Wykład 7. Struktura pasmowa ciał stałych
|
|
- Lech Kowalski
- 8 lat temu
- Przeglądów:
Transkrypt
1 Wład 7 Strutura pasowa cał stałch W odróżu od atoów oluł strutura pooów rgtcch ltroów w całach stałch a postać pas Ist w cl stał pas rgtcch daj ożlwość wtłuacć podał cał stałch a tal, półprwod olator Rs71 Schat powstawaa rgtcch pas w cl stał Mcha powstawaa pas rgtcch oża rouć a podstaw prostch rouowań Pr oawau wąaa owalcjgo w olul H 2 łożoj 82
2 dwóch atoów wodoru, wdlś, ż rgtc sta podstawow H 2 słada sę dwóch pooów rgtcch, tór powstają dwóch pooów 1 s pojdcch atoów wodoru w wu oddałwaa ltroów 1 s jądra atoów wodoru ora ęd sobą Moża udowodć, ż w prpadu uładu łożogo N atoów wodoru rgtc sta podstawow będ sładał sę N blso sb położoch dsrtch 23 pooów Poważ w cl stał N 10, bór N blso sb położoch dsrtch pooów twor praw cągł bór, tór awa pasogól, blża do sb N jdaowch atoów a odlgłość, pr tórj fucj falow ch ltroów acają achodć a sb, prowad do powstawaa pasa łożogo N blso sb położoch dsrtch pooów (rs71 Dla uwględa oddałwań ltroów ęd sobą joa sc rstalcj stosują srg różch prblżń W prblżu slgo (albo casgo wąaa ałada sę, ż rga wąaa ltroów w ato jst ac węsa od rg wąaa ędatoowgo Wsut tgo ltro są sl loalowa w sc w duż stopu achowują własośc, tór ał w atoach swobodch Prblż slgo wąaa dobr opsuj achowa w całach stałch ltroów powło wwętrch atoów ltro powło wętrch są słabo wąa jądra atoów dla tch ltroów walcjch dobr prblż jst prblż słabgo wąaa W prblżu słabgo wąaa ltro jst tratowa ja praw swobod ltro porusając sę w słab orsow pol ltrc sc rstalcj Zlustruj tra ja w odlu slgo wąaa powstają pasa rgtc Modl slgo wąaa powstawaa pas rgtcch W prpadu slgo wąaa, gd rga tca ltroów jst ac jsa ż rga potcjala oddałwaa ltroów pol jądr, ltro w duż stopu achowują własośc, tór ał w atoach swobodch W t prpadu jst ocwst spróbować posuać własch fucj ltroów ψ (r w postac lowj obacj atoowch fucj ltroów (tod LCAO R ψ ( r ϕ ( r R (71 83
3 Tu ϕ r R jst fucja własa Haltoau H 0 atou swobodgo, ajdującgo sę w ( węźl sc, orślo wtor R H ϕ ( r R ϕ ( r R (72 0 Prpuść tra, ż Haltoa ltrou w rstal oż apsać w postac (prblż jdoltroow H H + V ( r R (73 0 Tu wra V r R opsuj abur, tór powstaj wsut oddałwaa ltrou ( poostał atoa sc rstalcj rgę ltrou w rstal ajd jao śrdą wartość Haltoau (73 ψ H ψ ( (74 ψ ψ Oblc ajprw aow w (74 ψ ψ, ( R R ϕ ϕ N (75 Tu ałożlś, ż ϕ ϕ δ W podob sposób dla lca w (74 a N ψ H ψ +, ϕ V ϕ ( R R + ϕ ( R R H ϕ ϕ V ϕ (76 Wsut str traslacjj lt acrow A ϕ V ϕ alż od Jżl w ostat cło w (76 roważ tlo ajblżs sąsd prpuść, ż dla ajblżsch sąsadów B ϕ V ϕ (, to wór (76 oż apsać w postac 84
4 ψ H ψ, N[ A ( R R B ϕ H ϕ ( R R ] (77 Sua po awra tlo t wartośc, dla tórch R opsuj ajblżsch sąsadów węła orślogo wtor R W wor (77 wlośc A B są dodat, poważ fucja potcjala V dla sł prcągaa jst fucją ują Po podstawu (75 (77 do woru (74 otruj ( A Jżl roważ prostą sć rgularą dla tórj B ( R R R R ( ± a,0,0;(0, ± a,0;(0,0, a, ± (78 Rs 72 Powstawa pas w odlu slgo wąaa 85
5 to woru (78 otruj ( A 2B (cos a + cos a cos a x + (79 W wor (78 wlośc A B alżą wprost proporcjoal od prrwaa poęd fucja falow sąsadującch atoów A at, sroość pasa rgtcgo roś wrost prrwaa poęd odpowd fucja falow sąsadującch atoów Z woru (79 wd, ż w trac twora rstału, d ato blżają sę do sb, poo atoow o A w stosuu do rgtc staj sę pas rgtc Środ pasa jst obżo, a sroość pasa rgtcgo wos Prwod, olator, półprwod 12 B (rs72 Oddałwaa ęd N atoa jdgo rodaju w rstal powodują, ż poo swobodgo atou roscp sę a N staów (rs71 Sta t tworą wacągł paso, tór, god asadą Paulgo, ogą ostać obsado pr 2 N ltroów W alżośc od tgo ja są obsado poo różch pas, wsst cała stał oża podlć a prwod, olator półprwod Roważ dwa pasa cała stałgo (rs73 Paso dol jst budowa ltroów ajdującch sę a wętrch walcjch powłoach atoów To paso awa sę pas walcj Paso lżąc powżj pasa walcjgo awa pas prwodctwa Rs 73 Prwod, olator, półprwod 86
6 Oac górą wartość rg pasa walcjgo pr rg pasa prwodctwa oac pr V, a dolą wartość C Jżl paso prwodctwa jst cęścowo obsado pr ltro, to cało stał jst prwod Zwętr pol ltrc wwołuję prjśca ltroów a swobod poo rgtc w paś prwodctwa w cl będ płął prąd Jżl paso walcj jst całowc apło, a w paś prwodctwa bra swobodch ltroów, to a do ca olator B wbuda wętrgo (ogrwa prób, aproowa, wprowad dos td olator będ prwodł prądu ltrcgo Spośród prwodów olatorów scgól jsc ajują półprwod Uow prjęto uważać a półprwod substację w tórch sroość pasa wbroogo jst jsa ż tórch sroość pasa wbroogo jst węsa od 3 V C V < 3V Za olator uważa sę substację w Daa ltroów w rstal Masa ftwa ltrou Ja w podstaw f atoowj sta ltrou opsuj fucja falowa Ruch ltrou w rstal jao cąst orśla prędość grupowa υ fal ltroowj, tóra jst orśloa wor ω( ω( ω( υ x + + x 1 ( ( ( [ x + + ] (710 x Tu ( - alżość rg ltrou od wtora falowgo d Brogl a: Dla ltrou swobodgo 2 ( p / 2 / 2 (tu sorstalś woru p, gd 2π / λ, a at woru (710 otruj dobr a cha wór p υ ( xx + + (711 W rstal alżość ( a bardj soplowaą postać Borąc pod uwagę (710 aps r 1 ( υ ( x,, (712 t 87
7 Z woru (712 otruj 1 ( t r (713 Prpuść tra, ż a ltro dała sła wętra F (to oż bć a prład pol ltrc, tóra powoduj prsuęc ltrou o dr Zaa rg ltrou jst rówa prac woaj pr słę, tj d F dr (714 Roważając rgę jao fucję r aps wór (714 w postac d dx + d + d Fx dx + Fd + Fd (715 x Sąd ajduj, ż F (716 r Porówując (713 (716 wd, ż t 1 F (717 Korstając worów (712 ora (717 dla pochodj po cas od sładowjυ prędośc grupowj ltrou (cl dla prspsa a a υ otruj 1 2 j ( 1 υ Fj ( x,, t, (718 j j j j gd j 2 2 (719 ( j awa sę tsor as ftwj Tsor as ftwj jst strc tsor ( j j druggo rędu, a at aws oż bć sprowado do ta wach os 88
8 główch tsora Zwróć uwagę, ż tsor as ftwj jst orślo w prstr wtorów, cl w prstr sc odwrotj W uład os główch poostają row tlo lt j δ, a at w uład os główch tsora as j ftwj woru (718 otruj F a (720 Rs74 Zalżość as ftwj ltrou od Wór (720 jst podob do rówaa Nwtoa Różca polga a t, ż tra dla ażdj sładowj wtora sł F stj swoja asa ftwa W ż asa 89
9 ( wła aws us bć wloścą dodatą Natoast asa ftwa oż bć ja dodata, ta uja (rs74 Gd < 0 (góra cęść pasa rgtcgo ltro porusa sę ta jab ał ładu dodat Wprowad pojęca as ftwj uożlwa orsta włch worów, cha orślającch ruch ltrou swobodgo, aając w tch worach włą asę a asę ftwą Roas clotroow Za wartość as ftwj ltrou w rstal oża rć, worstując w t clu jawso roasu clotroowgo W polu agtc o ducj B ładu ltrc porusają sę po l śrubowj, tórj oś jst rówolgła do wtora B Rol sł dośrodowj odgrwa tutaj sła Lorta F qbυ qbω r (gd r - proń woju l śrubowj, υ - wartość sładowj prędośc ładuu q, prostopadłj do wtora B Prrówując słę Lorta do sł dośrodowj ( cęstotlwość clotroową wór ω 2 r otruj a ν c ω 2π qb 2π (721 Jżl tra a rstał w ruu prostopadł do B srować ołowo spolarowaą falę ltroagtcą, to dla cęstośc ν ν c astępuję roasow pochłaa rg fal roas clotroow Różca w achowau ujch dodatch ładuów polga a t, ż będą o wrować w prcwch ruach Zając ν C B łatwo oblcć ( q / Zadaa do Władu 7 1 a Udowodć, ż rstał łożo atoów ltu jst prwod b 2 Kofguracja ltroowa aou brlu jst 1s s Ja wtłuacć, ż rstał łożo atoów brlu jst tal 2 Waać, ż w prblżu casgo wąaa w rstal o sc rgularj prstr ctrowaj ( A + 8B [cos( a / 2 cos( a / 2 cos( a / 2] x 3 Korstając wów adaa (72 poaać, ż w poblżu środa sc Brlloua ( A 8B + Ba 90
10 4 Korstając wów adaa (72 poaać, ż w poblżu aroża sc Brlloua ( A 8B Ba 5 Waać, ż w prblżu casgo wąaa w rstal o sc rgularj powrchowo ctrowaj ( A 4B[cos( xa / 2 cos( a / cos( a / 2 cos( a / 2 + cos( a / 2 cos( a / 2] x 6 Korstając wów adaa (75 poaać, ż w poblżu środa sc Brlloua ( A 12B + Ba 7 Korstając wów adaa (75 poaać, ż w poblżu aroża sc Brlloua ( A 12B Ba 8 Waać, ż dla "jdowarowgo" rstału w prblżu casgo wąaa ( A 2B cos( a 9 rga ltrou "jdowarowgo" rstału w prblżu casgo wąaa jst orśloa wor (patr ada 78 ( A 2B cos( a Zalźć asę ftwą ltrou prędość ltrou w paś Prdstawć w grafc 10 W prblżu casgo wąaa w rstal o sc rgularj prstr ctrowaj rga ltrou w poblżu środa sc Brlloua wos (patr ada 73 ( A 8B B a + Zalźć asę ftwą ltrou prędość ltrou w paś Prdstawć w grafc 11 Wprowadć wór (721 rówań cha lascj 12 Powrchę rgtcą ltrou orśla wór x
11 Waać, ż w prpadu, gd stał pol agtc o ducj B jst srowa wdłuż ruu [ 100] cęstość roasu clotroowgo wos B ω C 92
impuls o profilu f(x ) rozchodzący się w kierunku x: harmoniczna fala bieżąca rozchodząca się w kierunku +x: cos
Rów Scrodgr Fucj flow wow rprcj jdo wrow pułp lroów fucj flow sońco sońco sud pocjłu o wodoru rów Scrodgr wprowd rową lro swobod lro w sońcoj sud pocjłu PRZYPOMNINI: Fl bżąc sojąc w pęj sru Hlld, Rsc,
Dynamika układu punktów materialnych
Daka układu puktów ateralch Układ puktów ateralch jest to bór puktów ateralch, w któr ruch każdego puktu jest ależ od ruchu ch puktów. P P,,,,,,,,,,,, sł wewętre P P P sł ewętre Układ puktów ateralch sł
Dynamika układu punktów materialnych
Daka układu puktów ateralch Układ puktów ateralch est to bór puktów ateralch, w któr ruch każdego puktu est ależ od ruchu ch puktów. P,, P,,,, P sł ewętre P,,,,, sł wewętre, P Układ puktów ateralch sł
Algebra liniowa z geometrią analityczną
WYKŁAD. Elmtar fucj mij spoloj: wilomiay, pirwiasti jdości, fucja: pirwiast stopia, fucja wyładica, fucja logarytmica. Podstawow własości wilomiaów: podilość, twirdi Bout, podstawow twirdi algbry, suai
Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 7 [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Analiza częstotliwościowa dyskretnych sygnałów cyfrowych
ora Sygałów III ro Ioray Sosowaj Wyła Rozważy sończoy sygał () spróboway z częsolwoścą : Aalza częsolwoścowa ysrych sygałów cyrowych p óra js wa razy węsza o częsolwośc asyalj a. Oblczy jgo rasorację Fourra.
Polaryzacja i ośrodki dwójłomne. Częśd I
Polaracja ośrodk dwójłom Cęśd Wkorow ops fal lkromagcj r, H r, D r, B r, -wkor aęża pola lkrcgo -wkor aęża pola magcgo -wkor dukcj dlkrcj -wkor dukcj magcj Wkor, kórch współręd alżą od położa casu, powąa
Wykład 14. Oscylacje kwantowe w polu magnetycznym. W mechanice klasycznej uogólniony pęd naładowanej cząstki ma postać [ A] B =. (14.
Wład 14 Osclacj watow w polu agtc W polu agtc obswują się ow adwcaj ft fic, wiąa watowai uchu ośiów ładuu w polu agtc. W t i astęp władi oważ ft watow spowodowa wpłw pola agtcgo a uch ładuów. Poio Ladaua
ENERGIA SPRĘŻYSTA 1 1. BILANS ENERGETYCZNY 2. RÓWNANIE STANU, POTENCJAŁ SIŁ WEWNĘTRZNYCH
NRG SPRĘŻYST. BLNS NRGTYCZNY.. PODSTO POJĘC Układ ic - ciało (lub układ ciał) łożoe uktów aterialch Otoceie - obsar otacając układ ic Ziee stau terodaicego - araetr charakterujące sta układu i otoceia
Teoria Sygnałów. II rok Geofizyki III rok Informatyki Stosowanej. Wykład 4. iωα. Własności przekształcenia Fouriera. α α
ora Sygałów rok Gozyk rok ormatyk Stosowaj Wykład 4 Własośc przkształca ourra własość. Przkształc ourra jst low [ β g ] βg dowód: rywaly całkowa jst opracją lową. własość. wrdz o podobństw [ ] dowód :
Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 11 [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] = N 1 + = N. Cd filtrów cyfrowych
Tora Sgałów III ro Iora Soowaj Wład Cd lrów crowc [ ] [ ] [ ] [ ] [ ] M g Ja aęa ogóla oać lru crowgo o: Śrda arc w ruco o. Pro rład śrdj cralj ęcu uów (lr rcow! ). [ ] [ ] 5 owa warość j rwaa do środowgo
UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ.
L.Kowls - Uwg o rozłdz uc zm losow UWAI O ROZKŁADZIE UNKCJI ZMIENNEJ LOSOWEJ. - d zm losow cągł o gęstośc. Y g g - borlows tz. g - B BR dl B BR Wzczć gęstość g zm losow Y. Jśl g - ścśl mootocz różczowl
G:\WYKLAD IIIBC 2001\FIN2001\Ruch falowy2001.doc. Drgania i fale II rok Fizyki BC
3-- G:\WYKLAD IIIBC \FIN\Ruh falow.do Drgania i fale II ro Fii BC Ruh falow: Fala rohodąe się w presreni aburenie lub odsałenie (pole). - impuls lub drgania. Jeśli rohodi się prędośią o po asie : ( r)
WYKŁAD 7. MODELE OBIEKTÓW 3-D3 część Koncepcja krzywej sklejanej. Plan wykładu:
WYKŁAD 7 MODELE OIEKTÓW -D cęść Pla wkład: Kocepcja krwej sklejaej Jedorode krwe -sklejae ejedorode krwe -sklejae Powerche eera, -sklejae URS. Kocepcja krwej sklejaej Istotą praktcego pkt wdea wadą krwej
( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił
3.7.. Reducja dowolego uładu sił do sił i par sił Dowolm uładem sił będiem awać uład sił o liiach diałaia dowolie romiescoch w prestrei. tm pucie ajmiem się sprowadeiem (reducją) taiego uładu sił do ajprostsej
Siła ciężkości. Siła ciężkości jest to siła grawitacyjna wynikająca z oddziaływania na siebie dwóch ciał. Jej wartość obliczamy z zależności
Sła cężkośc Sła cężkośc jest to sła grawtacja wkająca oddałwaa a sebe dwóch cał. Jej wartość obcam aeżośc G gde: G 6,674 10-11 Nm /kg M m r stała grawtacja, M, m mas cał, r odegłość pomęd masam. Jeże mam
Macierze hamiltonianu kp
Macere halonanu p acer H a, dla wranego, war 44 lu 88 jeśl were jao u n r uncje s>; X>, Y>, Z>, cl uncje ransorujące sę według repreenacj grp weora alowego Γ j. worące aę aej repreenacj - o ora najardej
Teoria Sygnałów. II Inżynierii Obliczeniowej. Wykład /2019 [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Tora Sygałów II Iżyr Oblczowj Wyład 8 8/9 Rozważy sończoy sygał δ () spróboway z częsolwoścą : Aalza częsolwoścowa dysrych sygałów cyfrowych f p óra js dwa razy węsza od częsolwośc asyalj f a. Oblczy jgo
Teoria Sygnałów. II Inżynieria Obliczeniowa. Wykład 13
Toria Sygałów II Iżyiria Oblicziowa Wyład 3 Filtr adaptacyjy dostraja się do zmiych waruów pracy. Filtr tai posiadają dwa sygały wjściow. Pirwszym jst sygał poddaway filtracji x(). Drugim ta zway sygał
A B - zawieranie słabe
NAZEWNICTWO: : rówoważość defcj : rówość defcj dla każdego steje! ZBIORY steje dokłade jede {,,,...} - całkowte * - całkowte be era - wmere - ujeme plus ero - recwste - espoloe A B - awerae słabe A :
3. Struktura pasmowa
3. Strutura pasmowa Funcja Blocha Quasi-pęd, sić odwrotna Przybliżni prawi swobodngo ltronu Dziura w paśmi walncyjnym Masa ftywna Strutura pasmowa (), przyłady Półprzwodnii miszan ltron w rysztal sformułowani
Wpływ pola magnetycznego na plazmę w półprzewodnikach
Włw ola agntngo na laę w ółwodnkah Założna ol agntn B n włwa na olaaję dn atoowh at n alż od B ol agntn n włwa na olaaję, an na ęstoś własn odów fononowh Jdn włw ola agntngo na olaaję wnka jgo włwu na
Instrukcja dodawania reklamy
Istrukja dodawaa rklam b s tu P w r st la m uj m C S ku t r k www.p.om www.sawa.om www.orst.om fabook.om/p a h Krok 1 Rjstraja owgo użtkowka la m uj m 1. Whodm a jd trh portal, klkam a lk dodaj rklamę
M A N I P U L A T O R Y Przestrzenne Analiza kinematyczna
N I P U L O Y Prstrnn nalia inmatcna Wsółrędn absolutn (artańsi) aniulator łasi r r r r r r acir rotaci Wrsor r r r r Prstałcni dnorodn q wtor wsółrędnch absolutnch KINEYK NIPULOÓW PZESZENNYCH 5 Wsółrędn
Półprzewodniki (ang. semiconductors).
Półprzwodn an. smondutors. Ja.Szzyto@fuw.du.pl ttp://www.fuw.du.pl/~szzyto/ Unwrsytt Warszaws ora pasmowa ał stały. pasmo pust RGIA LKROÓW pasmo pust pasmo płn pasmo pust pasmo płn pasmo płn mtal półprzwodn
W-9 (Jaroszewicz) 15 slajdów. Równanie fali płaskiej parametry fali Równanie falowe prędkość propagacji, Składanie fal fale stojące
Jucaan, Meico, Februar 005 W-9 (Jaroszewicz) 5 slajdów Ruch falow, ośrodek sprężs ę Pojęcie ruchu falowego rodzaje fal Równanie fali płaskiej paraer fali Równanie falowe prędkość propagacji, energia i
Półprzewodniki (ang. semiconductors).
-5- Półrzwod a. sodutors. Ja.Szzyto@uw.du.l tt://www.uw.du.l/~szzyto/ RGIA LKROÓW ora asowa ał stały. aso ust aso ust aso ust aso ł aso ł aso ł Uwrsytt Warszaws tal ółrzwod zolator Ja zobazyć rzrwę? Przrwa
Uwaga z alkoholem. Picie na świeżym powietrzu jest zabronione, poza licencjonowanymi ogródkami, a mandat można dostać nawet za niewinne piwko.
B : U U F F U 01 Ę ś ę 3 ż łć ę ę ź ł, Ż 64 ó ł ł óżó, j, j U 02 Ą ś U ł 1925, 1973 łś ą ż ęą fć j j ą j ł 9 ( ) ó 15 F 03 j ąó j j, ę j ż 15 ł, ó f Bść ł łj ł, 1223 j 15 B Ą ć ę j- j ść, j ż ą, ż, ją
Grupa obrotów. - grupa symetrii kuli, R - wszystkie możliwe obroty o dowolne kąty wokół osi przechodzących przez środek kuli
Grupa obrotów - grupa smetr kul R - wsstke możlwe obrot o dowolne kąt wokół os prechodącch pre środek kul nacej O 3 grupa obrotów właścwch - grupa cągła - każd obrót określa sę pre podane os l kąta obrotu
Równania różniczkowe cząstkowe drugiego rzędu
Równania różniczkowe cząstkowe drugiego rzędu Marcin Orchel Spis treści 1 Wstęp 1 1.1 Metoda faktoryzacji (rozdzielania zmiennych)................ 5 1.2 Metoda funkcji Greena.............................
TWIERDZENIA O WZAJEMNOŚCIACH
1 Olga Kopac, Adam Łodygows, Wojcech Pawłows, Mchał Płotowa, Krystof Tymber Konsultacje nauowe: prof. dr hab. JERZY RAKOWSKI Ponań 2002/2003 MECHANIKA BUDOWI 7 ACH TWIERDZENIE BETTIEGO (o wajemnośc prac)
Dodatek 10. Kwantowa teoria przewodnictwa I
Dodate 10 Kwatowa teoria przewodictwa I Teoria lascza iała astępujące aaet: (1) zierzoe wartości średiej drogi swobodej oazał się o ila rzędów wielości więsze iż oczeiwae () teoria ie dawała poprawc zależości
x od położenia równowagi
RUCH HARMONICZNY Ruch powtarając się w regularnch odstępach casu nawa ruche okresow. Jeżeli w taki ruchu seroko rouiane odchlenie od stanu równowagi ( np. odchlenie as podcepionej do sprężn, wartość wektora
cz. 2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321
Wkład 7: Bła stwna c.. D nż. Zbgnew Sklask Kateda Elektonk, paw. C-1, pok.1 skla@agh.edu.pl http://lae.uc.agh.edu.pl/z.sklask/..17 Wdał nfoatk, Elektonk Telekounkacj - Telenfoatka 1 6..17 Wdał nfoatk,
4. Statystyka elektronów i dziur
4. Statystya ltroów i ziur Gęstość staów Koctracja ltroów i ziur w półprzwoiu izgrowaym i zgrowaym Półprzwoi samoisty Domiszowai, oory i acptory Półprzwoi omiszoway, zalżość octracji swoboyc ośiów i poziomu
ALGEBRA rok akademicki
ALGEBRA rok akademck -8 Tdeń Tematka wkładu Tematka ćwceń ajęć Struktur algebracne (grupa cało; be Dałana na macerach perścen Defncja macer Dałana na macerach Oblcane wnacnków Wnacnk jego własnośc Oblcane
Ruch falowy. Fala zaburzenie wywoane w jednym punkcie ośrodka, które rozchodzi się w każdym dopuszczalnym kierunku.
Ruch falowy. Fala zaburzenie wywoane w jednym punkcie ośrodka, które rozchodzi się w każdym dopuszczalnym kierunku. Definicje: promień fali kierunek rozchodzenia się fali powierzchnia falowa powierzchnia,
Metody Lagrange a i Hamiltona w Mechanice
Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyi i Informatyi Stosowanej Aademia Górniczo-Hutnicza Wyład 12 M. Przybycień (WFiIS AGH Metody Lagrange a i Hamiltona... Wyład 12
1 / m S t a n d a r d w y m a g a ń - e g z a m i n m i s t r z o w s k i dla zawodu B L A C H A R Z Kod z klasyfikacji zawodów i sp e cjaln oś ci dla p ot r ze b r yn ku p r acy Kod z klasyfikacji zawodów
Analiza Matematyczna Ćwiczenia. J. de Lucas
Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y
$y = XB KLASYCZNY MODEL REGRESJI LINIOWEJ Z WIELOMA ZMIENNYMI NIEZALEŻNYMI
KASYCZNY ODE REGRESJI INIOWEJ Z WIEOA ZIENNYI NIEZAEŻNYI. gdz: wtor obsrwacj a zmj Y, o wmarach ( macrz obsrwacj a zmch zalżch, o wmarach ( ( wtor paramtrów struturalch (wtor współczów, o wmarach (( wtor
Zad Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji.
Zad. 1.1. Sprawdzić, czy dana funkcja jest funkcją własną danego operatora. Jeśli tak, znaleźć wartość własną funkcji. Zad. 1.1.a. Funkcja: ϕ = sin2x Zad. 1.1.b. Funkcja: ϕ = e x 2 2 Operator: f = d2 dx
Przestrzeń liniowa R n.
MATEMATYKA IIb - Lcjan Kowalski Prestreń liniowa R n. Element (wektor) prestreni R n będiem onacać [,,, ] Element erow [,, L, ]. Diałania. a) ilocn element pre licbę: b) sma elementów [ c, c, ] c L, c
Mikroskopia polaryzacyjna
Mikroskopia polaracja Wktorow opis fali lktromagtcj r,t H r,t Dr,t B r,t -wktor atężia pola lktrcgo -wktor atężia pola magtcgo -wktor idukcji dilktrcj -wktor idukcji magtcj Wktor t, którch współręd alżą
Półprzewodniki (ang. semiconductors).
Półpzwod ag. smcoductos. Uwsytt Waszaws 5 Podstawy modlu jdoltoowgo Twdz Blocha Co z tą pustą pzstzą? Pzyjmjmy, ż w węzłach sc zajduj sę mały potcjał V V mały potcjał cos a ozważymy pzypad jdowymaowy Ja
Arkusz 6. Elementy geometrii analitycznej w przestrzeni
Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos
ANALIZA OBWODÓW DLA PRZEBIEGÓW SINUSOIDALNYCH METODĄ LICZB ZESPOLONYCH
ANAZA OBWODÓW DA PZBGÓW SNUSODANYH MTODĄ ZB ZSPOONYH. Wprowadzn. Wprowadź fnkcję zspoloną znnj rzczwstj (czas) o następjącj postac: F( t) F F j t j jt t+ Fnkcj tj przporządkj na płaszczźn zspolonj wktor
Równanie Fresnela. napisał Michał Wierzbicki
napisał Michał Wierzbici Równanie Fresnela W anizotropowych ryształach optycznych zależność między wetorami inducji i natężenia pola eletrycznego (równanie materiałowe) jest następująca = ϵ 0 ˆϵ E (1)
N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.
3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy
Większość obiektów można zapisać przy użyciu równań stanu:
. ÓWNNI SNU. ów Węość oów oż pć pr żc rówń : D dl łdów corch, o dl łdów corch cr ą lż od c,,, D N podw ch rówń wc ch loow low łd wlowrowgo (r..) gd: wor ch lżch, wor o wrch łdowch,,, wor wń wścowch, wor
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechia Warszawsa Wydział Samochodów i Maszy Roboczych Istytut Podstaw Budowy Maszy Załad Mechaii http://www.ipbm.simr.pw.edu.pl/ Teoria maszy i podstawy automatyi semestr zimowy 206/207 dr iż. Sebastia
, q3) współrzędnych kartezjańskich o równaniach:
Kimaka puku w współędch kwoliiowch i wkoowch aual biguow walcow (clidc) kulis (sfc) Współędmi kwoliiowmi mogą bć dowol fukcj ( q 1, q, q3) współędch kajańskich o ówaiach: q1 q1(,, ) q q (,, ) q q,, ),
elektrostatyka ver
elektostatka ve-8.6.7 ładunek ładunek elementan asada achowana ładunku sła (centalna, achowawca) e.6 9 C stała absolutna pawo Coulomba: F ~ dwa ładunk punktowe w póżn: F 4πε ε 8.8585 e F m ε stała ł elektcna
Pochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać:
ochodna kierunkowa i gradient Równania parametrcne prostej prechodącej pre punkt i skierowanej wdłuż jednostkowego wektora mają postać: Oblicam pochodną kierunkową u ( u, u ) 1 + su + su 1 (, ) d d d ˆ
Opis ruchu we współrzędnych prostokątnych (kartezjańskich)
Opis ruchu we współrędch prosokąch (karejańskich) Opis ruchu we współrędch prosokąch jes podob do opisu a pomocą wekora wodącego, kórego pocąek leż w pocąku układu odiesieia. Położeie. Położeie puku A
Ruch falowy, ośrodek sprężysty
W-9 (Jaroszewicz) 5 slajdów Ruch falow, ośrodek sprężs ę Pojęcie ruchu falowego rodzaje fal Równanie fali płaskiej paraer fali Równanie falowe prędkość propagacji, energia i pęd przenoszone przez falę
WYZNACZANIE STAŁ YCH MATERIAŁ OWYCH DREWNA METODĄ HOMOGENIZACJI
ZSZYTY NOW DMII MRYNRI WOJNNJ RO XLVII NR Lsł aw zoł adma Marar Wojj WYZNZNI STŁ YH MTRIŁ OWYH DRWN MTODĄ HOMOGNIZJI STRSZZNI Podao mtodę, za pomocą tórj możlw jst dduowa z opsu mrosopowgo odpowadającgo
JEDNOWYMIAROWA ZMIENNA LOSOWA
JEDNOWYMIAROWA ZMIENNA LOSOWA Nech E będze zborem zdarzeń elemetarych daego dośwadczea. Fucję X(e) przyporządowującą ażdemu zdarzeu elemetaremu e E jedą tylo jedą lczbę X(e)=x azywamy ZMIENNĄ LOSOWĄ. Przyład:
Równanie Schrödingera
Równanie Schrödingera Maciej J. Mrowiński 29 lutego 2012 Zadanie RS1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = 0 ma następującą postać: A(a Ψ(x,0) = 2 x 2 ) gdy x [ a,a] 0 gdy x / [ a,a]
Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017
Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne
Kompresja fraktalna obrazów. obraz. 1. Kopiarka wielokrotnie redukująca 1.1. Zasada działania ania najprostszej kopiarki
Kompresa fratalna obraów. Kopara welorotne reuuąca.. Zasaa ałana ana naprostse opar Koncepca opar welorotne reuuące Naprosts prła opar. Moel matematcn obrau opara cęś ęścowa. obra weścow opara obra wścow
dr inż. Zbigniew Szklarski
Włd : Wetor dr nż. Zgnew Slrs sl@gh.edu.pl http://ler.uc.gh.edu.pl/z.slrs/ Welośc fcne Długość, cs, sł, ms, prędość, pęd, prspesene tempertur, nprężene, premescene, ntężene prądu eletrcnego, ntężene pol
Co to jest teoria pasmowa
15-- ltrony dzury strutura pasowa podzał ał stałyh asa ftywna nośnów poję dzury półprzwodn Co to jst tora pasowa Tora pasowa jst wantowo-hanzny ops zahowana ltronów w rystalzny l stały. Nazwa tora pasowa
Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?
Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Elektron fala stojąca wokół jądra Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkowy
Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki
Politechia Warszawsa Wydział Samochodów i Maszy Roboczych Istytut Podstaw Budowy Maszy Załad Mechaii http://www.ipbm.simr.pw.edu.pl/ Teoria maszy i podstawy automatyi semestr zimowy 07/08 dr iż. Sebastia
OBLICZANIE GEOMETRYCZNYCH MOMENTÓW BEZWŁADNOŚCI FIGUR PŁASKICH, TWIERDZENIE STEINERA LABORATORIUM RACHUNKOWE
OBLICZNIE GEOMETRYCZNYCH MOMENTÓW BEZWŁDNOŚCI FIGUR PŁSKICH, TWIERDZENIE STEINER LBORTORIUM RCHUNKOWE Prz oblczeach wtrzmałoścowch dotczącch ektórch przpadków obcążea (p. zgae) potrzeba jest zajomość pewch
Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07)
Wyład 9 Fizya 1 (Informatya - EEIiA 006/07) 9 11 006 c Mariusz Krasińsi 006 Spis treści 1 Ruch drgający. Dlaczego właśnie harmoniczny? 1 Drgania harmoniczne proste 1.1 Zależność między wychyleniem, prędością
Fizyka 12. Janusz Andrzejewski
Fizyka 1 Janusz Andrzejewski Przypomnienie: Drgania procesy w których pewna wielkość fizyczna na przemian maleje i rośnie Okresowy ruch drgający (periodyczny) - jeżeli wartości wielkości fizycznych zmieniające
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić
XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne
XXX OLIPIADA FIZYCZNA TAP I Zadana teoretczne Nazwa zadana ZADANI T1 Na odstawe wsółczesnch badań wadomo że jądro atomowe może znajdować sę tlo w stanach o oreślonch energach odobne ja dobrze znan atom
Ł Ż Ó Ó Ż Ó Ę Ó Ó Ó Ó Ó Ę Ą Ż Ż Ż Ż Ż Ź Ó Ż Ó Ż Ż Ż Ą Ą Ż Ą ć Ż Ż Ó Ą Ó Ż Ó Ó Ą Ó Ż Ą Ż Ó Ó Ó Ę Ó Ż Ż Ż Ż Ż Ó Ą Ó Ą Ż Ź Ó Ż Ó Ó ÓŹ Ż Ć Ó Ó Ż Ź Ż Ó Ó Ą Ó Ź Ż Ż ź ź Ż ć ć Ó Ż Ó Ó Ż ź ć ź Ź ź Ż ź ć ć Ó ź
Ś Ł Ś Ł Ś Ś Ę Ą Ó Ś Ó Ś Ę Ł Ś Ł Ś Ż ć ć Ż Ć Ó Ó ż Ó Ż Ó Ó ć Ś Ź Ó Ó ć Ó Ą Ó Ó Ó Ą Ó Ś Ę Ż ż Ń Ń ż ć Ę Ć Ń Ś Ź ż ż Ó ż Ó Ó Ó Ś Ż Ó Ś Ń Ś Ź Ą Ę Ł Ż Ż Ó Ż Ż Ó Ż Ó Ś Ę Ó Ą Ż ÓŻ Ó Ż Ś Ó Ó ż Ą ż Ś Ć Ł Ś Ó Ą
Ę ć Ć Ś Ó Ó Ś Ł Ą Ą Ż ż Ł Ł Ż Ż ż Óż Ż ż ż Ę ż Ó ż Ę ć ż Ę Ź ż Ż ż ż ż ń ń ć ć ż ż Ż Ż Ś ż ż ń ż ń ż ż ń ż Ą ż ż Ę ć ć ć ż ń Ż Ż Ż ż Ę Ż ć ń Ż Ż ć Ę Ą Ą ć ć Ł Ą Ę Ą ć ż ć ż ć ć ż ć ć ż Ż ć Ą ż ć Ą Ą Ż
Ś Ó Ą Ą Ą Ą Ż Ć Ł Ś ć ż Ł ż Ł ź Ś Ą Ł Ś Ż ź Ó Ś Ą Ó Ś ź Ł Ł ź Ł ź ć Ć Ą Ą Ą Ą ć ź Ą Ą Ż ż ć ć Ć Ą Ą Ą Ł Ó Ż Ó Ź Ń ź Ń ź Ą Ś Ż Ą Ł ż Ś Ś Ó ź ź Ń Ł ź Ż ź ź Ą ż ż Ą Ś Ą Ą Ą Ą Ą ź Ą Ą Ó ź Ś Ł Ł Ł ź
Ą Ą Ś Ą Ł ż ż Ł Ł Ł Ł Ą ć ź Ą ż ż ć ć Ą ć ć Ł ź ż ż Ł Ł ź ź ż ż ć ć ż ż ż ż ć ż ż ż ż ć ż ż ż Ą ż ż ż ż ż ć ż ć ć Ł ż ż ż ż ż Ą ż ż ć ż ć ć ć Ó Ł ć ż Ł Ś Ś Ą Ł ź ć Ł ć Ś ź ż ć ź ź ź ż ż ź ż ż ć ż ć ż ć
ż Ó ż ć ż Ź Ż ć Ż Ż Ż ż Ó ć Ż ć ż ż ć ż Ó ż ć ż ż ć Ż Ż Ą ć ć ć Ż ć Ż Ż ć ć ż Ż ć ć ć Ż Ż ć Ł ć Ą ć ć ć ć ć ć ć ż ż ć ć ć ÓŻ ć ć Ż ć Ó ć ć ć ć ć ć ć Ł ć ć Ż Ż ż Ą ć ć ć Ż ć Ż Ą ć Ż ć Ż Ż ć Ż Ż ż Ż ż ć
Ś ÓŹ ż Ś ń Ś Ś Óż Ż Ś Ś Ś Ś Ś Ś ń Ó Ó Ż ż Ż ń Ż Ś Ó ń Ś Ą Ą Ą Ś Ś Ź ń Ż ż Ż Ż Ę ż Ś Ś ż ń ń ń ż Ó Ż Ż ż ń ż ż Ż ż Ó ż ń ż ń ń Ż Ż Ś ń ń ż ż ń ń Ź Ż ń ż Ż Ę ń Ż ż Ź Ź ń ż Ź ż Ź ż ż Ż Ż Ó Ż Ż Ź ż Ż Ż Ż Ę
ż Ś ń ń ć Ś ć ó ó ń ń ń ó Ś ń ó ń Ś ź ó ź ń Ś ń ń ó ó ń ó ó ó ż ó Ź ó ó ó ó ó ó ó ż ń ó ż ó ć ó ć ó ń ń ó ć ó ź ć Ó ć ć ż ó ó ź ó Ś ć Ó ó ń ć ż ć ó ó ć ń ć ó ó ć ż Ó ó ń ć ń ń ż ó Ś ć ó ó ż ń ó ż ń ż ó
Ó Ó Ó Ś Ó Ą Ż ć Ą Ś Ś Ś Ł ć Ż Ż Ó ć Ę Ś Ó Ł Ę Ę Ż Ś Ł Ś Ó Ó Ó ź Ż Ó Ą Ę Ź ź Ą Ę Ó Ę Ż Ż ź Ó Ść Ż Ś Ś Ź Ż Ó Ś ŚĆ ć Ó Ż Ć Ó Ś Ż Ó Ę ć Ę ć Ó ć Ą Ó Ś Ł Ś ć Ż ź Ż Ó Ó Ż Ś Ó ć ć Ń Ę Ść Ó Ó Ó ÓŹ ź Ś Ś Ś ć Ś Ś
ć Ó Ó Ń ź Ą Ą Ć Ż Ń Ą Ó Ó Ó Ą Ż Ć Ż ć ć Ż Ó Ó Ć ć Ą Ą Ó Ą Ó Ź ć Ó Ó Ó Ż ć ń ń ń ć Ż Ź ć ń ó ó Ź Ó Ó Ó Ż Ó Ó ć Ó Ó Ż Ż Ż Ó Ż Ó Ą Ó Ó Ź Ż Ó Ą Ź ć Ą Ż Ż Ó Ń Ż Ó Ó Ź Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ż Ó Ż Ż Ą
Ę ó ó ó Ó ź óź óź ó ć ó ó ó ó ń ó ń ć ó ć ń ó ć ó ć ó Ł ó ó ó Ą Ę ó ó ó ń ó ó ó ŚĆ ó ó ó ó ć ó ó ó ć ń ó ó ć ć ó ó ó ź ó ń ó ó ó ó ć ó ó ń ć ó ó ó ń ć ó ó ć ó ó ć ń ć ó ó ć ó ó ó ó ć ó ó ó ó ó ć ó ó ć
Ó ż ż ż ż ż ż ż ż ć Ń Ą ż ż Ó Ź Ó Ą Ń ć ż ż ż ć ż ć ż ż ż ż ć ć ż ż ć Ą ż ż ć ć ż Ż Ą ż ć ź ć ć Ą ć ć ć Ą ć Ą ż Ł ż Ó ć ć Ź ż ć ż ź ż ż Ż ć Ó Ź Ó Ą ż Ó Ą ć Ą ż ć Ą Ó ż Ś Ś Ż Ś Ł Ń Ś ź Ó ć ż Ś ż ć ź Ś Ś
Ą Ń Ż ź Ń Ą Ń Ą Ą ź ź Ó Ż ź ź Ó Ó Ć Ó Ó Ó Ć Ć ź ź Ż ź Ą Ź ź Ć Ć Ć Ó Ó Ó Ó Ó Ó ź Ó Ę Ó Ó Ę Ó Óź ź ź Ó Ó Ó Ó Ó Ó Ń Ź Ę ź ź Ó ź Ń Ę Ę Ę Ń ź Ę Ź Ó Ó Ó ź Ó Ę Ą Ó ź ź Ó Ó Ó Ó Ó ź Ó Ń Ó Ę ź Ż Ó Ó Ó Ę Ę Ó Ę Ć
Ń ź Ś Ó Ó ć Ś Ś ć ć Ę ć ć ć ć ć ć Ś ć ć Ś ć Ó ć ć Ść Ść Ś Ś ć Ć ć ć Ó Ą ć Ć ć Ź ć Ź ć Ź Ł Ł ć Ó Ó ć Ó Ó ć ć ć ć ć ć ć ć Ź Ś ć Ę ć ć ć ć Ł Ł ć Ź Ą Ę Ł Ó Ś Ą Ł Ł Ó Ć Ś Ś Ą Ź ć Ź Ś Ś Ś ć Ś Ś ć ć ć ć ć ć ź
3. Struktura pasmowa
3. Stutua pasmowa Funcja Blocha Quasi-pęd, sić odwotna Pzybliżni pawi swobodngo ltonu Dziua w paśmi walncyjnym Masa ftywna Stutua pasmowa (), pzyłady Półpzwodnii miszan lton w ysztal sfomułowani poblmu
Mechanika Kwantowa. Maciej J. Mrowiński. 24 grudnia Funkcja falowa opisująca stan pewnej cząstki ma następującą postać: 2 x 2 )
Mechanika Kwantowa Maciej J. Mrowiński 4 grudnia 11 Zadanie MK1 Funkcja falowa opisująca stan pewnej cząstki w chwili t = ma następującą postać: A(a Ψ(x,) = x ) gdy x [ a,a] gdy x / [ a,a] gdzie a +. Wyznacz
θ = 0 lub = = g l dw dt Przykłady drgań: Wahadło matematyczne (małe wychylenia): Inaczej: m l(1-cosθ) Drgania i fale II rok Fizyki BC
Przykłady drgań: Wahadło ateatyczne (ałe wychyenia): θ ( sinθ) M g && θ gsinθ && θ gθ (1-cosθ) && g θ + θ g g naczej: υ T V W & 1 g T θ υ 1 ( cosθ ) + V & θ dw dt &&& θθ + g & θ sinθ θ ub && g θ + sinθ
ZADANIA Z ANALIZY MATEMATYCZNEJ dla I roku kierunku informatyka WSZiB
pro. dr hb. Stisłw Biłs ZADANIA Z ANALIZY MATEMATYCZNEJ I roku kieruku iormtyk WSZiB I. ELEMENTARNE WŁASNOŚCI FUNKCJI. Wyzczyć dziedzię ukcji: 5 7 log[ log 5 6. b c ] d. Wyzczyć przeciwdziedzię ukcji:
v = v i e i v 1 ] T v =
v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v n U v v v +q 3q +q +q b c d XY X +q Y 3q r +q = r 3q = r +q = r +q = r 3q = r +q = E = E +q + E 3q + E +q = k q r+q 3 + k 3q r 3q 3 b V = kq
Pienińskich Portali Turystycznych
Ofrta Pńskch Portal Turstczch b s z tu P w z c r st la m uj m C S ku z c t r k www.p.com www.szczawca.com www.czorszt.com facbook.com/p c a h Krótko o Pńskch Portalach Turstczch Pńsk Portal Turstcz został