc fal promenena. Promene śwetlne padając pod pewnym kątem na płaszczyznę granczących ze sobą dwóch

Bardziej szczegółowo

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ Autor: Joanna Wójcik

System Przeciwdziałania Powstawaniu Bezrobocia na Terenach Słabo Zurbanizowanych SPRAWOZDANIE Z BADAŃ   Autor: Joanna Wójcik Opracowane w ramach projektu System Przecwdzałana Powstawanu Bezroboca na Terenach Słabo Zurbanzowanych ze środków Europejskego Funduszu Społecznego w ramach Incjatywy Wspólnotowej EQUAL PARTNERSTWO NA

Bardziej szczegółowo

Analiza i diagnoza sytuacji finansowej wybranych branż notowanych na Warszawskiej Giełdzie Papierów Wartościowych w latach

Analiza i diagnoza sytuacji finansowej wybranych branż notowanych na Warszawskiej Giełdzie Papierów Wartościowych w latach Jacek Batóg Unwersytet Szczecńsk Analza dagnoza sytuacj fnansowej wybranych branż notowanych na Warszawskej Gełdze Paperów Wartoścowych w latach 997-998 W artykule podjęta została próba analzy dagnozy

Bardziej szczegółowo

Dotyczy: opinii PKPP lewiatan do projektow dwoch rozporzqdzen z 27 marca 2012 (pismo P-PAA/137/622/2012)

Dotyczy: opinii PKPP lewiatan do projektow dwoch rozporzqdzen z 27 marca 2012 (pismo P-PAA/137/622/2012) 30/04! 2012 PON 13: 30! t FAX 22 55 99 910 PKPP Lewatan _..~._. _., _. _ :. _._..... _.. ~._..:.l._.... _. '. _-'-'-'"." -.-.---.. ----.---.-.~.....----------.. LEWATAN Pol~ka KonfederacJa Pracodawcow

Bardziej szczegółowo