Wykład 5: Analiza dynamiki szeregów czasowych
|
|
- Teresa Górska
- 7 lat temu
- Przeglądów:
Transkrypt
1 Wykład 5: Analiza dynamiki szeregów czasowych
2 ... poczynając od XIV wieku zegar czynił nas najpierw stróżów czasu, następnie ciułaczy czasu, i wreszcie obecnie - niewolników czasu. W trakcie tego procesu zaczęliśmy lekceważyć słońce i pory roku, ponieważ w świecie stworzonym przez sekundy i minuty autorytet natury doznał uszczerbku. Neil Postman, Zabawić się na śmierć
3 Definicja szeregu czasowego Szeregiem czasowym będziemy nazywać ciąg obserwacji dowolnej cechy statystycznej, dokonanych w kolejnych momentach czasowych. Wartości szeregu będziemy oznaczać symbolem: Y t (t = 1,..., T) Tak zdefiniowany szereg czasowy ma charakter jednowymiarowy i obecnie zajmiemy się specjalną grupą metod statystycznych, które służą do porównywania a także prognozowania kolejnych jego wartości. Oczywiście, do badania danych czasowych można też stosować poznane uprzednio metody tabelarycznej i graficznej analizy danych, choć jak pokazano na następnym slajdzie nie zawsze ma to sens.
4 Czy liczby wiedzą skąd pochodzą Sposób doboru metod analizy statystycznych jest, a przynajmniej winien być, bardzo mocno związany z charakter zbioru danych oraz ich merytorycznym znaczeniem. Ten sam zbiór liczb musi być inaczej traktowany, gdy dotyczy danych czasowych, a inaczej, gdy dotyczy danych przekrojowych lub ankietowych. Na wcześniejszych wykładach, jako najbardziej popularną metodę opisu danych liczbowych wskazano wyznaczanie statystyk opisowych, poniższy przykład pokazuje, że dla danych czasowych to nie zawsze ma sens. Wykres przedstawia dynamikę dwóch zjawisk nieco różniących się kierunkiem zmian! Tymczasem statystyki opisowe dla obu szeregów czasowych są identyczne: Średnia = Minimum = 5261 Maksimum = 16495
5 Analiza graficzna danych czasowych (1) Znaczenie analizy graficznej danych czasowych jest ogromne poniekąd zostało to już uzasadnione na slajdzie nr 4. Metody graficznej analizy danych zostały omówione na wykładach 6-8. Poniżej zaprezentowano, dla przypomnienia, kilka form graficznej prezentacji danych, w których wykorzystano pewne dodatkowe możliwości programu STATISTICA. Obrazkowy wykres rozrzutu
6 Analiza graficzna danych czasowych (2)
7 Analiza graficzna danych czasowych (3)
8 Proste indeksy dynamiki określają czasowego. Indeksy dynamiki (o stałej i zmiennej podstawie) Wyodrębnia się dwa podstawowe typy indeksów: indeksy o stałej podstawie; indeksy o zmiennej podstawie. tempo zmian pojedynczego szeregu Indeksy o stałej podstawie wyznacza się na podstawie wzoru: Indeks (dla okresu t) = Wartość w okresie t / Wartość w okresie bazowym I t/t = Y t / Y T * 100 Indeksy o zmiennej podstawie wyznacza się na podstawie wzoru: Indeks (dla okresu t) = Wartość w okresie t / Wartość w okresie poprzednim I t/t-1 = Y t / Y t-1 * 100
9 Indeksy złożone Indeksy złożone (agregatowe) pozwalają ocenić tempo i kierunek zmian wartości kombinacji wielu zmiennych jednocześnie. Do najczęściej stosowanych (ale nie tylko) indeksów złożonych należą formuły wiążące ilość towarów i ich ceny. Takie indeksy stosowane do pewnego koszyka dóbr służą między innymi do szacowania poziomu inflacji. Jako przykład indeksu agregatowego omówiony zostanie indeks Laspeyresa w indeksie tym odnosi się sumaryczną wartość koszyka dóbr w danym okresie do wartości tego samego koszyka dób w okresie bazowym. Indeks Laspeyresa = p i q p q Oznaczenia: p i ceny poszczególnych dóbr, q i ilości poszczególnych dóbr 0 0
10 Przykład wyznaczania i interpretacji indeksów dynamiki Przykłady będą dotyczyć danych o: transporcie w Polsce w latach ; poziomie depozytów i kredytów gospodarstw domowych w Polsce w latach
11 Sezonowość zjawisk czasowych Zdarza się, iż przedmiotem zainteresowania badacza jest nie tyko dynamika danego zjawiska w całym rozważanym okresie (wyodrębnienie trendu, opis dynamiki, prognoza) ale także wyodrębnienie wahań sezonowych, jeśli takowe istnieją. Na przykładzie zaprezentowany zostanie sposób wyznaczania wskaźników sezonowości dla szeregu czasowego danych miesięcznych, dotyczącego liczby wypadków drogowych w Polsce w ostatnich kilkunastu latach. Umiejętność opisu sezonowości pewnego zjawiska pozwala lepiej zarządzać zasobami, lepiej planować i podejmować bardziej przemyślane decyzje. Wskaźniki sezonowości mogą mieć charakter addytywny lub multiplikatywny. Wskaźniki addytywne pozwalają na ocenienie o ile dla danego typu okresu wartości odchylają się od modelu bez efektu sezonowości (są to więc odchylenia bezwzględne, czyli +/-). Wskaźniki multiplikatywne pokazują stosunek poziomu zjawiska w danym typie okresu do poziomu w modelu bez sezonowości, tak więc pozwalają ocenić ile razy w danym okresie badane zjawisko wzrasta (spada).
12 Sezonowość zjawisk czasowych (przykład) Na rysunku przedstawiono multiplikatywne wskaźniki sezonowości dla stopy bezrobocia w Polsce do roku Łatwo można wyodrębnić okresy, w których poziom bezrobocia wzrasta. Wskaźniki pokazują ile razy stopa bezrobocia jest wyższa od średniej rocznej. Dla przykładu, w lutym stopa bezrobocia jest 1,039 razy wyższa niż wartość średnioroczna a sierpniu stanowi 0,953 średniej rocznej.
13 Ekstrapolacja trendu jako metoda prognozy dla zjawisk rozciągniętych w czasie Dopasowanie do danych trendu liniowego: WYKRESY LINIOWE / zakładka WIĘCEJ / polecenie DOPASUJ / LINIOWY Wzór modelu liniowego i jego interpretacja Wykorzystanie modelu liniowego do prognozowania rozwoju danego zjawiska: 1) Wykorzystanie formuł arkusza danych do wyznaczenia wartości modelowanych i prognozy na kolejne okresy 2) Odczytanie wartości prognoz 3) Graficzna prezentacja danych i prognozy 4) Czy zawsze można wyznaczać w ten sposób prognozy?
Wykład 6: Analiza danych czasowych Wykresy, indeksy dynamiki
Wykład 6: Analiza danych czasowych Wykresy, indeksy dynamiki ... poczynając od XIV wieku zegar czynił nas najpierw stróżów czasu, następnie ciułaczy czasu, i wreszcie obecnie - niewolników czasu. W trakcie
Analiza sezonowości. Sezonowość może mieć charakter addytywny lub multiplikatywny
Analiza sezonowości Wiele zjawisk charakteryzuje się nie tylko trendem i wahaniami przypadkowymi, lecz także pewną sezonowością. Występowanie wahań sezonowych może mieć charakter kwartalny, miesięczny,
Indeksy dynamiki (o stałej i zmiennej podstawie)
Indeksy dynamiki (o stałej i zmiennej podstawie) Proste indeksy dynamiki określają tempo zmian pojedynczego szeregu czasowego. Wyodrębnia się dwa podstawowe typy indeksów: indeksy o stałej podstawie; indeksy
Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA
Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA Zadanie 1 (Plik danych: Transport w Polsce (1990-2015)) Na
Zajęcia 1. Statystyki opisowe
Zajęcia 1. Statystyki opisowe 1. Znajdź dane dotyczące liczby mieszkańców w polskich województwach. Dla tych danych oblicz: a) Średnią, b) Medianę, c) Dominantę, d) Wariancję, e) Odchylenie standardowe,
Wykład 4: Statystyki opisowe (część 1)
Wykład 4: Statystyki opisowe (część 1) Wprowadzenie W przypadku danych mających charakter liczbowy do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą statystyk opisowych można
Wykład 5: Statystyki opisowe (część 2)
Wykład 5: Statystyki opisowe (część 2) Wprowadzenie Na poprzednim wykładzie wprowadzone zostały statystyki opisowe nazywane miarami położenia (średnia, mediana, kwartyle, minimum i maksimum, modalna oraz
You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Prezentacja materiału statystycznego Szeroko rozumiane modelowanie i prognozowanie jest zwykle kluczowym celem analizy danych. Aby zbudować model wyjaśniający relacje pomiędzy różnymi aspektami rozważanego
Wykład 1. Statystyka międzynarodowa - wprowadzenie Rynek pracy w Unii Europejskiej
Wykład 1 Statystyka międzynarodowa - wprowadzenie Rynek pracy w Unii Europejskiej Informacje o przedmiocie prowadzący: strona internetowa: wykład ćwiczenia forma zaliczenia: dr Marek Sobolewski www.msobolew.sd.prz.edu.pl
Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia. związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy
Analiza dynami zjawisk Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy się w tej tematyce. Indywidualne indeksy dynamiki Indywidualne
Analiza Zmian w czasie
Statystyka Opisowa z Demografią oraz Biostatystyka Analiza Zmian w czasie Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka
STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2
STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND Finanse i Rachunkowość rok 2 Analiza dynamiki Szereg czasowy: y 1 y 2... y n 1 y n. y t poziom (wartość) badanego zjawiska w
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 2 - statystyka opisowa cd Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 2 1 / 20 MIARY ROZPROSZENIA, Wariancja Wariancją z próby losowej X
Rok akademicki: 2013/2014 Kod: ZIE n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -
Nazwa modułu: Statystyka opisowa i ekonomiczna Rok akademicki: 2013/2014 Kod: ZIE-1-205-n Punkty ECTS: 6 Wydział: Zarządzania Kierunek: Informatyka i Ekonometria Specjalność: - Poziom studiów: Studia I
Dopasowywanie modelu do danych
Tematyka wykładu dopasowanie modelu trendu do danych; wybrane rodzaje modeli trendu i ich właściwości; dopasowanie modeli do danych za pomocą narzędzi wykresów liniowych (wykresów rozrzutu) programu STATISTICA;
Analiza dynamiki zjawisk STATYSTYKA OPISOWA. Dr Alina Gleska. Instytut Matematyki WE PP. 28 września 2018
STATYSTYKA OPISOWA Dr Alina Gleska Instytut Matematyki WE PP 28 września 2018 1 Pojęcie szeregów czasowych i ich składowych SZEREGIEM CZASOWYM nazywamy tablicę, która zawiera ciag wartości cechy uporzadkowanych
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski
Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej
Wykład 2. Internetowe źródła danych międzynarodowych Przygotowanie arkusza danych do analiz
Wykład 2 Internetowe źródła danych międzynarodowych Przygotowanie arkusza danych do analiz Przykładowe źródła danych międzynarodowych 1. Dane demograficzne American Census Bureau (www.census.gov) 2. Dane
Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie
Teoretyczne podstawy analizy indeksowej klasyfikacja indeksów, konstrukcja, zastosowanie Szkolenie dla pracowników Urzędu Statystycznego nt. Wybrane metody statystyczne w analizach makroekonomicznych dr
Nazwa przedmiotu: Informatyczne systemy statystycznej obróbki danych. Informatics systems for the statistical treatment of data Kierunek:
Nazwa przedmiotu: Informatyczne systemy statystycznej obróbki danych I KARTA PRZEDMIOTU CEL PRZEDMIOTU Informatics systems for the statistical treatment of data Kierunek: Forma studiów Informatyka Stacjonarne
Wykład 1: O statystyce i analizie danych
Wykład 1: O statystyce i analizie danych wykładowca: dr Marek Sobolewski konsultacje: poniedziałek 10.30-12.00, czwartek 9.00-10.30 (p. L-400) strona internetowa: www.msobolew.sd.prz.edu.pl prowadzący
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2015/2016
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 015/016 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:
Wykład 3: Statystyki opisowe - miary położenia, miary zmienności, miary asymetrii
Wykład 3: Statystyki opisowe - miary położenia, miary zmienności, miary asymetrii Wprowadzenie W przypadku danych liczbowych do ich charakterystyki można wykorzystać tak zwane STATYSTYKI OPISOWE. Za pomocą
Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006
Modele dynamiczne Paweł Cibis pcibis@o2.pl 27 kwietnia 2006 1 Wyodrębnianie tendencji rozwojowej 2 Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap
Ćwiczenia 13 WAHANIA SEZONOWE
Ćwiczenia 3 WAHANIA SEZONOWE Wyrównanie szeregu czasowego (wyodrębnienie czystego trendu) mechanicznie Zadanie. Badano spożycie owoców i przetworów (yt) (w kg) w latach według kwartałów: kwartał lata 009
Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF
Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF 120 I. Ogólne informacje o przedmiocie Cel przedmiotu: Opanowanie podstaw teoretycznych, poznanie przykładów zastosowań metod statystycznych.
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania
Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)
Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego
Co to jest analiza regresji?
Co to jest analiza regresji? Celem analizy regresji jest badanie związków pomiędzy wieloma zmiennymi niezależnymi (objaśniającymi) a zmienną zależną (objaśnianą), która musi mieć charakter liczbowy. W
A.Światkowski. Wroclaw University of Economics. Working paper
A.Światkowski Wroclaw University of Economics Working paper 1 Planowanie sprzedaży na przykładzie przedsiębiorstwa z branży deweloperskiej Cel pracy: Zaplanowanie sprzedaży spółki na rok 2012 Słowa kluczowe:
Analiza metod prognozowania kursów akcji
Analiza metod prognozowania kursów akcji Izabela Łabuś Wydział InŜynierii Mechanicznej i Informatyki Kierunek informatyka, Rok V Specjalność informatyka ekonomiczna Politechnika Częstochowska izulka184@o2.pl
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ANALIZA SZEREGÓW CZASOWYCH I INDEKSY STATYSTYCZNE
WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ANALIZA SZEREGÓW CZASOWYCH I INDEKSY STATYSTYCZNE INDEKSY STATYSTYCZNE Absolutny przyrost t = y t y t 1 Względny przyrost δ t = t y t Indeks indywidualny jednopodstawowy
7.4 Automatyczne stawianie prognoz
szeregów czasowych za pomocą pakietu SPSS Następnie korzystamy z menu DANE WYBIERZ OBSERWACJE i wybieramy opcję WSZYSTKIE OBSERWACJE (wówczas wszystkie obserwacje są aktywne). Wreszcie wybieramy z menu
Statystyka. Wykład 11. Magdalena Alama-Bućko. 22 maja Magdalena Alama-Bućko Statystyka 22 maja / 41
Statystyka Wykład 11 Magdalena Alama-Bućko 22 maja 2017 Magdalena Alama-Bućko Statystyka 22 maja 2017 1 / 41 Analiza dynamiki zjawisk badamy zmiany poziomu (tzn. wzrosty/spadki) badanego zjawiska w czasie.
Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy)
Wykład 3. Metody opisu danych (statystyki opisowe, tabele liczności, wykresy ramkowe i histogramy) Co na dzisiejszym wykładzie: definicje, sposoby wyznaczania i interpretacja STATYSTYK OPISOWYCH prezentacja
Statystyka. Wykład 13. Magdalena Alama-Bućko. 18 czerwca Magdalena Alama-Bućko Statystyka 18 czerwca / 36
Statystyka Wykład 13 Magdalena Alama-Bućko 18 czerwca 2018 Magdalena Alama-Bućko Statystyka 18 czerwca 2018 1 / 36 Agregatowy (zespołowy) indeks wartości określonego zespołu produktów np. jak zmianiała
Statystyka. Wykład 12. Magdalena Alama-Bućko. 29 maja Magdalena Alama-Bućko Statystyka 29 maja / 47
Statystyka Wykład 12 Magdalena Alama-Bućko 29 maja 2017 Magdalena Alama-Bućko Statystyka 29 maja 2017 1 / 47 Analiza dynamiki zjawisk badamy zmiany poziomu (tzn. wzrosty/spadki) badanego zjawiska w czasie.
SYLABUS. 4.Studia Kierunek studiów/specjalność Poziom kształcenia Forma studiów Ekonomia Studia pierwszego stopnia Studia stacjonarne i niestacjonarne
SYLABUS 1.Nazwa przedmiotu Prognozowanie i symulacje 2.Nazwa jednostki prowadzącej Katedra Metod Ilościowych i Informatyki przedmiot Gospodarczej 3.Kod przedmiotu E/I/A.16 4.Studia Kierunek studiów/specjalność
Arkadiusz Manikowski Zbigniew Tarapata. Prognozowanie i symulacja rozwoju przedsiębiorstw
Arkadiusz Manikowski Zbigniew Tarapata Prognozowanie i symulacja rozwoju przedsiębiorstw Warszawa 2002 Recenzenci doc. dr. inż. Ryszard Mizera skład i Łamanie mgr. inż Ignacy Nyka PROJEKT OKŁADKI GrafComp,
Prognozowanie popytu. mgr inż. Michał Adamczak
Prognozowanie popytu mgr inż. Michał Adamczak Plan prezentacji 1. Definicja prognozy 2. Klasyfikacja prognoz 3. Szereg czasowy 4. Metody prognozowania 4.1. Model naiwny 4.2. Modele średniej arytmetycznej
Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki
Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07 Statystyka dzieli się na trzy części: Przedmiot statystyki -zbieranie danych; -opracowanie i kondensacja danych (analiza danych);
FLESZ. Wszystkie dotychczas wypracowane przez Obserwatorium treści znaleźć można na stronie internetowej:
FLESZ marzec 2018 Obserwatorium Gospodarki i Rynku Pracy Aglomeracji skiej zostało powołane pod koniec 2013 roku. Celem jego działalności jest prowadzenie monitoringu sytuacji społeczno - ekonomicznej
Wprowadzenie do teorii prognozowania
Wprowadzenie do teorii prognozowania I Pojęcia: 1. Prognoza i zmienna prognozowana (przedmiot prognozy). Prognoza punktowa i przedziałowa. 2. Okres prognozy i horyzont prognozy. Prognozy krótkoterminowe
Wykład 10: Elementy statystyki
Wykład 10: Elementy statystyki dr Mariusz Grządziel 0 grudnia 010 Podstawowe pojęcia Biolodzy: -badają pojedyńcze rośliny lub zwierzęta; -chcemy rozszerzyć wnioski na wszystkich przedstawicieli gatunku
Etapy modelowania ekonometrycznego
Etapy modelowania ekonometrycznego jest podstawowym narzędziem badawczym, jakim posługuje się ekonometria. Stanowi on matematyczno-statystyczną formę zapisu prawidłowości statystycznej w zakresie rozkładu,
PRZEWODNIK PO PRZEDMIOCIE. Statystyka opisowa. Zarządzanie. niestacjonarne. I stopnia. dr Agnieszka Strzelecka. ogólnoakademicki.
Politechnika Częstochowska, Wydział Zarządzania PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu Kierunek Forma studiów Poziom kwalifikacji Rok Semestr Jednostka prowadząca Osoba sporządzająca Profil Rodzaj
3. Analiza własności szeregu czasowego i wybór typu modelu
3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej
ANALIZA SPRZEDAŻY: - struktura
KOŁO NAUKOWE CONTROLLINGU UNIWERSYTET ZIELONOGÓRSKI ANALIZA SPRZEDAŻY: - struktura - koncentracja - kompleksowa analiza - dynamika Spis treści Wstęp 3 Analiza struktury 4 Analiza koncentracji 7 Kompleksowa
FLESZ. Wszystkie dotychczas wypracowane przez Obserwatorium treści znaleźć można na stronie internetowej:
FLESZ czerwiec 2018 Obserwatorium Gospodarki i Rynku Pracy Aglomeracji skiej zostało powołane pod koniec 2013 roku. Celem jego działalności jest prowadzenie monitoringu sytuacji społeczno - ekonomicznej
Analiza dynamiki. Sesja Cena akcji 1 42,9 2 41, ,5 5 41, , ,5
Analiza dynamiki Zadanie 1 Dynamikę produkcji samochodów osobowych przez pewną fabrykę w latach 2007-2013 opisuje następujący ciąg indeksów łańcuchowych: 1,1; 1,2; 1,3; 1,4; 0,8; 0,9. a) Jak zmieniała
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2013/2014
Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 013/014 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:
Statystyka opisowa. Wykład I. Elementy statystyki opisowej
Statystyka opisowa. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Elementy statystyku opisowej 1 Elementy statystyku opisowej 2 3 Elementy statystyku opisowej Definicja Statystyka jest to nauka o
INFORMATYKA W SELEKCJI
INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI - zagadnienia 1. Dane w pracy hodowlanej praca z dużym zbiorem danych (Excel) 2. Podstawy pracy z relacyjną bazą danych w programie MS Access 3. Systemy statystyczne
DANE STATYSTYKI PUBLICZNEJ I OBLICZENIA WSKAŹNIKÓW CHARAKTERYZUJĄCYCH RYNEK PRACY ORAZ GOSPODARKĘ AGLOMERACJI POZNAŃSKIEJ
DANE STATYSTYKI PUBLICZNEJ I OBLICZENIA WSKAŹNIKÓW CHARAKTERYZUJĄCYCH RYNEK PRACY ORAZ GOSPODARKĘ AGLOMERACJI POZNAŃSKIEJ OBSERWATORIUM GOSPODARKI I RYNKU PRACY AGLOMERACJI POZNAŃSKIEJ STOPA BEZROBOCIA
Wykład 3: Prezentacja danych statystycznych
Wykład 3: Prezentacja danych statystycznych Dobór metody prezentacji danych Dobór metody prezentacji danych zależy od: charakteru danych statystycznych (inne metody wybierzemy dla danych przekrojowych,
Statystyka. Wykład 13. Magdalena Alama-Bućko. 12 czerwca Magdalena Alama-Bućko Statystyka 12 czerwca / 30
Statystyka Wykład 13 Magdalena Alama-Bućko 12 czerwca 2017 Magdalena Alama-Bućko Statystyka 12 czerwca 2017 1 / 30 Co wpływa na zmiany wartości danej cechy w czasie? W najbardziej ogólnym przypadku, na
Analiza autokorelacji
Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.
Wykład 1: O statystyce i analizie danych. Arkusz danych w programie STATISTICA
Wykład 1: O statystyce i analizie danych. Arkusz danych w programie STATISTICA Podstawowe informacje wykładowca: dr Marek Sobolewski konsultacje: środa 8.40-10.10, czwartek 8.40-10.10 (p. L-400) strona
Agata Boratyńska. WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne.
1 Agata Boratyńska WYKŁAD 1. Wstępna analiza danych, charakterystyki opisowe. Indeksy statystyczne. Agata Boratyńska Wykłady ze statystyki 2 Literatura J. Koronacki i J. Mielniczuk Statystyka WNT 2004
Przedmiot statystyki. Graficzne przedstawienie danych.
Przedmiot statystyki. Graficzne przedstawienie danych. dr Mariusz Grządziel 23 lutego 2009 Przedmiot statystyki Statystyka dzieli się na trzy części: -zbieranie danych; -opracowanie i kondensacja danych
DANE STATYSTYKI PUBLICZNEJ I OBLICZENIA WSKAŹNIKÓW CHARAKTERYZUJĄCYCH RYNEK PRACY ORAZ GOSPODARKĘ AGLOMERACJI POZNAŃSKIEJ
DANE STATYSTYKI PUBLICZNEJ I OBLICZENIA WSKAŹNIKÓW CHARAKTERYZUJĄCYCH RYNEK PRACY ORAZ GOSPODARKĘ AGLOMERACJI POZNAŃSKIEJ OBSERWATORIUM GOSPODARKI I RYNKU PRACY AGLOMERACJI POZNAŃSKIEJ STOPA BEZROBOCIA
Nabycie umiejętności wyznaczania i interpretowania metod opisu struktury zbiorowości statystycznej
Kod przedmiotu: PLPILA02-IEEKO-L-3p7-2012 Pozycja planu: B7 INFORMACJE O PRZEDMIOCIE A. Podstawowe dane 1 Nazwa przedmiotu tatystyka opisowa 2 Rodzaj przedmiotu Podstawowy/Obowiązkowy 2 Kierunek studiów
Sposoby prezentacji problemów w statystyce
S t r o n a 1 Dr Anna Rybak Instytut Informatyki Uniwersytet w Białymstoku Sposoby prezentacji problemów w statystyce Wprowadzenie W artykule zostaną zaprezentowane podstawowe zagadnienia z zakresu statystyki
Analiza współzależności zjawisk
Analiza współzależności zjawisk Informacje ogólne Jednostki tworzące zbiorowość statystyczną charakteryzowane są zazwyczaj za pomocą wielu cech zmiennych, które nierzadko pozostają ze sobą w pewnym związku.
Matematyka dyskretna. Andrzej Łachwa, UJ, /10
Matematyka dyskretna Andrzej Łachwa, UJ, 2018 andrzej.lachwa@uj.edu.pl 10/10 Podziały i liczby Stirlinga Liczba Stirlinga dla cykli (często nazywana liczbą Stirlinga pierwszego rodzaju) to liczba permutacji
Rok akademicki: 2012/2013 Kod: JFM s Punkty ECTS: 3. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne
Nazwa modułu: Statystyka inżynierska Rok akademicki: 2012/2013 Kod: JFM-1-210-s Punkty ECTS: 3 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Fizyka Medyczna Specjalność: Poziom studiów: Studia I stopnia
Stochastyczne Metody Analizy Danych. PROJEKT: Analiza kluczowych parametrów turbin wiatrowych
PROJEKT: Analiza kluczowych parametrów turbin wiatrowych Projekt jest wykonywany z wykorzystaniem pakietu statystycznego STATISTICA. Praca odbywa się w grupach 2-3 osobowych. Aby zaliczyć projekt, należy
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie
FLESZ. Wszystkie dotychczas wypracowane przez Obserwatorium treści znaleźć można na stronie internetowej:
FLESZ marzec 2019 Obserwatorium Gospodarki i Rynku Pracy Aglomeracji skiej zostało powołane pod koniec 2013 roku. Celem jego działalności jest prowadzenie monitoringu sytuacji społeczno - ekonomicznej
FLESZ LUTY Wszystkie dotychczas wypracowane przez Obserwatorium treści znaleźć można na stronie internetowej:
FLESZ LUTY 2019 Obserwatorium Gospodarki i Rynku Pracy Aglomeracji skiej zostało powołane pod koniec 2013 roku. Celem jego działalności jest prowadzenie monitoringu sytuacji społeczno - ekonomicznej na
POJĘCIA WSTĘPNE. STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych.
[1] POJĘCIA WSTĘPNE STATYSTYKA - nauka traktująca o metodach ilościowych badania prawidłowości zjawisk (procesów) masowych. BADANIE STATYSTYCZNE - ogół prac mających na celu poznanie struktury określonej
DANE STATYSTYKI PUBLICZNEJ I OBLICZENIA WSKAŹNIKÓW CHARAKTERYZUJĄCYCH RYNEK PRACY ORAZ GOSPODARKĘ AGLOMERACJI POZNAŃSKIEJ
DANE STATYSTYKI PUBLICZNEJ I OBLICZENIA WSKAŹNIKÓW CHARAKTERYZUJĄCYCH RYNEK PRACY ORAZ GOSPODARKĘ AGLOMERACJI POZNAŃSKIEJ OBSERWATORIUM GOSPODARKI I RYNKU PRACY AGLOMERACJI POZNAŃSKIEJ STOPA BEZROBOCIA
Regresja linearyzowalna
1 z 5 2007-05-09 23:22 Medycyna Praktyczna - portal dla lekarzy Regresja linearyzowalna mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie Data utworzenia:
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl
Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący
Analiza zależności liniowych
Narzędzie do ustalenia, które zmienne są ważne dla Inwestora Analiza zależności liniowych Identyfikuje siłę i kierunek powiązania pomiędzy zmiennymi Umożliwia wybór zmiennych wpływających na giełdę Ustala
1 n. s x x x x. Podstawowe miary rozproszenia: Wariancja z populacji: Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel:
Wariancja z populacji: Podstawowe miary rozproszenia: 1 1 s x x x x k 2 2 k 2 2 i i n i1 n i1 Czasem stosuje się też inny wzór na wariancję z próby, tak policzy Excel: 1 k 2 s xi x n 1 i1 2 Przykład 38,
Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia
Doświadczenie: Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia Cele doświadczenia Celem doświadczenia jest zbadanie zależności drogi przebytej w ruchu przyspieszonym od czasu dla kuli bilardowej
Zad. 1. Wartość pożyczki ( w tys. zł) kształtowała się następująco w pewnym banku:
Zad. 1. Wartość pożyczki ( w tys. zł) kształtowała się następująco w pewnym banku: Kwota Liczba pożyczek pożyczki 0 4 0 4 8 8 12 40 12 16 16 Zbadać asymetrię rozkładu kwoty pożyczki w tym banku. Wynik
Barometr Finansów Banków (BaFiB) propozycja badania koniunktury w sektorze bankowym
Jacek Batóg Uniwersytet Szczeciński Barometr Finansów Banków (BaFiB) propozycja badania koniunktury w sektorze bankowym Jednym z ważniejszych elementów każdej gospodarki jest system bankowy. Znaczenie
Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego
Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Dorota Witkowska Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wprowadzenie Sztuczne
O PEWNEJ ANOMALII W WYCENIE INSTRUMENTÓW DŁUŻNYCH
O PEWNEJ ANOMALII W WYCENIE INSTRUMENTÓW DŁUŻNYCH A. KARPIO KATEDRA EKONOMETRII I STATYSTYKI SGGW W WARSZAWIE Krzywa dochodowości Obligacja jest papierem wartościowym, którego wycena opiera się na oczekiwanych
PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK
1 PROGNOZOWANIE I SYMULACJE 2 http://www.outcome-seo.pl/excel1.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodatek Solver jest dostępny w menu Narzędzia. Jeżeli Solver nie jest
Przykład 2. Stopa bezrobocia
Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w
Analiza szeregów czasowych
Statystyka Wykład 5. Analiza szeregów czasowych michal.trzesiok@ue.katowice.pl Uniwersytet Ekonomiczny w Katowicach Katedra Analiz Gospodarczych i Finansowych 9 listopada 2015 r. Plan Szeregi czasowe wprowadzenie
Wykład ze statystyki. Maciej Wolny
Wykład ze statystyki Maciej Wolny T1: Zajęcia organizacyjne Agenda 1. Program wykładu 2. Cel zajęć 3. Nabyte umiejętności 4. Literatura 5. Warunki zaliczenia Program wykładu T1: Zajęcia organizacyjne T2:
Statystyki opisowe i szeregi rozdzielcze
Statystyki opisowe i szeregi rozdzielcze - ćwiczenia ĆWICZENIA Piotr Ciskowski ramka-wąsy przykład 1. krwinki czerwone Stanisz W eksperymencie farmakologicznym analizowano oddziaływanie pewnego preparatu
Praktyczny Excel. Wykresy i grafika. w Excelu krok po kroku
Praktyczny Excel Wykresy i grafika w Excelu krok po kroku 5 1 NUMER PRAWNICZY przygotowany przez + OCHRONA DANYCH OSOBOWYCH profesjonalnie i kompleksowo 1 2 + GRATIS 20% GRATIS 30%, tel. 22 518 29 29,
Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski
Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem
Ćwiczenie 5 PROGNOZOWANIE
Ćwiczenie 5 PROGNOZOWANIE Prognozowanie jest procesem przewidywania przyszłych zdarzeń. Obszary zastosowań prognozowania obejmują np. analizę danych giełdowych, przewidywanie zapotrzebowania na pracowników,
Statystyka. Wykład 11. Magdalena Alama-Bućko. 21 maja Magdalena Alama-Bućko Statystyka 21 maja / 31
Statystyka Wykład 11 Magdalena Alama-Bućko 21 maja 2018 Magdalena Alama-Bućko Statystyka 21 maja 2018 1 / 31 Tematyka zajęć: Wprowadzenie do statystyki. Analiza struktury zbiorowości miary położenia miary
ROZDZIAŁ 7 WPŁYW SZOKÓW GOSPODARCZYCH NA RYNEK PRACY W STREFIE EURO
Samer Masri ROZDZIAŁ 7 WPŁYW SZOKÓW GOSPODARCZYCH NA RYNEK PRACY W STREFIE EURO Najbardziej rewolucyjnym aspektem ogólnej teorii Keynesa 1 było jego jasne i niedwuznaczne przesłanie, że w odniesieniu do
FLESZ PAŹDZIERNIK 2018
FLESZ PAŹDZIERNIK 2018 Obserwatorium Gospodarki i Rynku Pracy Aglomeracji skiej zostało powołane pod koniec 2013 roku. Celem jego działalności jest prowadzenie monitoringu sytuacji społeczno - ekonomicznej
Generacja źródeł wiatrowych cz.2
Generacja źródeł wiatrowych cz.2 Autor: Adam Klepacki, ENERGOPROJEKT -KATOWICE S.A. Średnioroczne prawdopodobieństwa wystąpienia poszczególnych obciążeń źródeł wiatrowych w Niemczech dla siedmiu lat kształtują
Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych
Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania
Wykład 6. Badanie dynamiki zjawisk
Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy
REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ. Analiza regresji i korelacji
Statystyka i opracowanie danych Ćwiczenia 5 Izabela Olejarczyk - Wożeńska AGH, WIMiIP, KISIM REGRESJA I KORELACJA MODEL REGRESJI LINIOWEJ MODEL REGRESJI WIELORAKIEJ MODEL REGRESJI LINIOWEJ Analiza regresji
Statystyka opisowa SYLABUS A. Informacje ogólne
Statystyka opisowa SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok
FLESZ WRZESIEŃ Wszystkie dotychczas wypracowane przez Obserwatorium treści znaleźć można na stronie internetowej:
FLESZ WRZESIEŃ 2018 Obserwatorium Gospodarki i Rynku Pracy Aglomeracji skiej zostało powołane pod koniec 2013 roku. Celem jego działalności jest prowadzenie monitoringu sytuacji społeczno - ekonomicznej