Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska

Wielkość: px
Rozpocząć pokaz od strony:

Download "Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska"

Transkrypt

1 Fizyka powierzchni 7 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska

2 Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni ciał stałych Termodynamika równowagowa i statystyczna Adsorpcja, nukleacja i wzrost Fonony powierzchniowe Własności elektronowe Techniki badania powierzchni techniki desorpcji quasi-elastyczne rozpraszanie (LEED, RHEED) nieelastyczne rozpraszanie (AES) mikroskopia elektronowa (SEM) skaningowa tunelowa mikroskopia (STM)

3 Techniki badania powierzchni Hans Luth, Solid Surfaces, Interfaces and Thin Films, Springer-Verlag Berlin Heidelberg, M-C. Desjonqeres and D. Spanjaard, Concepts in surface physics, Springer, Anna Szaynok, Stanisław Kuźmiński, Podstawy fizyki powierzchni półprzewodników, Wydawnictwa Naukowo-Techniczne, Warszawa 2000.

4 - silne oddziaływanie głównie z elektronami walencyjnymi duża komplikacja w opisie zjawiska teoria dynamiczna (dynamic theory) - przybliżenie pojedyncze procesy rozpraszania teoria kinematyczna (kinematic theory) Rozpraszanie Eksperymenty polegające na rozpraszaniu są źródłem wielu informacji o badanej powierzchni i warstwie przypowierzchniowej tak więc zrozumienie procesów odpowiedzialnych za rozpraszanie staje się bardzo istotne. Rozpraszanie elastyczne informacje nt. ustawienia atomów w warstwach przypowierzchniowych. Rozpraszanie nieelastyczne (energia jest transportowana do lub z warstw przypowierzchniowych) informacje o możliwych wzbudzeniach na powierzchni (międzypowierzchni), tak elektronowych jak i fononowych. Próbkowanie atomy, jony, cząsteczki i elektrony o małej energii. tylko atomy na powierzchni penetracja na kilka A

5 Teoria kinetyczna Opisuje tak zjawiska elastyczna jak i nieelastyczne. Nie wyjaśnia, np., intensywności otrzymanego widma LEED. Ograniczmy się do próbkowania elektronami. Low Energy Electron Diffraction High Energy Electron Diffraction Reflection HEED Inelastic Reflected LEED Auger Electron Spectroscopy Electron Induced Ion Desorption Electron Stimulated Surface Mass Spect. Electron Induced Desorption Surface Desorbed Molecular Spectroscopy Characteristic Isochromat Spectroscopy Appearance Potential Spectroscopy

6 Teoria kinetyczna

7 Teoria kinetyczna Dyfrakcja na powierzchni idealnej 1 atom/kom. elementarną - każda cząstka (elektron) rozpraszana jest przez 1 atom - interferują cząstki rozproszone na dwóch atomach odległych o - warunek interferencji konstruktywnej - doprowadza do warunku - składową k z (k) dostajemy z zasady zachowania energii rzuty na powierzchnię wektor powierzchniowej sieci odwrotnej

8 Teoria kinetyczna Dyfrakcja na powierzchni idealnej Każdej ugiętej fali można przypisać odpowiednią wartość. Jeśli jest rzeczywisty (dla skończonej liczby ), jest falą płaską. Jeśli jest urojony będzie zanikać. I tak ogólne rozwiązanie będzie postaci - co daje wkład w postaci punktów w obrazie dyfrakcyjnym

9 Teoria kinetyczna Dyfrakcja na powierzchni idealnej - konstrukcja Ewalda - punkty na sferze o promieniu OI spełniają zasadę zachowania energii - węzły sieci odwrotnej > pręty (rods) - punkty przecięcia odpowiadają możliwym wartościom wektora k

10 Teoria kinetyczna Dyfrakcja na powierzchni idealnej - konstrukcja Ewalda - wzajemne odległości pomiędzy punktami i ich symetria dają informacje o strukturze powierzchni

11 Konstrukcja Ewalda Teoria kinetyczna Wektorowe równanie Lauego pozwala na prostą, geometryczną interpretację warunków dyfrakcji zwaną konstrukcją Ewalda. Jeżeli początki wektorów wiązek umieścimy w jednym punkcie (np. punkt padania promieniowania na kryształ), to końce wektorów falowych wszystkich wiązek ugiętych będą leżały na powierzchni kuli o promieniu 1/ λ zwanej sferą Ewalda. Gdy na sferę nałożymy sieć odwrotną tak, aby jej początek znajdował się w punkcie przebicia sfery przez koniec wektora wiązki padającej, to dyfrakcja zajdzie wówczas, gdy jakiś węzeł sieci odwrotnej znajdzie się na sferze.

12 Teoria kinetyczna Dyfrakcja na powierzchni idealnej - uogólniając warunek Laue go na przypadki, gdy na komórkę przypada więcej niż jeden atom lub/i gdy występuje wielokrotne rozpraszanie, to - obraz dyfrakcyjny może nie zależeć od ilości atomów w komórce elementarnej (ew. różnice w intensywności poszczególnych punktów) - tak więc nie możemy określić jednoznacznie położeń atomowych - jest to możliwe jedynie poprzez porównanie intensywności punktów zmierzonych i obliczonych na podstawie określonych położeń atomów w komórce elementarnej

13 Teoria kinetyczna Wpływ kolejnych warstw atomowych

14 Teoria kinetyczna Wpływ kolejnych warstw atomowych - przesunięcie maksimów elektron wewnątrz materiału doświadcza dod. potencjału (fala mu odpowiadająca ma inną długość) - obecność dodatkowych pików wymaga analizy na podstawie teorii dynamicznej

15 Teoria kinetyczna Dyfrakcja na płaszczyznach wicynalnych (111) x (001)] FCC after M-C. Desjonqeres and D. Spanjaard - obraz dyfrakcyjny powinien być podobny do obrazu uzyskanego z powierzchni z terasami - komórka elementarna powierzchni wicynalnej jest dużo większa niż w przypadku teras i przeciwnie w przypadku sieci odwrotnej - tak więc niektóre z punktów w obrazie dyfrakcyjnym powinny stopniowo zanikać ze wzrostem szerokości terasy

16 Teoria kinetyczna Dyfrakcja na płaszczyznach wicynalnych - wiązka padająca pada w kierunku normalnym do terasy a wiązki ugięte są obserwowane w płaszczyźnie prostopadłej do krawędzi stopnia pod kątem j w stosunku do normalnej do powierzchni terasy - rozważmy rozpraszanie tylko od pierwszej warstwy atomowej zakładając nieskończoną liczbę stopni - uzyskana amplituda obrazu dyfrakcyjnego jest sumą amplitud uzyskanych z rozproszeń na poszczególnych atomach N + 1 liczbą rzędów atomów na terasie, Q przesunięcie fazowe pomiędzy wiązkami rozproszonymi przez dwa atomy w sąsiednich rzędach terasy, Q sąsiednie terasy

17 Teoria kinetyczna Dyfrakcja na płaszczyznach wicynalnych after M-C. Desjonqeres and D. Spanjaard - maksima odpowiadają nieskończonej powierzchni o orientacji zgodnej z orientacją teras

18 - z rozszczepienia można wyznaczyć szerokość terasy after M-C. Desjonqeres and D. Spanjaard Teoria kinetyczna Dyfrakcja na płaszczyznach wicynalnych obraz LEED powierzchni Ag 5(100) x (110) (lub (510)

19 Struktura diamentu (111) Dyfrakcja elektronów

20 Dyfrakcja elektronów - Hipoteza de Broglie a została potwierdzona w Bell Labs w 1927, kiedy Clinton Davisson and Lester Germer skierowali wiązkę elektronów o niskiej energii na krystaliczny nikiel i zaobserwowali kątową zależność intensywności elektronów wstecznie rozproszonych widmo dyfrakcyjne.

21 LEED - Low Energy Electron Diffraction (LEED) dyfrakcja elektronów o niskiej energii. - wymaga UHV, - detekcja obecnie CCD, - odpowiednie przygotowanie powierzchni. - Ze względu na powyższe technika rozwijana od lat 60-tych. - Teoria kinematyczna niewystarczająca nie daje informacji o strukturze powierzchni, wiązaniach i adsorption sites. - Dynamiczna teoria dyfrakcji elektronów (wielokrotne rozpraszanie) opracowana w latach 60-tych dokładne wyniki eksperymentalne.

22 Elementy aparatury LEED: - działo elektronowe, LEED - hemisferyczny ekran fluorescencyjny do bezpośredniej obserwacji obrazu dyfrakcyjnego, - sputtering gun czyszczenie powierzchni, - system AES określanie czystości powierzchni.

23 Działo elektronowe LEED - z katody, pod napięciem V, emitowane są monochromatyczne (o tej samej energii) elektrony - elektrony są przyspieszane i skupiane do wiązki o średnicy 0.1 to 0.5 mm Detektor koncentrycznie umieszczonych siatek (do wyłapywania rozproszonych nieelastycznie elektronów) i ekran fosforowy (lub inny detektor),

24 Czułość LEED - wynika z silnego oddziaływania elektronów o niskiej energii i atomami ciała stałego, - w czasie penetracji kryształu, elektrony pierwotne, tracą energię kinetyczną (nieelastyczne procesy jak fonony, plazmony i wzbudzenia elektronowe) - zanik intensywności wiązki pierwotnej w kierunku propagacji, można zapisać jako: - gdzie d jest głębokością wiązki w materiale i jest to nieelastyczna średnia droga swobodna (odległość jaką elektron przebywa tracąc intensywność o czynnik 1/e. - rozpraszanie (i ) zależy od energii i nie zależy od materiału - dla elektronów o niskiej energii ( ev) nieelastyczna średnia droga swobodna ma wartość 5-10 Å, - tylko kilka warstw atomowych jest próbkowanych.

25 Superstruktury LEED - sieć kubiczna (100) i jej obraz LEED - superstruktura (2x1) na poprzedniej dodatkowe plamki w obrazie dykrakcyjnym

26 LEED Superstruktury (4x2) c(4x2)

27 LEED Superstruktury czysty GaAs (001) otrzymany różnymi metodami Z dyfraktogramów: - symetria komórki elementarnej - rozmiar i kształt pow. kom. elem. - ostrość punktów -> wielkość domen - intensywność tła -> koncentracja defektów punktowych

28 LEED Superstruktury nie zgadza się nie ma rekonstrukcji 2x2

29 LEED Superstruktury dwie domeny 2x1

30 Domeny LEED - złożenie ortogonalnych domen (2x1) i (1x2) na sieci kwadratowej, - symetria w przestrzeni rzeczywistej jest dwukrotna a obraz dyfrakcyjny wykazuje symetrię czterokrotną u (001)

31 LEED

32 LEED Domeny Au (001)

33 20nm Fe na MgO(001) LEED

34 LEED Przykłady - symulacja powierzchni: - symulacja LEED (program)

35 Teoria dynamiczna LEED - Zwykły obraz dyfrakcyjny LEED daje informacje jakościowe o periodyczności powierzchni (rozmiarze powierzchniowej komórki elementarnej). - Nie dostajemy informacji o ułożeniu atomów, czy też rekonstrukcji powierzchni. - Efekty związane z wielokrotnym rozpraszaniem można wytłumaczyć korzystając z teorii dynamicznej badając zależność intensywności plamek dyfrakcyjnych w funkcji energii padających elektronów widma I-V.

36 Teoria dynamiczna LEED Wykorzystywane są dwa podejścia: 1. rozwiązanie r. Schroedingera dla pół-nieskończonej sieci używając funkcji Blocha spełniających warunki graniczne zszywa się funkcje Blocha z funkcjami falowymi padających i odbitych elektronów 2. tylko 2D okresowość powierzchni jest brana pod uwagę uwzględniany jest wpływ kolejnych warstw atomowych na rozwiązania r. Schroedingera

37 Teoria dynamiczna LEED

38 Teoria dynamiczna LEED

39 Teoria dynamiczna LEED Policzone intensywności dyfrakcyjne dla: pojedynczego atomu dwóch atomów odległych o a N atomów odległych o a kilku grup po N atomów odległych o a kilku różnych grup atomów odległych o a N atomów rozmieszczonych losowo w 2N miejscach odległych o a

40 Teoria dynamiczna LEED - Miernikiem zgodności pomiędzy eksperymentem a obliczeniami jest tzw. współczynnik wiarygodności R (reliability- lub R- factor). - Najczęściej używana jest definicja Pendry ego. p - dla R p < 0.2 dobra zgodność, - dla R p ok 0.3 średnia zgodność, - dla R p pow 0.5 mała zgodność

41 Teoria dynamiczna LEED

42 Teoria dynamiczna LEED Al (111)

43 LEED

44 RHEED Reflection High-Energy Electron Diffraction

45 RHEED Reflection High-Energy Electron Diffraction - podobnie jak w LEED penetracja kilku warstw atomowych - ze względu na większą energię elektronów promień sfery Ewalda jest dużo większy - zamiast dobrze zlokalizowanych maksimów we wzorze dyfrakcyjnym zwykle dostajemy smugi

46 RHEED E = 15 kev kierunek [112] czysty Si(111) - superstruktura (7 7) Ag ML Ag - 3 ML

47 RHEED - badana powierzchnia powinna być bardzo płaska - nierówności mogą zasłaniać część powierzchni - np. wyspy mogą przesłaniać wiązkę i elektrony mogą ulegać zwykłej (3D) dyfrakcji można obserwować wzrost warstw

48 RHEED

49 RHEED

50 - zwykle RHEED

Fizyka powierzchni 6-7/7. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Fizyka powierzchni 6-7/7. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Fizyka powierzchni 6-7/7 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni ciał stałych Termodynamika równowagowa i

Bardziej szczegółowo

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Fizyka powierzchni 5 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni

Bardziej szczegółowo

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Fizyka powierzchni 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni

Bardziej szczegółowo

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Fizyka powierzchni 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni

Bardziej szczegółowo

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Fizyka powierzchni 9 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni

Bardziej szczegółowo

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Fizyka powierzchni 1 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni

Bardziej szczegółowo

Jak badać strukturę powierzchni?

Jak badać strukturę powierzchni? Jak badać strukturę powierzchni? Wykład - 12 15 Anim - ten kod oznacza, że na stronie znajdują się animacje niewidoczne w pliku pdf. Aby oglądnąć te animacje skopiuj zbiór z pokazem PowerPoint Z. Postawa,

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach. Dyfrakcja na kryształach

S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach. Dyfrakcja na kryształach S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach Dyfrakcja na kryształach Warunki dyfrakcji źródło: Ch. Kittel Wstęp do fizyki..., rozdz. 2, rys. 6, str. 49 Konstrukcja Ewalda

Bardziej szczegółowo

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X

Promieniowanie X. Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Promieniowanie X Jak powstaje promieniowanie rentgenowskie Budowa lampy rentgenowskiej Widmo ciągłe i charakterystyczne promieniowania X Lampa rentgenowska Lampa rentgenowska Promieniowanie rentgenowskie

Bardziej szczegółowo

Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy)

Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Oddziaływanie elektronów ze stałą, krystaliczną próbką wstecznie rozproszone elektrony elektrony pierwotne

Bardziej szczegółowo

Krystalografia. Dyfrakcja

Krystalografia. Dyfrakcja Krystalografia Dyfrakcja Podstawowe zagadnienia Rodzaje promieniowania używane w dyfrakcyjnych metodach badań struktur krystalicznych, ich źródła Fizyczne podstawy i warunki dyfrakcji Równania dyfrakcji:

Bardziej szczegółowo

Światło fala, czy strumień cząstek?

Światło fala, czy strumień cząstek? 1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie

Bardziej szczegółowo

Rentgenografia - teorie dyfrakcji

Rentgenografia - teorie dyfrakcji Rentgenografia - teorie dyfrakcji widmo promieniowania rentgenowskiego Widmo emisyjne promieniowania rentgenowskiego: -promieniowanie charakterystyczne -promieniowanie ciągłe (białe) Efekt naświetlenia

Bardziej szczegółowo

Zaburzenia periodyczności sieci krystalicznej

Zaburzenia periodyczności sieci krystalicznej Zaburzenia periodyczności sieci krystalicznej Defekty liniowe dyslokacja krawędziowa dyslokacja śrubowa dyslokacja mieszana Defekty punktowe obcy atom w węźle luka w sieci (defekt Schottky ego) obcy atom

Bardziej szczegółowo

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Fizyka powierzchni 6 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni

Bardziej szczegółowo

Podstawy fizyki wykład 2

Podstawy fizyki wykład 2 D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,

Bardziej szczegółowo

Światło ma podwójną naturę:

Światło ma podwójną naturę: Światło ma podwójną naturę: przejawia własności fal i cząstek W. C. Roentgen ( Nobel 1901) Istnieje ciągłe przejście pomiędzy tymi własnościami wzdłuż spektrum fal elektromagnetycznych Dla niskich częstości

Bardziej szczegółowo

Dyfrakcja wysokoenergetycznych elektronów RHEED

Dyfrakcja wysokoenergetycznych elektronów RHEED Dyfrakcja wysokoenergetycznych elektronów RHEED Ryszard Zdyb Cel ćwiczenia Wyznaczenie stałej sieci monokryształu krzemu. Poznanie powierzchniowo czułej techniki dyfrakcyjnej odbiciowej dyfrakcji wysokoenergetycznych

Bardziej szczegółowo

VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale.

VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. VII. CZĄSTKI I FALE VII.1. POSTULAT DE BROGLIE'A (1924) De Broglie wysunął postulat fal materii tzn. małym cząstkom przypisał fale. Światło wykazuje zjawisko dyfrakcyjne. Rys.VII.1.Światło padające na

Bardziej szczegółowo

ostawa. Fizyka powierzchni i nanostruktury 4

ostawa. Fizyka powierzchni i nanostruktury 4 Obrazy dyfrakcyjne elektronów Jak badać strukturę powierzchni? Własności: Dyfrakcja elektronowa cd. Dyfrakcja zachowuje symetrię. Duże odległości w obrazie dyfrakcyjnym oznaczają małe odległości na powierzchni.

Bardziej szczegółowo

Wykład VI. Teoria pasmowa ciał stałych

Wykład VI. Teoria pasmowa ciał stałych Wykład VI Teoria pasmowa ciał stałych Energia elektronu (ev) Powstawanie pasm w krysztale sodu pasmo walencyjne (zapełnione częściowo) Konfiguracja w izolowanym atomie Na: 1s 2 2s 2 2p 6 3s 1 Ne Położenie

Bardziej szczegółowo

Absorpcja związana z defektami kryształu

Absorpcja związana z defektami kryształu W rzeczywistych materiałach sieć krystaliczna nie jest idealna występują różnego rodzaju defekty. Podział najważniejszych defektów ze względu na właściwości optyczne: - inny atom w węźle sieci: C A atom

Bardziej szczegółowo

Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj

Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj Repeta z wykładu nr 3 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła

Fizyka kwantowa. promieniowanie termiczne zjawisko fotoelektryczne. efekt Comptona dualizm korpuskularno-falowy. kwantyzacja światła W- (Jaroszewicz) 19 slajdów Na podstawie prezentacji prof. J. Rutkowskiego Fizyka kwantowa promieniowanie termiczne zjawisko fotoelektryczne kwantyzacja światła efekt Comptona dualizm korpuskularno-falowy

Bardziej szczegółowo

Wykład III. Teoria pasmowa ciał stałych

Wykład III. Teoria pasmowa ciał stałych Wykład III Teoria pasmowa ciał stałych Energia elektronu (ev) Powstawanie pasm w krysztale sodu pasmo walencyjne (zapełnione częściowo) Konfiguracja w izolowanym atomie Na: 1s 2 2s 2 2p 6 3s 1 Ne Położenie

Bardziej szczegółowo

Rys. 1 Interferencja dwóch fal sferycznych w punkcie P.

Rys. 1 Interferencja dwóch fal sferycznych w punkcie P. Ćwiczenie 4 Doświadczenie interferencyjne Younga Wprowadzenie teoretyczne Charakterystyczną cechą fal jest ich zdolność do interferencji. Światło jako fala elektromagnetyczna również może interferować.

Bardziej szczegółowo

PODSTAWY MECHANIKI KWANTOWEJ

PODSTAWY MECHANIKI KWANTOWEJ PODSTAWY MECHANIKI KWANTOWEJ De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie

Bardziej szczegółowo

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka.

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka. Fale materii 194- Louis de Broglie teoria fal materii, 199- nagroda Nobla Hipoteza de Broglie głosi, że dwoiste korpuskularno falowe zachowanie jest cechą nie tylko promieniowania, lecz również materii.

Bardziej szczegółowo

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub

Bardziej szczegółowo

Rozpraszanie i dyfrakcja promieniowania X

Rozpraszanie i dyfrakcja promieniowania X Rozpraszanie i dyfrakcja promieniowania X Przypomnienie rozpraszanie Thomsona na swobodnym elektronie Padająca fala płaska Emitowana jest fala kulista Klasyczny promień elektronu Będziemy używać przybliżenia

Bardziej szczegółowo

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Fizyka powierzchni 10 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Defekty - Mając na myśli rzeczywistą powierzchnię nie można w rozważaniach

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali Prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład dla studentów fizyki Rok akademicki 2017/18 (30 godz.) Wykład 1 Plan wykładu Struktura periodyczna kryształów, sieć odwrotna Struktura

Bardziej szczegółowo

Ciała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami.

Ciała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. Ciała stałe Ciała krystaliczne Ciała amorficzne Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. r T = Kryształy rosną przez regularne powtarzanie się identycznych

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 2 v.16 Sieci płaskie i struktura powierzchni 1 Typy sieci dwuwymiarowych (płaskich) Przecinając monokryształ wzdłuż jednej z płaszczyzn

Bardziej szczegółowo

III. EFEKT COMPTONA (1923)

III. EFEKT COMPTONA (1923) III. EFEKT COMPTONA (1923) Zjawisko zmiany długości fali promieniowania roentgenowskiego rozpraszanego na swobodnych elektronach. Zjawisko to stoi u podstaw mechaniki kwantowej. III.1. EFEKT COMPTONA Rys.III.1.

Bardziej szczegółowo

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny

Bardziej szczegółowo

Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu

Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu J1 Pomiar energii wiązania deuteronu Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu Przygotowanie: 1) Model deuteronu. Własności deuteronu jako źródło informacji o siłach jądrowych [4] ) Oddziaływanie

Bardziej szczegółowo

Podstawy fizyki wykład 8

Podstawy fizyki wykład 8 Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.

Bardziej szczegółowo

Przejścia promieniste

Przejścia promieniste Przejście promieniste proces rekombinacji elektronu i dziury (przejście ze stanu o większej energii do stanu o energii mniejszej), w wyniku którego następuje emisja promieniowania. E Długość wyemitowanej

Bardziej szczegółowo

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski Plan na dzisiaj Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 półprzewodniki

Bardziej szczegółowo

Wykład 17: Optyka falowa cz.1.

Wykład 17: Optyka falowa cz.1. Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza

Bardziej szczegółowo

Krystalografia. Dyfrakcja na monokryształach. Analiza dyfraktogramów

Krystalografia. Dyfrakcja na monokryształach. Analiza dyfraktogramów Krystalografia Dyfrakcja na monokryształach. Analiza dyfraktogramów Wyznaczanie struktury Pomiar obrazów dyfrakcyjnych Stworzenie modelu niezdeformowanej sieci odwrotnej refleksów Wybór komórki elementarnej

Bardziej szczegółowo

Eugeniusz Łągiewka. Podstawy dyfrakcji promieni rentgenowskich, elektronów i neutronów

Eugeniusz Łągiewka. Podstawy dyfrakcji promieni rentgenowskich, elektronów i neutronów Eugeniusz Łągiewka Podstawy dyfrakcji promieni rentgenowskich, elektronów i neutronów KATOWICE 2015 Podstawy dyfrakcji promieni rentgenowskich, elektronów i neutronów Rodzinie i Przyjaciołom 1 2 NR 159

Bardziej szczegółowo

Metody badań monokryształów metoda Lauego

Metody badań monokryształów metoda Lauego Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40 006 Katowice, Tel. 0323591627 e-mail: joanna_palion@poczta.fm opracowanie: mgr Joanna Palion Gazda Laboratorium z Krystalografii

Bardziej szczegółowo

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach

Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów

Bardziej szczegółowo

h λ= mv h - stała Plancka (4.14x10-15 ev s)

h λ= mv h - stała Plancka (4.14x10-15 ev s) Twórcy podstaw optyki elektronowej: De Broglie LV. 1924 hipoteza: każde ciało poruszające się ma przyporządkowaną falę a jej długość jest ilorazem stałej Plancka i pędu. Elektrony powinny więc mieć naturę

Bardziej szczegółowo

Natura światła. W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton

Natura światła. W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton Natura światła W XVII wieku ścierały się dwa, poglądy na temat natury światła. Isaac Newton W swojej pracy naukowej najpierw zajmował się optyką. Pierwsze sukcesy odniósł właśnie w optyce, konstruując

Bardziej szczegółowo

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Fizyka powierzchni 4 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni

Bardziej szczegółowo

Falowa natura materii

Falowa natura materii r. akad. 2012/2013 wykład I - II Podstawy Procesów i Konstrukcji Inżynierskich Falowa natura materii 1 r. akad. 2012/2013 Podstawy Procesów i Konstrukcji Inżynierskich Warunki zaliczenia: Aby uzyskać dopuszczenie

Bardziej szczegółowo

Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk

Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk Wzajemne relacje pomiędzy promieniowaniem a materią wynikają ze zjawisk związanych z oddziaływaniem promieniowania z materią. Do podstawowych zjawisk fizycznych tego rodzaju należą zjawiska odbicia i załamania

Bardziej szczegółowo

TEORIA PASMOWA CIAŁ STAŁYCH

TEORIA PASMOWA CIAŁ STAŁYCH TEORIA PASMOWA CIAŁ STAŁYCH Skolektywizowane elektrony w metalu Weźmy pod uwagę pewną ilość atomów jakiegoś metalu, np. sodu. Pojedynczy atom sodu zawiera 11 elektronów o konfiguracji 1s 2 2s 2 2p 6 3s

Bardziej szczegółowo

Podstawy fizyki kwantowej i budowy materii

Podstawy fizyki kwantowej i budowy materii Podstawy fizyki kwantowej i budowy materii prof. dr hab. Aleksander Filip Żarnecki Zakład Cząstek i Oddziaływań Fundamentalnych Instytut Fizyki Doświadczalnej Wykład 5 7 listopada 2016 A.F.Żarnecki Podstawy

Bardziej szczegółowo

Ćwiczenie: "Zagadnienia optyki"

Ćwiczenie: Zagadnienia optyki Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.

Bardziej szczegółowo

Atmosfera ziemska w obserwacjach promieni kosmicznych najwyższych energii. Jan Pękala Instytut Fizyki Jądrowej PAN

Atmosfera ziemska w obserwacjach promieni kosmicznych najwyższych energii. Jan Pękala Instytut Fizyki Jądrowej PAN Atmosfera ziemska w obserwacjach promieni kosmicznych najwyższych energii Jan Pękala Instytut Fizyki Jądrowej PAN Promienie kosmiczne najwyższych energii Widmo promieniowania kosmicznego rozciąga się na

Bardziej szczegółowo

Model elektronów swobodnych w metalu

Model elektronów swobodnych w metalu Model elektronów swobodnych w metalu Stany elektronu w nieskończonej trójwymiarowej studni potencjału - dozwolone wartości wektora falowego k Fale stojące - warunki brzegowe znikanie funkcji falowej na

Bardziej szczegółowo

Laboratorium z Krystalografii. 2 godz.

Laboratorium z Krystalografii. 2 godz. Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40-006 Katowice tel. 0323591627, e-mail: ewa.malicka@us.edu.pl opracowanie: dr Ewa Malicka Laboratorium z Krystalografii

Bardziej szczegółowo

10. Analiza dyfraktogramów proszkowych

10. Analiza dyfraktogramów proszkowych 10. Analiza dyfraktogramów proszkowych Celem ćwiczenia jest zapoznanie się zasadą analizy dyfraktogramów uzyskiwanych z próbek polikrystalicznych (proszków). Zwykle dyfraktometry wyposażone są w oprogramowanie

Bardziej szczegółowo

ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA

ĆWICZENIE Nr 4 LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH. Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników POLITECHNIKA ŁÓDZKA POLITECHNIKA ŁÓDZKA INSTYTUT FIZYKI LABORATORIUM FIZYKI KRYSZTAŁÓW STAŁYCH ĆWICZENIE Nr 4 Badanie krawędzi absorpcji podstawowej w kryształach półprzewodników I. Cześć doświadczalna. 1. Uruchomić Spekol

Bardziej szczegółowo

Fizyczne Metody Badań Materiałów 2

Fizyczne Metody Badań Materiałów 2 Fizyczne Metody Badań Materiałów 2 Dr inż. Marek Chmielewski G.G. np.p.7-8 www.mif.pg.gda.pl/homepages/bzyk Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Bardziej szczegółowo

Teoria pasmowa. Anna Pietnoczka

Teoria pasmowa. Anna Pietnoczka Teoria pasmowa Anna Pietnoczka Opis struktury pasmowej we współrzędnych r, E Zmiana stanu elektronów przy zbliżeniu się atomów: (a) schemat energetyczny dla atomów sodu znajdujących się w odległościach

Bardziej szczegółowo

Ćwiczenie 4. Doświadczenie interferencyjne Younga. Rys. 1

Ćwiczenie 4. Doświadczenie interferencyjne Younga. Rys. 1 Ćwiczenie 4 Doświadczenie interferencyjne Younga Wprowadzenie teoretyczne Charakterystyczną cechą fal jest ich zdolność do interferencji. Światło jako fala elektromagnetyczna również może interferować.

Bardziej szczegółowo

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Ćwiczenie 13 : Dyfrakcja wiązki elektronów na I. Zagadnienia do opracowania. 1. Dualizm korpuskularno falowy

Bardziej szczegółowo

Stara i nowa teoria kwantowa

Stara i nowa teoria kwantowa Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż

Bardziej szczegółowo

Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy

Oddziaływanie promieniowania X z materią. Podstawowe mechanizmy Oddziaływanie promieniowania X z materią Podstawowe mechanizmy Promieniowanie od oscylującego elektronu Rozpraszanie Thomsona Dyspersja podejście klasyczne Fala padająca Wymuszony, tłumiony oscylator harmoniczny

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

Wykład 18: Elementy fizyki współczesnej -1

Wykład 18: Elementy fizyki współczesnej -1 Wykład 18: Elementy fizyki współczesnej -1 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Promieniowanie ciała doskonale czarnego

Bardziej szczegółowo

Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x.

Równanie falowe Schrödingera ( ) ( ) Prostokątna studnia potencjału o skończonej głębokości. i 2 =-1 jednostka urojona. Ψ t. V x. Równanie falowe Schrödingera h Ψ( x, t) + V( x, t) Ψ( x, t) W jednym wymiarze ( ) ( ) gdy V x, t = V x x Ψ = ih t Gdy V(x,t)=V =const cząstka swobodna, na którą nie działa siła Fala biegnąca Ψ s ( x, t)

Bardziej szczegółowo

Spektroskopia elektronów Augera AES

Spektroskopia elektronów Augera AES Spektroskopia elektronów Augera AES (Auger Electron Spectroscopy) Emisja elektronu Augera (Pierre Auger, 1925) elektron Augera E kin E vac 3 poziom Fermiego e C B 2 Φ Α E C E B E A A 1 Energia kinetyczna

Bardziej szczegółowo

Natęż. ężenie refleksu dyfrakcyjnego

Natęż. ężenie refleksu dyfrakcyjnego Natęż ężenie refleksu dyfrakcyjnego Wskaźnikowanie dyfraktogramów 1. Natężenie refleksu dyfrakcyjnego - od czego i jak zależy 1. Wskaźnikowanie dyfraktogramów -metoda różnic 3. Wygaszenia systematyczne

Bardziej szczegółowo

Prawo Bragga. Różnica dróg promieni 1 i 2 wynosi: s = CB + BD: CB = BD = d sinθ

Prawo Bragga. Różnica dróg promieni 1 i 2 wynosi: s = CB + BD: CB = BD = d sinθ Prawo Bragga Prawo Bragga Prawo Bragga Różnica dróg promieni 1 i 2 wynosi: s = CB + BD: CB = BD = d sinθ d - odległość najbliższych płaszczyzn, w których są ułożone atomy, równoległych do powierzchni kryształu,

Bardziej szczegółowo

Dyfrakcja. Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia

Dyfrakcja. Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia Dyfrakcja 1 Dyfrakcja Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia uginanie na szczelinie uginanie na krawędziach przedmiotów

Bardziej szczegółowo

ĆWICZENIE 6. Hologram gruby

ĆWICZENIE 6. Hologram gruby ĆWICZENIE 6 Hologram gruby 1. Wprowadzenie Na jednym z poprzednich ćwiczeń zapoznaliśmy się z cienkim (powierzchniowo zapisanym) hologramem Fresnela, który daje nam możliwość zapisu obiektu przestrzennego.

Bardziej szczegółowo

FALOWE WŁASNOŚCI MIKROCZĄSTEK SPRAWDZANIE HIPOTEZY DE BROGLIE'A

FALOWE WŁASNOŚCI MIKROCZĄSTEK SPRAWDZANIE HIPOTEZY DE BROGLIE'A FALOWE WŁASNOŚCI MIKROCZĄSTEK SPRAWDZANIE HIPOTEZY DE BROGLIE'A 1. PODSTAWY FIZYCZNE Podane przez Einsteina w 1905 roku wyjaśnienie efektu fotoelektrycznego jak również zaobserwowane w 1923r. zjawisko

Bardziej szczegółowo

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne.

Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. Kwantowe własności promieniowania, ciało doskonale czarne, zjawisko fotoelektryczne zewnętrzne. DUALIZM ŚWIATŁA fala interferencja, dyfrakcja, polaryzacja,... kwant, foton promieniowanie ciała doskonale

Bardziej szczegółowo

Mikroskop teoria Abbego

Mikroskop teoria Abbego Zastosujmy teorię dyfrakcji do opisu sposobu powstawania obrazu w mikroskopie: Oświetlacz typu Köhlera tworzy równoległą wiązkę światła, padającą na obserwowany obiekt (płaszczyzna 0 ); Pole widzenia ograniczone

Bardziej szczegółowo

Dyfrakcja rentgenowska (XRD) w analizie fazowej Wykład 2 i 3

Dyfrakcja rentgenowska (XRD) w analizie fazowej Wykład 2 i 3 Dyfrakcja rentgenowska () w analizie fazowej Wykład 2 i 3 1. Historia odkrycie promieniowania X i pierwsze eksperymenty z jego zastosowaniem. 2. Fale elektromagnetyczne. 3. Źródła promieniowania X, promieniowanie

Bardziej szczegółowo

FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że

FALE MATERII. De Broglie, na podstawie analogii optycznych, w roku 1924 wysunął hipotezę, że FAL MATRII De Broglie, na podstawie analogii optycznych, w roku 194 wysunął hipotezę, że cząstki materialne także charakteryzują się dualizmem korpuskularno-falowym. Hipoteza de Broglie a Cząstce materialnej

Bardziej szczegółowo

dr inż. Beata Brożek-Pluska SERS La boratorium La serowej

dr inż. Beata Brożek-Pluska SERS La boratorium La serowej dr inż. Beata Brożek-Pluska La boratorium La serowej Spektroskopii Molekularnej PŁ Powierzchniowo wzmocniona sp ektroskopia Ramana (Surface Enhanced Raman Spectroscopy) Cząsteczki zaadsorbowane na chropowatych

Bardziej szczegółowo

Wstęp. Krystalografia geometryczna

Wstęp. Krystalografia geometryczna Wstęp Przedmiot badań krystalografii. Wprowadzenie do opisu struktury kryształów. Definicja sieci Bravais go i bazy atomowej, komórki prymitywnej i elementarnej. Podstawowe typy komórek elementarnych.

Bardziej szczegółowo

FIZYKA POWIERZCHNI I NANOSTRUKTURY. Wykład odbędzie się w II semstrze 2005/2006

FIZYKA POWIERZCHNI I NANOSTRUKTURY. Wykład odbędzie się w II semstrze 2005/2006 FIZYKA POWIERZCHNI I NANOSTRUKTURY dr hab. Zbigniew Postawa Zakład Fizyki Doświadczalnej pok. 016 Tel. 5626 e-mail: zp@castor.if.uj.edu.pl H H C H H C H H Wykład odbędzie się w II semstrze 2005/2006 Bez

Bardziej szczegółowo

MATERIA. = m i liczby całkowite. ciała stałe. - kryształy - ciała bezpostaciowe (amorficzne) - ciecze KRYSZTAŁY. Periodyczność

MATERIA. = m i liczby całkowite. ciała stałe. - kryształy - ciała bezpostaciowe (amorficzne) - ciecze KRYSZTAŁY. Periodyczność MATERIA ciała stałe - kryształy - ciała bezpostaciowe (amorficzne) - ciecze - gazy KRYSZTAŁY Periodyczność Kryształ (idealny) struktura zbudowana z powtarzających się w przestrzeni periodycznie identycznych

Bardziej szczegółowo

Podstawy fizyki wykład 7

Podstawy fizyki wykład 7 Podstawy fizyki wykład 7 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Drgania Drgania i fale Drgania harmoniczne Siła sprężysta Energia drgań Składanie drgań Drgania tłumione i wymuszone Fale

Bardziej szczegółowo

DYFRAKCYJNE METODY BADANIA STRUKTURY CIAŁ STAŁYCH

DYFRAKCYJNE METODY BADANIA STRUKTURY CIAŁ STAŁYCH LABORATORIUM INŻYNIERII MATERIAŁOWEJ W ENERGETYCE Ćwiczenie 7 DYFRAKCYJNE METODY BADANIA STRUKTURY CIAŁ STAŁYCH Instrukcja zawiera: 1. Cel ćwiczenia 2. Wprowadzenie teoretyczne; definicje i wzory 3. Opis

Bardziej szczegółowo

Dyfrakcja. interferencja światła. dr inż. Romuald Kędzierski

Dyfrakcja. interferencja światła. dr inż. Romuald Kędzierski Dyfrakcja i interferencja światła. dr inż. Romuald Kędzierski Zasada Huygensa - przypomnienie Każdy punkt ośrodka, do którego dotarło czoło fali można uważać za źródło nowej fali kulistej. Fale te zwane

Bardziej szczegółowo

Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób:

Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób: Zastosowanie laserów w Obrazowaniu Medycznym Spis treści 1 Powtórka z fizyki Zjawisko Interferencji 1.1 Koherencja czasowa i przestrzenna 1.2 Droga i czas koherencji 2 Lasery 2.1 Emisja Spontaniczna 2.2

Bardziej szczegółowo

Rejestracja dyfraktogramów polikrystalicznych związków. Wskaźnikowanie dyfraktogramów i wyznaczanie typu komórki Bravais go.

Rejestracja dyfraktogramów polikrystalicznych związków. Wskaźnikowanie dyfraktogramów i wyznaczanie typu komórki Bravais go. Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40006 Katowice tel. 0323591503, email: izajen@wp.pl opracowanie: dr hab. Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

Podstawy fizyki kwantowej

Podstawy fizyki kwantowej Wykład I Prolog Przy końcu XIX wieku fizyka, którą dzisiaj określamy jako klasyczną, zdawała się być nauką ostateczną w tym sensie, że wszystkie jej podstawowe prawa były już ustanowione, a efektem dalszego

Bardziej szczegółowo

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Ruch falowy Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu Fala rozchodzi się w przestrzeni niosąc ze sobą energię, ale niekoniecznie musi

Bardziej szczegółowo

Pasmowa teoria przewodnictwa. Anna Pietnoczka

Pasmowa teoria przewodnictwa. Anna Pietnoczka Pasmowa teoria przewodnictwa elektrycznego Anna Pietnoczka Wpływ rodzaju wiązań na przewodność próbki: Wiązanie jonowe - izolatory Wiązanie metaliczne - przewodniki Wiązanie kowalencyjne - półprzewodniki

Bardziej szczegółowo

BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA

BADANIE INTERFERENCJI MIKROFAL PRZY UŻYCIU INTERFEROMETRU MICHELSONA ZDNIE 11 BDNIE INTERFERENCJI MIKROFL PRZY UŻYCIU INTERFEROMETRU MICHELSON 1. UKŁD DOŚWIDCZLNY nadajnik mikrofal odbiornik mikrofal 2 reflektory płytka półprzepuszczalna prowadnice do ustawienia reflektorów

Bardziej szczegółowo

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej.

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. Wprowadzenie Przy opisie zjawisk takich

Bardziej szczegółowo

Krystalografia. Wykład VIII

Krystalografia. Wykład VIII Krystalografia Wykład VIII Plan wykładu Otrzymywanie i właściwow ciwości promieni rentgenowskich Sieć odwrotna Warunki dyfrakcji promieniowania rentgenowskiego 2 NajwaŜniejsze daty w analizie strukturalnej

Bardziej szczegółowo

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. 1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu

Bardziej szczegółowo

SPEKTROSKOPIA RENTGENOWSKA

SPEKTROSKOPIA RENTGENOWSKA Intensywność ĆWICZENIE 105 SPEKTROSKOPIA RENTGENOWSKA Cel ćwiczenia: obserwacja ciągłego i charakterystycznego promieniowania rentgenowskiego, którego źródłem jest wolfram; wyznaczenie energii promieniowania

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Fonony. Fonony

S. Baran - Podstawy fizyki materii skondensowanej Fonony. Fonony Fonony Drgania płaszczyzn sieciowych podłużne poprzeczne źródło: Ch. Kittel Wstęp do fizyki..., rozdz. 4, rys. 2, 3, str. 118 Drgania płaszczyzn sieciowych Do opisu drgań sieci krystalicznej wystarczą

Bardziej szczegółowo

Spektroskopia fotoelektronów (PES)

Spektroskopia fotoelektronów (PES) Spektroskopia fotoelektronów (PES) Efekt fotoelektryczny hν ( UV lub X) E =hν kin W Proces fotojonizacji w PES: M + hν M + + e E kin (e) = hν E B Φ sp E B energia wiązania elektronu w atomie/cząsteczce

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Otrzymywanie promieni rentgenowskich. 2. Budowa lampy rentgenowskiej. 3. Własności

Bardziej szczegółowo

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)

Bardziej szczegółowo

Zaawansowane Metody Badań Strukturalnych. Badania strukturalne materiałów Badania właściwości materiałów

Zaawansowane Metody Badań Strukturalnych. Badania strukturalne materiałów Badania właściwości materiałów Zaawansowane Metody Badań Strukturalnych Badania strukturalne materiałów Badania właściwości materiałów Zaawansowane Metody Badań Strukturalnych 1. Struktura próbki a metoda badań strukturalnych 2. Podział

Bardziej szczegółowo