FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS

Wielkość: px
Rozpocząć pokaz od strony:

Download "FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS"

Transkrypt

1 FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 9, Oeconomica 68 54), 55 6 Anna LANDOWSKA ZASTOSOWANIE DYSKRETNEGO PROGRAMOWANIA DYNAMICZNEGO DO ROZWIĄZANIA PROBLEMU OPTYMALNEGO PRZYDZIAŁU W GOSPODARSTWIE ROLNYM APPLICATION OF DISCREET DYNAMIC PROGRAMMING FOR SOLVING OPTIMAL ALLOTMENT PROBLEM IN AN AGRICULTURAL FARM Katedra Zastosowań Matematyi w Eonomii, Zachodniopomorsi Uniwersytet Technologiczny w Szczecinie ul. Janiciego 1, 71-7 Szczecin Abstract. For the development of village it is essential that agricultural farm maes the largest profit. Very important is to plan sowing in a optimal way, to obtain the biggest crop, which is easy to sell for a sharp price. It is difficult to tae into consideration so many factors and constraints. The article presents discrete dynamic programming method which maes possible to find optimal solution of allotment problem with constraints using earlier captured experiences. Słowa luczowe: problem optymalnego przydziału, programowanie dynamiczne, równanie Bellmana. Key words: Bellman equation, dynamic programming, optimal allotment problem. WSTĘP Dla rozwoju wsi istotne jest, by gospodarstwo rolne przynosiło ja najwięsze zysi. Bardzo ważne jest optymalne zaplanowanie siewu aby, można było otrzymać więszy plon, tóry można łatwo sprzedać za dobrą cenę. Oczywiste jest to, że nie z ażdej ziemi możemy otrzymać oczeiwane zbiory. Uwzględnienie dużej liczby czynniów i ograniczeń może być bardzo trudne. W artyule poazano zastosowanie w rolnictwie metody dysretnego programowania dynamicznego, za pomocą tórej dla wielu zmiennych wejściowych szybo znajduje się optymalne rozwiązanie. Programowanie dynamiczne PD), jao metoda rozwiązywania pewnych zadań optymalizacji, zostało opracowane w latach 5. przez Bellmana 195). Metodę tę znacznie rozwinięto, przy czym zwięszyła się liczba problemów rozwiązywanych za jej pomocą. W artyule przedstawiono istotę dysretnego programowania dynamicznego Ignasia 1; Trzasali ), następnie opisano problem decyzyjny dotyczący optymalnego wyboru obszarów zasiewu w gospodarstwie rolnym, a taże metodę PD. Dla rozpatrywanego zadania podano rozwiązanie optymalne i wynii numeryczne.

2 56 A. Landowsa METODA PROGRAMOWANIA DYNAMICZNEGO Istota programowania dynamicznego polega na tym, że w celu znalezienia optymalnego ciągu decyzji proces sterowalny rozdziela się na wiele olejnych etapów. Każdemu etapowi przypisuje się pewną wartość decyzyjną, a dla całego procesu tworzy się ryterium optymalności jao funcję wielu zmiennych wartości decyzyjnych) Kowali 4). Następnie orzysta się z zasady: Optymalna strategia sterowania ma tę własność, że jaiolwie by był stan początowy i decyzja początowa, to następne decyzje muszą tworzyć optymalną strategię sterowania względem stanu wyniającego z pierwszej Bellman 1967, s. 54). Zatem etap procesu sterowalnego to podstawowe pojęcie metody PD. Metodę PD można stosować w procesach eonomicznych, tóre zachodzą w czasie wówczas pojedynczym etapem może być pewien odcine czasu ro, miesiąc, godzina), ja również w procesach, tóre nie rozwijają się w czasie. W tym drugim przypadu przejście do następnego stadium może oznaczać na przyład uruchomienie olejnej maszyny bądź wyonanie olejnej inwestycji. Efetem zastosowania metody programowania dynamicznego jest ustalenie optymalnej strategii optymalnego planu działania). Zaletą tej metody jest sprowadzenie zadania poszuiwania estremum funcji n zmiennych do zadania poszuiwania estremum funcji jednej zmiennej. Zatem można rozwiązywać tą metodą zadania o dużej liczbie zmiennych decyzyjnych, z nieciągłymi lub nieróżniczowalnymi funcjami celu oraz zadania, tóre nie są zadaniami programowania wypułego. Programowanie dynamiczne jest metodą rozwiązywania zadań zarówno optymalizacji dynamicznej, ja i optymalizacji statycznej. Ważne jest, aby proces sterowalny charateryzował się tzw. własnością Marowa, co oznacza, że wartość uzysana na i-tym etapie optymalizacji zależy tylo od stanu na i-1 etapie oraz od decyzji podjętej na i-tym etapie. Problematya związana z programowaniem dynamicznym została szerzej opisana m.in. w pracach Bellmana 1967), Findeisena 197), Grabowsiego 19), Lwa i Maucha 7), Maucha 4), Robinetta i Wilsona 5). PROBLEM OPTYMALNEGO PRZYDZIAŁU W GOSPODARSTWIE ROLNYM Załóżmy, że gospodarz właściciel 7 ha gruntów ornych ziemi, położonej w trzech gminach A, B i C, ma problem optymalnego zasiewu pola czterema różnymi zbożami, przy czym oznacza ilość ziemi pod uprawę pszenicy ozimej, x ilość żyta, ilość owsa, a ilość jęczmienia ozimego w ha. Gospodarstwa nie można tratować jao jednolitej całości z powodu zróżnicowania jaości ziemi. Poniżej przedstawiono tabele, w tórych w ostatnich olumnach znajdują się ceny, jaie otrzyma rolni w supie za odpowiednią ilość ażdej z upraw. Cena uwzględnia wielość plonowania ażdej z upraw w poszczególnych gminach oraz ceny supu prognozy tych wielości). Dodatowym założeniem jest wielość powierzchni gruntów ornych w poszczególnych gminach: w gminie A wynosi ona ha, w gminie B ha, a w gminie C ha. Odgórnie została narzucona wielość zasiewów do masymalnie 1 ha na ażdą z upraw w ażdej gminie oraz optymalna strutura zasiewów pszenica

3 Zastosowanie dysretnego programowania dynamicznego 57 i żyto po ha, natomiast owies i jęczmień po ha. W tabeli 1 przedstawiono zys gospodarza po obsianiu poszczególnymi zbożami powierzchni,,, 1 ha pól A, B, C. Tabela 1. Zależność zysu od gatunu uprawianego zboża, rodzaju pola i powierzchni Pole A, ma ha Pole B, max ha Pole C, max ha gatune powierzchnia zys gatune powierzchnia zys gatune powierzchnia zboża uprawy [ha] [zł] zboża uprawy [ha] [zł] zboża uprawy [ha] zys [zł] x x x Dane przedstawione w tab. 1 zostaną przeształcone do postaci, tóra pozwoli wyorzystać metodę programowania dynamicznego do znalezienia optymalnego rozwiązania. Z danych umieszczonych w tab. 1 powstaną 4 funcje, tóre będą odpowiadały poszczególnym gatunom uprawianego zboża C, d ), C x, d ), C, d ), C, d ), gdzie C x, d ), to zys 1 4 wyniający z obsiania d = Ax, Bx, Cx ) ha zbożem x, {1,,,4 }, Ax = ha, Bx = ha, Cx = ha, ha, ha, x ha, x ha. 1 Zatem argumentami funcji C x, d ) będą zmienne oznaczające wielość powierzchni uprawianego pola w gminach A, B, C, obsianego zbożem x, natomiast wartością funcji będzie zys, jai otrzymamy po obsianiu danej powierzchni gmin zbożem 4 x. Budując funcje C x, d ), należy pamiętać, aby suma argumentów nie przeraczała dopuszczalnej wartości zasiewu zboża x, czyli muszą być spełnione waruni: ha, ha, x ha, x 4 ha. Ponieważ funcje C x, d ) są bardzo rozbudowane, nie podano ich wszystich w artyule. Dla zrozumienia problemu przedstawiono ila wartości funcji C x, d ) : C,,,) =, C,,,) = 116, C,,,1) = 18 6, C,,,) = 114, C,,,) = 19, C,,,1) = , C,,,) = 76, C,,,) = 614 itp. 1

4 58 A. Landowsa Wprowadźmy dalsze oznaczenia. Danych jest M = 7 ha hetarów gruntów ornych do obsiania czterema gatunami zbóż. Przypuśćmy, że podjęciu decyzji, w odpowiednich etapach, o przydziale d 1 hetarów odpowiada przydział hetarów dla pól A, B i C, na tórych zostanie zasiane zboże x 1, następnie ilość d hetarów zostanie obsianych zbożem x itd. Zdefiniujmy stan x, m) jao pozostałą liczbę m = max, mbx, mcx ) hetarów do zagospodarowania pól A, B, C w etapie. Zys wyniający z decyzji o obsianiu w etapie po obsianiu zbożem d hetarów x wynosi C x, d ); następny stan to x, m d ) Równanie funcyjne programowania dynamicznego równanie Bellmana) ma postać: f x, m) = max{ C x, d ) + f x + 1, m d + 1)} 1) d Optymalne rozwiązanie to wartość masymalna f,,,)). Przy ta postawionych warunach, orzystając z metody programowania dynamicznego, otrzymujemy optymalne rozwiązanie problemu. Pole A o powierzchni ha zostanie obsiane w następujący sposób: 1 ha zbożem x 1, ha zbożem x oraz ha zbożem x. Na polu B, o powierzchni ha, zasiejemy ha zbożami x 1, x i ha zbożem x 4. Natomiast pole C, o powierzchni ha, zostanie obsiane zbożem x 1, x ha) oraz zbożem x 4 1 ha). Zys przy ta zagospodarowanych gruntach w poszczególnych gminach będzie najwyższy f,,,)) = Na rysunu 1 przedstawiono optymalny wysiew zbóż w trzech gminach, orzystając z metody dysretnego programowania dynamicznego Obszar siewu [ha] 1 6 pszenica ozima żyto owies jęczmień ozimy A ha B 1 ha C ha Gmina Rys. 1. Optymalne rozwiązanie metodą programowania dynamicznego problemu optymalnego przydziału; siew w gminach A, B i C przy ograniczeniach: gmina A ha, gmina B 1 ha, gmina C ha

5 Zastosowanie dysretnego programowania dynamicznego 59 PODSUMOWANIE Otrzymanie przez gospodarstwo rolne ja najwięszego zysu z działalności jest bardzo ważnym zagadnieniem w rozwoju wsi. W artyule przedstawiono problem przydziału rodzaju i ilości siewu do poszczególnych gatunów ziemi w trzech gminach. W przedstawionym przyładzie występują ograniczenia powierzchni gruntów ornych, dana jest również wiedza z oresów poprzednich dotycząca plonu otrzymanego z 1 ha w poszczególnych gminach. Dla znalezienia optymalnego rozwiązania wyorzystano metodę dysretnego programowania dynamicznego. Zaletą metody PD jest szybie znalezienia optymalnego rozwiązania nawet przy bardzo dużej ilości zmiennych wejściowych i ograniczeń. PIŚMIENNICTWO Bellman R On the theory of dynamic programming. Proceedings of the National Academy of Sciences USA 8, Bellman R Programowanie dynamiczne. PWN, Warszawa. Findeisen W., Szymanowsi J., Wierzbici A Teoria i metody obliczeniowe optymalizacji. Warszawa, PWN. Grabowsi W. 19. Programowanie matematyczne. Warszawa, PWE. Ignasia E. 1. Badania operacyjne. Warszawa, PWE. Kowali S. 4. Nowoczesne metody optymalizacyjne w zastosowaniach górniczych i eonomicznych. Gliwice, Wydaw. Politechnii Śląsiej. Lew A., Mauch H. 7. Dynamic programming. Berlin, Springer-Verlag. Mauch H. 4. A Petri Net representation for dynamic programming problems in management application. [in: Proceedings of the 7th Hawaii International Conference on System Sciences], Hawaii 4, Washington, Dc, USA, IEE Computer Society. Robinett R.D., Wilson D.G. Eisler G.R., Hurtado J.E. 5. Applied dynamic programming for optimizations of dynamical system. SIAM, Philadelphia. Trzasali T.. Wprowadzenie do badań operacyjnych z omputerem. Warszawa, PWE.

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2010, Oeconomica 282 (60), 71 76

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2010, Oeconomica 282 (60), 71 76 FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer Univ Technol Stetin 2, Oeconomica 22 (), Anna Landowska ZASTOSOWANIE PROGRAMOWANIA DYNAMICZNEGO DO ROZWIĄZANIA PROBLEMU OPTYMALNEGO PRZYDZIAŁU

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2010, Oeconomica 280 (59), 53 58

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2010, Oeconomica 280 (59), 53 58 FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 00, Oeconomica 0 (), Anna Landowska LINIOWY MODEL W DYNAMICZNEJ OPTYMALIZACJI PRODUKCJI ROŚLINNEJ GOSPODARSTWA

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 275 (57), 53 58

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 275 (57), 53 58 FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 275 (57), 53 58 Anna LANDOWSKA ROZWIĄZANIE PROBLEMU OPTYMALNEGO PRZYDZIAŁU ZA POMOCĄ KLASYCZNEGO

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 285 (62), 45 50

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 285 (62), 45 50 FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 285 (62), 45 50 Anna Landowska KLASYCZNY ALGORYTM GENETYCZNY W DYNAMICZNEJ OPTYMALIZACJI MODELU

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2010, Oeconomica 280 (59),

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2010, Oeconomica 280 (59), FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2010, Oeconomica 280 (59), 129 136 Jadwiga Zaród DYNAMICZNE MODELE GOSPODARSTW ROLNYCH O RÓŻNEJ POWIERZCHNI ZE

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin., Oeconomica 2017, 337(88)3, 5 12

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin., Oeconomica 2017, 337(88)3, 5 12 DOI: 10.21005/oe.2017.88.3.01 FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin., Oeconomica 2017, 337(88)3, 5 12 Anna LANDOWSKA ZASTOSOWANIE KLASYCZNEGO ALGORYTMU

Bardziej szczegółowo

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań Mieczysław POŁOŃSKI Wydział Budownictwa i Inżynierii Środowisa, Szoła Główna Gospodarstwa Wiejsiego, Warszawa, ul. Nowoursynowsa 159 e-mail: mieczyslaw_polonsi@sggw.pl Założenia Optymalizacja harmonogramów

Bardziej szczegółowo

MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH

MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH MODYFICJ OSZTOW LGORYTMU JOHNSON DO SZEREGOWNI ZDŃ UDOWLNYCH Michał RZEMIŃSI, Paweł NOW a a Wydział Inżynierii Lądowej, Załad Inżynierii Producji i Zarządzania w udownictwie, ul. rmii Ludowej 6, -67 Warszawa

Bardziej szczegółowo

wtedy i tylko wtedy, gdy rozwiązanie i jest nie gorsze od j względem k-tego kryterium. 2) Macierz części wspólnej Utwórz macierz

wtedy i tylko wtedy, gdy rozwiązanie i jest nie gorsze od j względem k-tego kryterium. 2) Macierz części wspólnej Utwórz macierz Temat: Programowanie wieloryterialne. Ujęcie dysretne.. Problem programowania wieloryterialnego. Z programowaniem wieloryterialnym mamy do czynienia, gdy w problemie decyzyjnym występuje więcej niż jedno

Bardziej szczegółowo

A. Cel ćwiczenia. B. Część teoretyczna

A. Cel ćwiczenia. B. Część teoretyczna A. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z wsaźniami esploatacyjnymi eletronicznych systemów bezpieczeństwa oraz wyorzystaniem ich do alizacji procesu esplatacji z uwzględnieniem przeglądów

Bardziej szczegółowo

ZASTOSOWANIE MODELI PROGRAMOWANIA STOCHASTYCZNEGO DO OPTYMALIZACJI STRUKTURY PRODUKCJI W GOSPODARSTWACH ROLNYCH O RÓŻNEJ POWIERZCHNI

ZASTOSOWANIE MODELI PROGRAMOWANIA STOCHASTYCZNEGO DO OPTYMALIZACJI STRUKTURY PRODUKCJI W GOSPODARSTWACH ROLNYCH O RÓŻNEJ POWIERZCHNI Inżynieria Rolnicza 7(125)/2010 ZASTOSOWANIE MODELI PROGRAMOWANIA STOCHASTYCZNEGO DO OPTYMALIZACJI STRUKTURY PRODUKCJI W GOSPODARSTWACH ROLNYCH O RÓŻNEJ POWIERZCHNI Jadwiga Zaród Katedra Zastosowań Matematyki

Bardziej szczegółowo

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań

Optymalizacja harmonogramów budowlanych - problem szeregowania zadań Mieczysław OŁOŃSI Wydział Budownictwa i Inżynierii Środowisa, Szoła Główna Gospodarstwa Wiejsiego, Warszawa, ul. Nowoursynowsa 159 e-mail: mieczyslaw_polonsi@sggw.pl Założenia Optymalizacja harmonogramów

Bardziej szczegółowo

Modelowanie przez zjawiska przybliżone. Modelowanie poprzez zjawiska uproszczone. Modelowanie przez analogie. Modelowanie matematyczne

Modelowanie przez zjawiska przybliżone. Modelowanie poprzez zjawiska uproszczone. Modelowanie przez analogie. Modelowanie matematyczne Modelowanie rzeczywistości- JAK? Modelowanie przez zjawisa przybliżone Modelowanie poprzez zjawisa uproszczone Modelowanie przez analogie Modelowanie matematyczne Przyłady modelowania Modelowanie przez

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 285 (62),

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 285 (62), FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 285 (62), 117 124 Jadwiga Zaród BADANIE BEZROBOCIA NA WSI ZA POMOCĄ DYNAMICZNYCH MODELI OPTYMALIZACYJNYCH

Bardziej szczegółowo

Schemat programowania dynamicznego (ang. dynamic programming)

Schemat programowania dynamicznego (ang. dynamic programming) Schemat programowania dynamicznego (ang. dynamic programming) Jest jedną z metod rozwiązywania problemów optymalizacyjnych. Jej twórcą (1957) był amerykański matematyk Richard Ernest Bellman. Schemat ten

Bardziej szczegółowo

Kierunki racjonalizacji jednostkowego kosztu produkcji w przedsiębiorstwie górniczym

Kierunki racjonalizacji jednostkowego kosztu produkcji w przedsiębiorstwie górniczym Kieruni racjonalizacji jednostowego osztu producji w przedsiębiorstwie górniczym Roman MAGDA 1) 1) Prof dr hab inż.; AGH University of Science and Technology, Kraów, Miciewicza 30, 30-059, Poland; email:

Bardziej szczegółowo

Koła rowerowe malują fraktale

Koła rowerowe malują fraktale Koła rowerowe malują fratale Mare Berezowsi Politechnia Śląsa Rozważmy urządzenie sładającego się z n ół o różnych rozmiarach, obracających się z różnymi prędościami. Na obręczy danego oła, obracającego

Bardziej szczegółowo

ZARYS METODY OPISU KSZTAŁTOWANIA SKUTECZNOŚCI W SYSTEMIE EKSPLOATACJI WOJSKOWYCH STATKÓW POWIETRZNYCH

ZARYS METODY OPISU KSZTAŁTOWANIA SKUTECZNOŚCI W SYSTEMIE EKSPLOATACJI WOJSKOWYCH STATKÓW POWIETRZNYCH Henry TOMASZEK Ryszard KALETA Mariusz ZIEJA Instytut Techniczny Wojs Lotniczych PRACE AUKOWE ITWL Zeszyt 33, s. 33 43, 2013 r. DOI 10.2478/afit-2013-0003 ZARYS METODY OPISU KSZTAŁTOWAIA SKUTECZOŚCI W SYSTEMIE

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

OPTYMALIZACJA PRZEPUSTOWOŚCI SIECI KOMPUTEROWYCH ZA POMOCĄ ALGORYTMÓW GENETYCZNYCH

OPTYMALIZACJA PRZEPUSTOWOŚCI SIECI KOMPUTEROWYCH ZA POMOCĄ ALGORYTMÓW GENETYCZNYCH OPTYMALIZACJA PRZEPUSTOWOŚCI SIECI KOMPUTEROWYCH ZA POMOCĄ ALGORYTMÓW GENETYCZNYCH Andrzej SZYMONIK, Krzysztof PYTEL Streszczenie: W złożonych sieciach omputerowych istnieje problem doboru przepustowości

Bardziej szczegółowo

Wykres linii ciśnień i linii energii (wykres Ancony)

Wykres linii ciśnień i linii energii (wykres Ancony) Wyres linii ciśnień i linii energii (wyres Ancony) W wyorzystywanej przez nas do rozwiązywania problemów inżyniersich postaci równania Bernoulliego występuje wysoość prędości (= /g), wysoość ciśnienia

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5

Bardziej szczegółowo

Programowanie dynamiczne. Tadeusz Trzaskalik

Programowanie dynamiczne. Tadeusz Trzaskalik Programowanie dynamiczne Tadeusz Trzaskalik 9.. Wprowadzenie Słowa kluczowe Wieloetapowe procesy decyzyjne Zmienne stanu Zmienne decyzyjne Funkcje przejścia Korzyści (straty etapowe) Funkcja kryterium

Bardziej szczegółowo

Colloquium 3, Grupa A

Colloquium 3, Grupa A Colloquium 3, Grupa A 1. Z zasobów obliczeniowych pewnego serwera orzysta dwóch użytowniów. Każdy z nich wysyła do serwera zawsze trzy programy naraz. Użytowni czea, aż serwer wyona obliczenia dotyczące

Bardziej szczegółowo

Podstawy rachunku prawdopodobieństwa (przypomnienie)

Podstawy rachunku prawdopodobieństwa (przypomnienie) . Zdarzenia odstawy rachunu prawdopodobieństwa (przypomnienie). rawdopodobieństwo 3. Zmienne losowe 4. rzyład rozładu zmiennej losowej. Zdarzenia (events( events) Zdarzenia elementarne Ω - zbiór zdarzeń

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim BADANIA OPERACYJNE Nazwa w języku angielskim Operational research Kierunek studiów (jeśli dotyczy): Matematyka

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Programowanie liniowe w technice Linear programming in engineering problems Kierunek: Rodzaj przedmiotu: obowiązkowy na kierunku matematyka przemysłowa Rodzaj zajęć: wykład, laboratorium,

Bardziej szczegółowo

Journal of Agribusiness and Rural Development

Journal of Agribusiness and Rural Development Journal of Agribusiness and Rural Development www.jard.edu.pl tłumaczenie ZAGOSPODAROWANIE NIEWYKORZYSTANYCH CZYNNIKÓW PRODUKCJI W ROLNICTWIE ZA POMOCĄ DYNAMICZNYCH MODELI OPTYMALIZACYJNYCH Z LOSOWYMI

Bardziej szczegółowo

Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych. Badania operacyjne. Dr inż.

Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych. Badania operacyjne. Dr inż. Instytut Konstrukcji i Eksploatacji Maszyn Katedra Logistyki i Systemów Transportowych Badania operacyjne Dr inż. Artur KIERZKOWSKI Wprowadzenie Badania operacyjne związana jest ściśle z teorią podejmowania

Bardziej szczegółowo

PROGRAMOWANIE DYNAMICZNE W ROZMYTYM OTOCZENIU DO STEROWANIA STATKIEM

PROGRAMOWANIE DYNAMICZNE W ROZMYTYM OTOCZENIU DO STEROWANIA STATKIEM Mostefa Mohamed-Seghir Akademia Morska w Gdyni PROGRAMOWANIE DYNAMICZNE W ROZMYTYM OTOCZENIU DO STEROWANIA STATKIEM W artykule przedstawiono propozycję zastosowania programowania dynamicznego do rozwiązywania

Bardziej szczegółowo

KOSZTY UŻYTKOWANIA MASZYN W STRUKTURZE KOSZTÓW PRODUKCJI ROŚLINNEJ W WYBRANYM PRZEDSIĘBIORSTWIE ROLNICZYM

KOSZTY UŻYTKOWANIA MASZYN W STRUKTURZE KOSZTÓW PRODUKCJI ROŚLINNEJ W WYBRANYM PRZEDSIĘBIORSTWIE ROLNICZYM Inżynieria Rolnicza 13/2006 Zenon Grześ, Ireneusz Kowalik Instytut Inżynierii Rolniczej Akademia Rolnicza w Poznaniu KOSZTY UŻYTKOWANIA MASZYN W STRUKTURZE KOSZTÓW PRODUKCJI ROŚLINNEJ W WYBRANYM PRZEDSIĘBIORSTWIE

Bardziej szczegółowo

Ćwiczenie 4 Badanie wpływu asymetrii obciążenia na pracę sieci

Ćwiczenie 4 Badanie wpływu asymetrii obciążenia na pracę sieci Ćwiczenie 4 - Badanie wpływu asymetrii obciążenia na pracę sieci Strona 1/13 Ćwiczenie 4 Badanie wpływu asymetrii obciążenia na pracę sieci Spis treści 1.Cel ćwiczenia...2 2.Wstęp...2 2.1.Wprowadzenie

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT jest specyficznym problemem z zakresu zastosowań programowania liniowego. ZT wykorzystuje się najczęściej do: optymalnego planowania transportu towarów, przy minimalizacji kosztów,

Bardziej szczegółowo

Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa

Jacek Skorupski pok. 251 tel konsultacje: poniedziałek , sobota zjazdowa Jacek Skorupski pok. 251 tel. 234-7339 jsk@wt.pw.edu.pl http://skorupski.waw.pl/mmt prezentacje ogłoszenia konsultacje: poniedziałek 16 15-18, sobota zjazdowa 9 40-10 25 Udział w zajęciach Kontrola wyników

Bardziej szczegółowo

Pomiary napięć przemiennych

Pomiary napięć przemiennych LABORAORIUM Z MEROLOGII Ćwiczenie 7 Pomiary napięć przemiennych . Cel ćwiczenia Celem ćwiczenia jest poznanie sposobów pomiarów wielości charaterystycznych i współczynniów, stosowanych do opisu oresowych

Bardziej szczegółowo

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW

dr Bartłomiej Rokicki Katedra Makroekonomii i Teorii Handlu Zagranicznego Wydział Nauk Ekonomicznych UW dr Bartłomiej Roici atedra Maroeonomii i Teorii Handlu Zagranicznego Wydział Nau Eonomicznych UW dr Bartłomiej Roici Maroeonomia II Model Solowa z postępem technologicznym by do modelu Solowa włączyć postęp

Bardziej szczegółowo

Metody ilościowe w badaniach ekonomicznych

Metody ilościowe w badaniach ekonomicznych prof. dr hab. Tadeusz Trzaskalik dr hab. Maciej Nowak, prof. UE Wybór portfela projektów z wykorzystaniem wielokryterialnego programowania dynamicznego Metody ilościowe w badaniach ekonomicznych 19-06-2017

Bardziej szczegółowo

Algebra liniowa z geometrią analityczną

Algebra liniowa z geometrią analityczną WYKŁAD. Własności zbiorów liczbowych. Podzielność liczb całowitych, relacja przystawania modulo, twierdzenie chińsie o resztach. Liczby całowite Liczby 0,±,±,±3,... nazywamy liczbami całowitymi. Zbiór

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2010, Oeconomica 282 (60), 13 20

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2010, Oeconomica 282 (60), 13 20 FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2010, Oeconomica 282 (60), 13 20 Beata Będzik WPŁYW WYKSZTAŁCENIA PRODUCENTÓW ZBÓŻ ORAZ JAKOŚCI GLEB NA WIELKOŚĆ

Bardziej szczegółowo

A i A j lub A j A i. Operator γ : 2 X 2 X jest ciągły gdy

A i A j lub A j A i. Operator γ : 2 X 2 X jest ciągły gdy 3. Wyład 7: Inducja i reursja struturalna. Termy i podstawianie termów. Dla uninięcia nieporozumień notacyjnych wprowadzimy rozróżnienie między funcjami i operatorami. Operatorem γ w zbiorze X jest funcja

Bardziej szczegółowo

Metody probabilistyczne Rozwiązania zadań

Metody probabilistyczne Rozwiązania zadań Metody robabilistyczne Rozwiązania zadań 6. Momenty zmiennych losowych 8.11.2018 Zadanie 1. Poaż, że jeśli X Bn, to EX n. Odowiedź: X rzyjmuje wartości w zbiorze {0, 1,..., n} z rawdoodobieństwami zadanymi

Bardziej szczegółowo

CENY ZAKUPU I DZIERŻAWY KWOTY MLECZNEJ W GOSPODARSTWACH KRAJÓW EUROPEJSKICH W LATACH

CENY ZAKUPU I DZIERŻAWY KWOTY MLECZNEJ W GOSPODARSTWACH KRAJÓW EUROPEJSKICH W LATACH FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Folia Univ. Agric. Stetin. 2007, Oeconomica 256 (48), 117 122 Bogusław GOŁĘBIOWSKI, Agata WÓJCIK CENY ZAKUPU I DZIERŻAWY KWOTY MLECZNEJ W GOSPODARSTWACH KRAJÓW

Bardziej szczegółowo

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA ALGORYTM MRÓWKOWY (ANT SYSTEM) ALGORYTM MRÓWKOWY. Algorytm mrówkowy

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA ALGORYTM MRÓWKOWY (ANT SYSTEM) ALGORYTM MRÓWKOWY. Algorytm mrówkowy PLAN WYKŁADU Algorytm mrówowy OPTYMALIZACJA GLOBALNA Wyład 8 dr inż. Agniesza Bołtuć (ANT SYSTEM) Inspiracja: Zachowanie mrówe podczas poszuiwania żywności, Zachowanie to polega na tym, że jeśli do żywności

Bardziej szczegółowo

Metody numeryczne. Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski

Metody numeryczne. Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Metody numeryczne Instytut Sterowania i Systemów Informatycznych Wydział Eletrotechnii, Informatyi i Teleomuniacji Uniwersytet Zielonogórsi Eletrotechnia stacjonarne-dzienne pierwszego stopnia z tyt. inżyniera

Bardziej szczegółowo

ANALIZA WIELOKRYTERIALNA

ANALIZA WIELOKRYTERIALNA ANALIZA WIELOKRYTERIALNA Dział Badań Operacyjnych zajmujący się oceną możliwych wariantów (decyzji) w przypadu gdy występuje więcej niż jedno ryterium oceny D zbiór rozwiązań (decyzji) dopuszczalnych x

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS TURYSTYKA W SZCZECINIE W ODNIESIENIU DO BADAŃ ANKIETOWYCH

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS TURYSTYKA W SZCZECINIE W ODNIESIENIU DO BADAŃ ANKIETOWYCH FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin., Oeconomica 2014, 308(74)1, 17 28 Iwona Bą, Beata Szczecińsa* TURYSTYKA W SZCZECINIE W ODNIESIENIU DO BADAŃ ANKIETOWYCH

Bardziej szczegółowo

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 273 (56), 7 16

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 273 (56), 7 16 FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 273 (56), 7 16 Iwona BĄK, Katarzyna WAWRZYNIAK UśYTECZNOŚĆ NAUCZANIA PRZEDMIOTÓW ILOŚCIOWYCH

Bardziej szczegółowo

Innowacyjność polskich gospodarstw rolnych w warunkach wygasania kryzysu

Innowacyjność polskich gospodarstw rolnych w warunkach wygasania kryzysu Innowacyjność polskich gospodarstw rolnych w warunkach wygasania kryzysu Marcin Adamski Marek Zieliński Zakład Ekonomiki Gospodarstw Rolnych Warszawa, 08 października 2010 roku Treść wystąpienia 1 Innowacyjność

Bardziej szczegółowo

koszt kapitału D/S L dźwignia finansowa σ EBIT zysku operacyjnego EBIT firmy. Firmy Modele struktury kapitału Rys. 8.3. Krzywa kosztów kapitału.

koszt kapitału D/S L dźwignia finansowa σ EBIT zysku operacyjnego EBIT firmy. Firmy Modele struktury kapitału Rys. 8.3. Krzywa kosztów kapitału. Modele strutury apitału oszt apitału Optymalna strutura apitału dźwignia finansowa / Rys. 8.3. Krzywa osztów apitału. Założenia wspólne modeli MM Modigliani i Miller w swoich rozważaniach ograniczyli się

Bardziej szczegółowo

Koła rowerowe kreślą fraktale

Koła rowerowe kreślą fraktale 26 FOTON 114, Jesień 2011 Koła rowerowe reślą fratale Mare Berezowsi Politechnia Śląsa Od Redacji: Fratalom poświęcamy ostatnio dużo uwagi. W Fotonach 111 i 112 uazały się na ten temat artyuły Marcina

Bardziej szczegółowo

Grupowanie sekwencji czasowych

Grupowanie sekwencji czasowych BIULETYN INSTYTUTU AUTOMATYKI I ROBOTYKI NR 3, 006 Grupowanie sewencji czasowych Tomasz PAŁYS Załad Automatyi, Instytut Teleinformatyi i Automatyi WAT, ul. Kalisiego, 00-908 Warszawa STRESZCZENIE: W artyule

Bardziej szczegółowo

LINIOWO-DYNAMICZNY MODEL OPTYMALIZACYJNY GOSPODARSTWA ROLNEGO W WOJEWÓDZTWIE ZACHODNIOPOMORSKIM ZE STOCHASTYCZNYMI PARAMETRAMI

LINIOWO-DYNAMICZNY MODEL OPTYMALIZACYJNY GOSPODARSTWA ROLNEGO W WOJEWÓDZTWIE ZACHODNIOPOMORSKIM ZE STOCHASTYCZNYMI PARAMETRAMI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XII/2, 2011, str. 418 427 LINIOWO-DYNAMICZNY MODEL OPTYMALIZACYJNY GOSPODARSTWA ROLNEGO W WOJEWÓDZTWIE ZACHODNIOPOMORSKIM ZE STOCHASTYCZNYMI PARAMETRAMI Jadwiga

Bardziej szczegółowo

Sterowanie optymalne

Sterowanie optymalne Sterowanie optymalne Sterowanie Procesami Ciągłymi 2017 Optymalizacja statyczna funkcji Funkcja celu/kryterialna/kosztów Ograniczenie Q(x) min x x = arg min Q(x) x x X, gdzie X zbiór rozwiązań dopuszczalnych

Bardziej szczegółowo

WIELOKRYTERIALNY DOBÓR ROZTRZĄSACZY OBORNIKA

WIELOKRYTERIALNY DOBÓR ROZTRZĄSACZY OBORNIKA Inżynieria Rolnicza 7(95)/2007 WIELOKRYTERIALNY DOBÓR ROZTRZĄSACZY OBORNIKA Andrzej Turski, Andrzej Kwieciński Katedra Maszyn i Urządzeń Rolniczych, Akademia Rolnicza w Lublinie Streszczenie: W pracy przedstawiono

Bardziej szczegółowo

ANALIZA WYDAJNOŚCI PRODUKCYJNEJ RODZINNEGO GOSPODARSTWA ROLNEGO PRZY POMOCY SIECI NEURONOWEJ

ANALIZA WYDAJNOŚCI PRODUKCYJNEJ RODZINNEGO GOSPODARSTWA ROLNEGO PRZY POMOCY SIECI NEURONOWEJ InŜynieria Rolnicza 12/2006 Katarzyna Siejka, Andrzej Tukiendorf Katedra Techniki Rolniczej i Leśnej Politechnika Opolska ANALIZA WYDAJNOŚCI PRODUKCYJNEJ RODZINNEGO GOSPODARSTWA ROLNEGO PRZY POMOCY SIECI

Bardziej szczegółowo

ZAZIELENIENIE WSPÓLNEJ POLITYKI ROLNEJ - SKUTKI DLA POLSKICH GOSPODARSTW ROLNICZYCH

ZAZIELENIENIE WSPÓLNEJ POLITYKI ROLNEJ - SKUTKI DLA POLSKICH GOSPODARSTW ROLNICZYCH Warszawa, 12.12.2014 Instytut Ekonomiki Rolnictwa i Gospodarki Żywnościowej Państwowy Instytut Badawczy ZAZIELENIENIE WSPÓLNEJ POLITYKI ROLNEJ - SKUTKI DLA POLSKICH GOSPODARSTW ROLNICZYCH prof. dr hab.

Bardziej szczegółowo

Minimalne ilości materiału siewnego na 1 ha Kto może ubiegać się o dopłaty?

Minimalne ilości materiału siewnego na 1 ha Kto może ubiegać się o dopłaty? Komunikat Agencja Rynku Rolnego informuje, że 15 kwietnia 2008 roku rozpoczyna nabór wniosków na dopłaty z tytułu zużytego do siewu lub sadzenia materiału siewnego kategorii elitarny lub kwalifikowany

Bardziej szczegółowo

Programowanie wielocelowe lub wielokryterialne

Programowanie wielocelowe lub wielokryterialne Programowanie wielocelowe lub wieloryterialne Zadanie wielocelowe ma co najmniej dwie funcje celu nazywane celami cząstowymi. Cele cząstowe f numerujemy indesem = 1, 2, K. Programowanie wielocelowe ciągłe.

Bardziej szczegółowo

Analiza B. Paweł Głowacki

Analiza B. Paweł Głowacki Analiza B Paweł Głowaci Pojęcie liczby rzeczywistej uważać będziemy za intuicyjnie oczywiste. Tym niemniej celowe wydaje się przypomnienie i ugruntowanie nietórych fundamentalnych własności liczb rzeczywistych.

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 287 (63), 107 114

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 287 (63), 107 114 FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2011, Oeconomica 287 (63), 107 114 Robert Kowalak ZMIANY W NAUCZANIU PRZEDMIOTÓW: RACHUNEK KOSZTÓW I RACHUNKOWOŚĆ

Bardziej szczegółowo

Wprowadzenie do badań operacyjnych

Wprowadzenie do badań operacyjnych Wprowadzenie do badań operacyjnych Hanna Furmańczyk 10 października 2008 Badania operacyjne (ang. operations research) - dyscyplina naukowa związana z teorią decyzji pozwalająca wyznaczyć metodę i rozwiązanie

Bardziej szczegółowo

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE Część 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3. 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3.. Metoda trzech momentów Rozwiązanie wieloprzęsłowych bele statycznie niewyznaczalnych można ułatwić w znaczącym

Bardziej szczegółowo

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji

Bardziej szczegółowo

Wykłady specjalistyczne. (specjalność: Matematyka w finansach i ekonomii) oferowane na stacjonarnych studiach I stopnia (dla 3 roku)

Wykłady specjalistyczne. (specjalność: Matematyka w finansach i ekonomii) oferowane na stacjonarnych studiach I stopnia (dla 3 roku) Wykłady specjalistyczne (specjalność: Matematyka w finansach i ekonomii) oferowane na stacjonarnych studiach I stopnia (dla 3 roku) w roku akademickim 2015/2016 (semestr zimowy) Spis treści 1. MODELE SKOŃCZONYCH

Bardziej szczegółowo

Programowanie wielocelowe lub wielokryterialne

Programowanie wielocelowe lub wielokryterialne Programowanie wielocelowe lub wieloryterialne Zadanie wielocelowe ma co najmniej dwie funcje celu nazywane celami cząstowymi. Cele cząstowe f numerujemy indesem = 1, 2, K. Programowanie wielocelowe ciągłe

Bardziej szczegółowo

Znaczenie kapitału ludzkiego w budowie spójności społeczno-gospodarczej w wymiarze lokalnym (na przykładzie woj. mazowieckiego)

Znaczenie kapitału ludzkiego w budowie spójności społeczno-gospodarczej w wymiarze lokalnym (na przykładzie woj. mazowieckiego) Znaczenie apitału ludziego w budowie spójności społeczno-gospodarczej... 365 Dr hab. Danuta Kołodziejczy Instytut Eonomii Rolnictwa i Gospodari Żywnościowej Państwowy Instytut Badawczy Znaczenie apitału

Bardziej szczegółowo

Skutki zazielenienia Wspólnej Polityki Rolnej dla polskich gospodarstw rolniczych

Skutki zazielenienia Wspólnej Polityki Rolnej dla polskich gospodarstw rolniczych INSTYTUT EKONOMIKI ROLNICTWA I GOSPODARKI ŻYWNOŚCIOWEJ PAŃSTWOWY INSTYTUT BADAWCZY Skutki zazielenienia Wspólnej Polityki Rolnej dla polskich gospodarstw rolniczych Warszawa, 9 listopada, 2012 dr Adam

Bardziej szczegółowo

ZASTOSOWANIE ANALIZY KORESPONDENCJI W BADANIU AKTYWNOŚCI TURYSTYCZNEJ EMERYTÓW I RENCISTÓW

ZASTOSOWANIE ANALIZY KORESPONDENCJI W BADANIU AKTYWNOŚCI TURYSTYCZNEJ EMERYTÓW I RENCISTÓW METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XI/2, 2010, str. 1 11 ZASTOSOWANIE ANALIZY KORESPONDENCJI W BADANIU AKTYWNOŚCI TURYSTYCZNEJ EMERYTÓW I RENCISTÓW Iwona Bą Katedra Zastosowań Matematyi w Eonomii,

Bardziej szczegółowo

Realizacja mechanizmu Dopłat do materiału siewnego w województwie pomorskim.

Realizacja mechanizmu Dopłat do materiału siewnego w województwie pomorskim. Realizacja mechanizmu Dopłat do materiału siewnego w województwie pomorskim. Mechanizm dopłat do materiału siewnego wykorzystywanego w produkcji od samego początku funkcjonowania tj. od 2007 roku cieszy

Bardziej szczegółowo

Ocena potencjału biomasy stałej z rolnictwa

Ocena potencjału biomasy stałej z rolnictwa Ocena potencjału biomasy stałej z rolnictwa dr Zuzanna Jarosz Inżynieria rolnicza w ochronie i kształtowaniu środowiska Lublin, 23-24 września 2015 Głównym postulatem Unii Europejskiej, a także Polski,

Bardziej szczegółowo

Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa. Marzec Podstawy teorii optymalizacji Oceanotechnika, II stop., sem.

Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa. Marzec Podstawy teorii optymalizacji Oceanotechnika, II stop., sem. Politechnika Gdańska Wydział Oceanotechniki i Okrętownictwa St. II stop., sem. I, Kierunek Oceanotechnika, Spec. Okrętowe Podstawy teorii optymalizacji Wykład 1 M. H. Ghaemi Marzec 2016 Podstawy teorii

Bardziej szczegółowo

PORÓWNANIE KOSZTÓW PRODUKCJI JĘCZMIENIA JAREGO I OZIMEGO W WYBRANYCH GOSPODARSTWACH WOJ. ZACHODNIOPOMORSKIEGO

PORÓWNANIE KOSZTÓW PRODUKCJI JĘCZMIENIA JAREGO I OZIMEGO W WYBRANYCH GOSPODARSTWACH WOJ. ZACHODNIOPOMORSKIEGO Inżynieria Rolnicza 10(108)/2008 PORÓWNANIE KOSZTÓW PRODUKCJI JĘCZMIENIA JAREGO I OZIMEGO W WYBRANYCH GOSPODARSTWACH WOJ. ZACHODNIOPOMORSKIEGO Jan Jurga, Tomasz K. Dobek Zakład Budowy i Użytkowania Urządzeń

Bardziej szczegółowo

OCENA WYKORZYSTANIA CIĄGNIKÓW ROLNICZYCH W GOSPODARSTWACH RODZINNYCH

OCENA WYKORZYSTANIA CIĄGNIKÓW ROLNICZYCH W GOSPODARSTWACH RODZINNYCH Inżynieria Rolnicza 9(134)/2011 OCENA WYKORZYSTANIA CIĄGNIKÓW ROLNICZYCH W GOSPODARSTWACH RODZINNYCH Krzysztof Kapela, Szymon Czarnocki Katedra Ogólnej Uprawy Roli, Roślin i Inżynierii Rolniczej, Uniwersytet

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Programowanie liniowe w zagadnieniach finansowych i logistycznych Linear programming in financial and logistics problems Kierunek: Matematyka Rodzaj przedmiotu: obowiązkowy dla specjalności

Bardziej szczegółowo

PROPOZYCJA NOWEGO ALGORYTMU W ANALIZIE CZASOWO-KOSZTOWEJ PRZEDSIĘWZIĘĆ

PROPOZYCJA NOWEGO ALGORYTMU W ANALIZIE CZASOWO-KOSZTOWEJ PRZEDSIĘWZIĘĆ B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 3 4 006 Helena GASPARS* PROPOZYCJA NOWEGO ALGORYTMU W ANALIZIE CZASOWO-KOSZTOWEJ PRZEDSIĘWZIĘĆ Autora pracy nawiązuje do swojego poprzedniego opracowania,

Bardziej szczegółowo

Kalkulacje rolnicze. Uprawy polowe

Kalkulacje rolnicze. Uprawy polowe .pl https://www..pl Kalkulacje rolnicze. Uprawy polowe Autor: Maria Czarniakowska Data: 20 stycznia 2016 Kalkulacje rolnicze są podstawowym narzędziem rachunku ekonomicznego, które pozwalają na określenie

Bardziej szczegółowo

Zastosowanie metody PCA do opisu wód naturalnych

Zastosowanie metody PCA do opisu wód naturalnych autorzy: Stanisław Koter, Klaudia Wesołowsa 2 Uniwersytet Miołaja Kopernia, Toruń, 2 Politechnia Śląsa, Gliwice Zastosowanie metody PCA do opisu wód naturalnych W niniejszej pracy przedstawiono zastosowanie

Bardziej szczegółowo

Excel - użycie dodatku Solver

Excel - użycie dodatku Solver PWSZ w Głogowie Excel - użycie dodatku Solver Dodatek Solver jest narzędziem używanym do numerycznej optymalizacji nieliniowej (szukanie minimum funkcji) oraz rozwiązywania równań nieliniowych. Przed pierwszym

Bardziej szczegółowo

CYKLICZNY PROBLEM PRZEPŁYWOWY Z PRZEZBROJENIAMI MASZYN

CYKLICZNY PROBLEM PRZEPŁYWOWY Z PRZEZBROJENIAMI MASZYN CYKLICZNY PROBLEM PRZEPŁYWOWY Z PRZEZBROJENIAMI MASZYN Wojciech BOŻEJKO, Łuasz KACPRZAK, Mieczysław WODECKI Streszczenie: W pracy zajmujemy się cylicznym problemem przepływowym z przezbrojeniami maszyn.

Bardziej szczegółowo

HIERARCHICZNY SYSTEM ZARZĄDZANIA RUCHEM LOTNICZYM - ASPEKTY OCENY BEZPIECZEŃSTWA

HIERARCHICZNY SYSTEM ZARZĄDZANIA RUCHEM LOTNICZYM - ASPEKTY OCENY BEZPIECZEŃSTWA Jace Sorupsi Hierarchiczny system Zarządzania ruchem lotniczym aspety oceny bezpieczeństwa, Logistya (ISSN 1231-5478) No 6, Instytut Logistyi i HIERARCHICZNY SYSTEM ZARZĄDZANIA RUCHEM LOTNICZYM - ASPEKTY

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 273 (56), 101 106

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 273 (56), 101 106 FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 273 (56), 101 106 Robert KOWALAK KONCEPCJA PRZEDMIOTU CONTROLLING LOGISTYCZNY NA KIERUNKU ZARZĄDZANIE

Bardziej szczegółowo

Jesienne zwalczanie chwastów w zbożach! [REPORTAŻ]

Jesienne zwalczanie chwastów w zbożach! [REPORTAŻ] https://www. Jesienne zwalczanie chwastów w zbożach! [REPORTAŻ] Autor: agrofakt.pl Data: 9 października 2018 Jesienne zwalczanie chwastów w zbożach ozimych to istotny zabieg. Ma on za zadanie zapewnić

Bardziej szczegółowo

Wariant 8.3. Facelia. Deklaracja pakietu 8 w roku 2013 zmiana zgodna z 6 ust. 1 pkt 5 lit. b rozporządzenia rolnośrodowiskowego.

Wariant 8.3. Facelia. Deklaracja pakietu 8 w roku 2013 zmiana zgodna z 6 ust. 1 pkt 5 lit. b rozporządzenia rolnośrodowiskowego. Zasady dokonywania zmiany zobowiązania rolnośrodowiskowego w zakresie Pakietu 8. Ochrona gleb i wód wariantów 8.2 Międzyplon ozimy i 8.3 Międzyplon ścierniskowy dla wniosków rolnośrodowiskowych kontynuacyjnych

Bardziej szczegółowo

WPŁYW SZUMÓW KOLOROWYCH NA DZIAŁANIE FILTRU CZĄSTECZKOWEGO

WPŁYW SZUMÓW KOLOROWYCH NA DZIAŁANIE FILTRU CZĄSTECZKOWEGO ELEKTRYKA 2012 Zeszyt 3-4 (223-224) Ro LVIII Piotr KOZIERSKI Instytut Automatyi i Inżynierii Informatycznej, Politechnia Poznańsa Marcin LIS Instytut Eletrotechnii i Eletronii Przemysłowej, Politechnia

Bardziej szczegółowo

PROGRAMOWANIE DYNAMICZNE W ZASTOSOWANIU DO ROZDZIAŁU ŚRODKÓW FINANSOWYCH W PRODUKCJI ROLNICZEJ

PROGRAMOWANIE DYNAMICZNE W ZASTOSOWANIU DO ROZDZIAŁU ŚRODKÓW FINANSOWYCH W PRODUKCJI ROLNICZEJ ANTONI SKWARCZYŃSKI PROGRAMOWANIE DYNAMICZNE W ZASTOSOWANIU DO ROZDZIAŁU ŚRODKÓW FINANSOWYCH W PRODUKCJI ROLNICZEJ W dotychczasowych badaniach wiele miejsca poświęcono problematyce programowania matematycznego,

Bardziej szczegółowo

PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE

PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE ORAZ ŚREDNIE 1. Procenty i proporcje DEFINICJA 1. Jeden procent (1%) pewnej liczby a to setna część tej liczby, tórą oznacza się: 1% a, przy czym 1% a = 1 p a, zaś

Bardziej szczegółowo

Metody optymalizacji nieliniowej (metody programowania nieliniowego) Ewa Niewiadomska-Szynkiewicz Instytut Automatyki i Informatyki Stosowanej

Metody optymalizacji nieliniowej (metody programowania nieliniowego) Ewa Niewiadomska-Szynkiewicz Instytut Automatyki i Informatyki Stosowanej Metody optymalizacji nieliniowej metody programowania nieliniowego Ewa Niewiadomsa-Szyniewicz Instytut Automatyi i Inormatyi Stosowanej Ewa Niewiadomsa-Szyniewicz ens@ia.pw.edu.pl Instytut Automatyi i

Bardziej szczegółowo

WNIOSEK Zwracam się z prośbą o oszacowanie szkód w moim gospodarstwie rolnym, powstałych w wyniku niekorzystnego zjawiska atmosferycznego susza

WNIOSEK Zwracam się z prośbą o oszacowanie szkód w moim gospodarstwie rolnym, powstałych w wyniku niekorzystnego zjawiska atmosferycznego susza imię i nazwisko.. miejscowość, data adres nr telefonu kontaktowego numer identyfikacyjny producenta rolnego Burmistrz Zawadzkiego ul. Dębowa 13 47-120 Zawadzkie WNIOSEK Zwracam się z prośbą o oszacowanie

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 273 (56), 83 90

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 273 (56), 83 90 FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2009, Oeconomica 273 (56), 83 90 Zdzisław KES INFORMATYCZNE WSPOMAGANIE OBSŁUGI STUDIÓW PODYPLOMOWYCH W KATEDRZE

Bardziej szczegółowo

WPŁYW PÓL MAGNETYCZNYCH I ELEKTRYCZNYCH NA KIEŁKOWANIE NASION WYBRANYCH ROLIN UPRAWNYCH

WPŁYW PÓL MAGNETYCZNYCH I ELEKTRYCZNYCH NA KIEŁKOWANIE NASION WYBRANYCH ROLIN UPRAWNYCH Technica Agraria 1(1) 2, 75-81 WPŁYW PÓL MAGNETYCZNYCH I ELEKTRYCZNYCH NA KIEŁKOWANIE NASION WYBRANYCH ROLIN UPRAWNYCH Stanisław Pietruszewsi Streszczenie. W pracy przedstawiono wpływ pola magnetycznego

Bardziej szczegółowo

Dopłaty do materiału siewnego

Dopłaty do materiału siewnego Dopłaty do materiału siewnego Agencja Rynku Rolnego udziela w ramach pomocy de minimis w rolnictwie dopłat z tytułu zużytego do siewu lub sadzenia materiału siewnego kategorii elitarny lub kwalifikowany.

Bardziej szczegółowo

OPTYMALIZACJA PROCESU TECHNOLOGICZNEGO W ROLNICTWIE Z ZASTOSOWANIEM METODY GRAFÓW

OPTYMALIZACJA PROCESU TECHNOLOGICZNEGO W ROLNICTWIE Z ZASTOSOWANIEM METODY GRAFÓW Inżynieria Rolnicza 13/2006 Jan Banasiak, Anna Olszewska Zakład Eksploatacji Maszyn Rolniczych Uniwersytet Przyrodniczy we Wrocławiu OPTYMALIZACJA PROCESU TECHNOLOGICZNEGO W ROLNICTWIE Z ZASTOSOWANIEM

Bardziej szczegółowo

Biomasa uboczna z produkcji rolniczej

Biomasa uboczna z produkcji rolniczej Biomasa uboczna z produkcji rolniczej dr Zuzanna Jarosz Warsztaty Systemy informacji o wpływie zmian klimatu i zasobach biomasy Puławy, 01 grudnia 2015 r. Głównym postulatem Unii Europejskiej, a także

Bardziej szczegółowo

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH

DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH Część 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH... 5. 5. DRGANIA WŁASNE RAM OBLICZANIE CZĘSTOŚCI KOŁOWYCH DRGAŃ WŁASNYCH 5.. Wprowadzenie Rozwiązywanie zadań z zaresu dynamii budowli sprowadza

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Inducja matematyczna Inducja jest taą metodą rozumowania, za pomocą tórej od tezy szczegółowej dochodzimy do tezy ogólnej. Przyład 1 (o zanurzaniu ciał w wodzie) 1. Kawałe żelaza, tóry zanurzyłem w wodzie,

Bardziej szczegółowo

4.15 Badanie dyfrakcji światła laserowego na krysztale koloidalnym(o19)

4.15 Badanie dyfrakcji światła laserowego na krysztale koloidalnym(o19) 256 Fale 4.15 Badanie dyfracji światła laserowego na rysztale oloidalnym(o19) Celem ćwiczenia jest wyznaczenie stałej sieci dwuwymiarowego ryształu oloidalnego metodą dyfracji światła laserowego. Zagadnienia

Bardziej szczegółowo

Matematyka dyskretna. Wykład 2: Kombinatoryka. Gniewomir Sarbicki

Matematyka dyskretna. Wykład 2: Kombinatoryka. Gniewomir Sarbicki Matematya dysretna Wyład 2: Kombinatorya Gniewomir Sarbici Kombinatorya Definicja Kombinatorya zajmuje się oreślaniem mocy zbiorów sończonych, w szczególności mocy zbiorów odwzorowań jednego zbioru w drugi

Bardziej szczegółowo

Gry z naturą 1. Przykład

Gry z naturą 1. Przykład Gry z naturą 1 Gry z naturą to gry dwuosobowe, w których przeciwnikiem jest natura. Przeciwnik ten nie jest zainteresowany wynikiem gry, a więc grę rozwiązuje się z punktu widzenia jednego z graczy. Optymalną

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2010, Oeconomica 282 (60), 77 84

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2010, Oeconomica 282 (60), 77 84 FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin. 2010, Oeconomica 282 (60), 77 84 Rafał Mazur ANALIZA OTOCZENIA PRZEDSIĘBIORSTWA JAKO ELEMENT ZARZĄDZANIA STRATEGICZNEGO

Bardziej szczegółowo